4 research outputs found

    Analyzing challenging aspects of IPv6 over IPv4

    Get PDF
    The exponential expansion of the Internet has exhausted the IPv4 addresses provided by IANA. The new IP edition, i.e. IPv6 introduced by IETF with new features such as a simplified packet header, a greater address space, a different address sort, improved encryption, powerful section routing, and stronger QoS. ISPs are slowly seeking to migrate from current IPv4 physical networks to new generation IPv6 networks. ‎The move from actual IPv4 to software-based IPv6 is very sluggish, since billions of computers across the globe use IPv4 addresses. The configuration and actions of IP4 and IPv6 protocols are distinct. Direct correspondence between IPv4 and IPv6 is also not feasible. In terms of the incompatibility problems, all protocols can co-exist throughout the transformation for a few years. Compatibility, interoperability, and stability are key concerns between IP4 and IPv6 protocols. After the conversion of the network through an IPv6, the move causes several issues for ISPs. The key challenges faced by ISPs are packet traversing, routing scalability, performance reliability, and protection. Within this study, we meticulously analyzed a detailed overview of all aforementioned issues during switching into ipv6 network

    RETRACTED: Analyzing challenging aspects of IPv6 over IPv4

    Get PDF
    This article has been retracted by the publisher. This article has been retracted at the request of The International Arab Journal of Information Technology (IAJIT) report because of misconduct and plagiarism. The document and its content have been removed from the Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, and reasonable effort should be made to remove all references to this article

    Analyzing challenging aspects of IPv6 over IPv4

    Get PDF
    The exponential expansion of the Internet has exhausted the IPv4 addresses provided by IANA. The new IP edition, i.e. IPv6 introduced by IETF with new features such as a simplified packet header, a greater address space, a different address sort, improved encryption, powerful section routing, and stronger QoS. ISPs are slowly seeking to migrate from current IPv4 physical networks to new generation IPv6 networks. ‎The move from actual IPv4 to software-based IPv6 is very sluggish, since billions of computers across the globe use IPv4 addresses. The configuration and actions of IP4 and IPv6 protocols are distinct. Direct correspondence between IPv4 and IPv6 is also not feasible. In terms of the incompatibility problems, all protocols can co-exist throughout the transformation for a few years. Compatibility, interoperability, and stability are key concerns between IP4 and IPv6 protocols. After the conversion of the network through an IPv6, the move causes several issues for ISPs. The key challenges faced by ISPs are packet traversing, routing scalability, performance reliability, and protection. Within this study, we meticulously analyzed a detailed overview of all aforementioned issues during switching into ipv6 network

    Investigating the Delay Impact of the DiffServ Code Point (DSCP)

    No full text
    The DiffServ Code Point (DSCP) field in the IP header allows to specify a desired per-hop behavior as packets traverse routers. Setting the DSCP field opportunistically, without prior contractual agreement, has recently become accepted practice for Internet end hosts. Measurement studies find that there is reason to hope for a DSCP setting to have an effect on traffic, and at least configuring this value is not heavily detrimental: systematic drops of packets due to non-zero DSCP values are rare, and the value is often left intact along an end-to-end path. What these studies do not discuss is whether per-hop behaviors truly are honored: what happens to packets in terms of the delay they experience? In this paper, we make an attempt to find a first answer to this by mining a dataset of our own recent large-scale measurement study. Using a deep neural network, we obtain the importance of the factors which help us understand the delay impact of the DSCP
    corecore