693 research outputs found

    Effective Identity Management on Mobile Devices Using Multi-Sensor Measurements

    Get PDF
    Due to the dramatic increase in popularity of mobile devices in the past decade, sensitive user information is stored and accessed on these devices every day. Securing sensitive data stored and accessed from mobile devices, makes user-identity management a problem of paramount importance. The tension between security and usability renders the task of user-identity verification on mobile devices challenging. Meanwhile, an appropriate identity management approach is missing since most existing technologies for user-identity verification are either one-shot user verification or only work in restricted controlled environments. To solve the aforementioned problems, we investigated and sought approaches from the sensor data generated by human-mobile interactions. The data are collected from the on-board sensors, including voice data from microphone, acceleration data from accelerometer, angular acceleration data from gyroscope, magnetic force data from magnetometer, and multi-touch gesture input data from touchscreen. We studied the feasibility of extracting biometric and behaviour features from the on-board sensor data and how to efficiently employ the features extracted to perform user-identity verification on the smartphone device. Based on the experimental results of the single-sensor modalities, we further investigated how to integrate them with hardware such as fingerprint and Trust Zone to practically fulfill a usable identity management system for both local application and remote services control. User studies and on-device testing sessions were held for privacy and usability evaluation.Computer Science, Department o

    Predicting sex as a soft-biometrics from device interaction swipe gestures

    Get PDF
    Touch and multi-touch gestures are becoming the most common way to interact with technology such as smart phones, tablets and other mobile devices. The latest touch-screen input capacities have tremendously increased the quantity and quality of available gesture data, which has led to the exploration of its use in multiple disciplines from psychology to biometrics. Following research studies undertaken in similar modalities such as keystroke and mouse usage biometrics, the present work proposes the use of swipe gesture data for the prediction of soft-biometrics, specifically the user's sex. This paper details the software and protocol used for the data collection, the feature set extracted and subsequent machine learning analysis. Within this analysis, the BestFirst feature selection technique and classification algorithms (naĂŻve Bayes, logistic regression, support vector machine and decision tree) have been tested. The results of this exploratory analysis have confirmed the possibility of sex prediction from the swipe gesture data, obtaining an encouraging 78% accuracy rate using swipe gesture data from two different directions. These results will hopefully encourage further research in this area, where the prediction of soft-biometrics traits from swipe gesture data can play an important role in enhancing the authentication processes based on touch-screen devices

    Forgery-Resistant Touch-based Authentication on Mobile Devices

    Full text link
    Mobile devices store a diverse set of private user data and have gradually become a hub to control users' other personal Internet-of-Things devices. Access control on mobile devices is therefore highly important. The widely accepted solution is to protect access by asking for a password. However, password authentication is tedious, e.g., a user needs to input a password every time she wants to use the device. Moreover, existing biometrics such as face, fingerprint, and touch behaviors are vulnerable to forgery attacks. We propose a new touch-based biometric authentication system that is passive and secure against forgery attacks. In our touch-based authentication, a user's touch behaviors are a function of some random "secret". The user can subconsciously know the secret while touching the device's screen. However, an attacker cannot know the secret at the time of attack, which makes it challenging to perform forgery attacks even if the attacker has already obtained the user's touch behaviors. We evaluate our touch-based authentication system by collecting data from 25 subjects. Results are promising: the random secrets do not influence user experience and, for targeted forgery attacks, our system achieves 0.18 smaller Equal Error Rates (EERs) than previous touch-based authentication.Comment: Accepted for publication by ASIACCS'1

    The Role of Eye Gaze in Security and Privacy Applications: Survey and Future HCI Research Directions

    Get PDF
    For the past 20 years, researchers have investigated the use of eye tracking in security applications. We present a holistic view on gaze-based security applications. In particular, we canvassed the literature and classify the utility of gaze in security applications into a) authentication, b) privacy protection, and c) gaze monitoring during security critical tasks. This allows us to chart several research directions, most importantly 1) conducting field studies of implicit and explicit gaze-based authentication due to recent advances in eye tracking, 2) research on gaze-based privacy protection and gaze monitoring in security critical tasks which are under-investigated yet very promising areas, and 3) understanding the privacy implications of pervasive eye tracking. We discuss the most promising opportunities and most pressing challenges of eye tracking for security that will shape research in gaze-based security applications for the next decade

    Transparent User Authentication For Mobile Applications

    Get PDF
    The use of smartphones in our daily lives has grown steadily, due to the combination of mobility and round-the-clock multi-connectivity. In particular, smartphones are used to perform activities, such as sending emails, transferring money via mobile Internet banking, making calls, texting, surfing the Internet, viewing documents, storing medical, confidential and personal information, shopping online and playing games. Some active applications are considered sensitive and confidential and the risks are high in the event of the loss of any sensitive data or privacy breaches. In addition, after the point of entry, using techniques such as a PIN or password, the user of the device can perform almost all tasks, of different risk levels, without having to re-authenticate periodically to re-validate the user’s identity. Furthermore, the current point-of-entry authentication mechanisms consider all the applications on a mobile device to have the same level of importance and so do not apply any further access control rules. As a result, with the rapid growth of smartphones for use in daily life, securing the sensitive data stored upon them makes authentication of paramount importance. In this research, it is argued that within a single mobile application there are different processes operating on the same data but with differing risks attached. The unauthorised disclosure or modification of mobile data has the potential to lead to a number of undesirable consequences for the user. Thus, there is no single level of risk associated with a given application and the risk level changes during use. In this context, a novel mobile applications data risk assessment model is proposed to appreciate the risk involved within an application (intra-process security). Accordingly, there is a need to suggest a method to be applied continuously and transparently (i.e., without obstructing the user’s activities) to authenticate legitimate users, which is maintained beyond point of entry, without the explicit involvement of the user. To this end, a transparent and continuous authentication mechanism provides a basis for convenient and secure re-authentication of the user. The mechanism is used to gather user data in the background without requiring any dedicated activity, by regularly and periodically checking user behaviour to provide continuous monitoring for the protection of the smartphone. In order to investigate the feasibility of the proposed system, a study involving data collected from 76 participants over a one-month period using 12 mobile applications was undertaken. A series of four experiments were conducted based upon data from one month of normal device usage. The first experiment sought to explore the intra-process (i.e., within-app) and inter-process (i.e., access-only app) access levels across different time windows. The experimental results show that this approach achieved desirable outcomes for applying a transparent authentication system at an intra-process level, with an average of 6% intrusive authentication requests. Having achieved promising experimental results, it was identified that there were some users who undertook an insufficient number of activities on the device and, therefore, achieved a high level of intrusive authentication requests. As a result, there was a need to investigate whether a specific combination of time windows would perform better with a specific type of user. To do this, the numbers of intrusive authentication requests were computed based on three usage levels (high, medium and low) at both the intra- and inter-process access levels. This approach achieved better results when compared with the first set of results: the average percentage of intrusive authentication requests was 3%, which indicates a clear enhancement. The second and third experiments investigated only the intra-process and inter-process, respectively, to examine the effect of the access level. Finally, the fourth experiment investigated the impact of specific biometric modalities on overall system performance. In this research study, a Non-Intrusive Continuous Authentication (NICA) framework was applied by utilising two security mechanisms: Alert Level (AL) and Integrity Level (IL). During specific time windows, the AL process is used to seek valid samples. If there are no samples, the identity confidence is periodically reduced by a degradation function, which is 10% of current confidence in order to save power while the mobile device is inactive. In the case of the mobile user requesting to perform a task, the IL is applied to check the legitimacy of that user. If the identity confidence level is equal to or greater than the specified risk action level, transparent access is allowed. Otherwise, an intrusive authentication request is required in order to proceed with the service. In summary, the experimental results show that this approach achieved sufficiently high results to fulfil the security obligations. The shortest time window of AL= 2 min / IL = 5 min produced an average intrusive authentication request rate of 18%, whereas the largest time window (AL= 20 min / IL = 20 min) provided 6%. Interestingly, when the participants were divided into three levels of usage, the average intrusive authentication request rate was 12% and 3% for the shortest time window (AL = 2 min / IL = 5 min) and the largest time window (AL= 20 min / IL = 20), respectively. Therefore, this approach has been demonstrated to provide transparent and continuous protection to ensure the validity of the current user by understanding the risk involved within a given application.Royal Embassy of Saudi Arabia Cultural Bureau in U

    Transparent User Authentication For Mobile Applications

    Get PDF
    The use of smartphones in our daily lives has grown steadily, due to the combination of mobility and round-the-clock multi-connectivity. In particular, smartphones are used to perform activities, such as sending emails, transferring money via mobile Internet banking, making calls, texting, surfing the Internet, viewing documents, storing medical, confidential and personal information, shopping online and playing games. Some active applications are considered sensitive and confidential and the risks are high in the event of the loss of any sensitive data or privacy breaches. In addition, after the point of entry, using techniques such as a PIN or password, the user of the device can perform almost all tasks, of different risk levels, without having to re-authenticate periodically to re-validate the user’s identity. Furthermore, the current point-of-entry authentication mechanisms consider all the applications on a mobile device to have the same level of importance and so do not apply any further access control rules. As a result, with the rapid growth of smartphones for use in daily life, securing the sensitive data stored upon them makes authentication of paramount importance. In this research, it is argued that within a single mobile application there are different processes operating on the same data but with differing risks attached. The unauthorised disclosure or modification of mobile data has the potential to lead to a number of undesirable consequences for the user. Thus, there is no single level of risk associated with a given application and the risk level changes during use. In this context, a novel mobile applications data risk assessment model is proposed to appreciate the risk involved within an application (intra-process security). Accordingly, there is a need to suggest a method to be applied continuously and transparently (i.e., without obstructing the user’s activities) to authenticate legitimate users, which is maintained beyond point of entry, without the explicit involvement of the user. To this end, a transparent and continuous authentication mechanism provides a basis for convenient and secure re-authentication of the user. The mechanism is used to gather user data in the background without requiring any dedicated activity, by regularly and periodically checking user behaviour to provide continuous monitoring for the protection of the smartphone. In order to investigate the feasibility of the proposed system, a study involving data collected from 76 participants over a one-month period using 12 mobile applications was undertaken. A series of four experiments were conducted based upon data from one month of normal device usage. The first experiment sought to explore the intra-process (i.e., within-app) and inter-process (i.e., access-only app) access levels across different time windows. The experimental results show that this approach achieved desirable outcomes for applying a transparent authentication system at an intra-process level, with an average of 6% intrusive authentication requests. Having achieved promising experimental results, it was identified that there were some users who undertook an insufficient number of activities on the device and, therefore, achieved a high level of intrusive authentication requests. As a result, there was a need to investigate whether a specific combination of time windows would perform better with a specific type of user. To do this, the numbers of intrusive authentication requests were computed based on three usage levels (high, medium and low) at both the intra- and inter-process access levels. This approach achieved better results when compared with the first set of results: the average percentage of intrusive authentication requests was 3%, which indicates a clear enhancement. The second and third experiments investigated only the intra-process and inter-process, respectively, to examine the effect of the access level. Finally, the fourth experiment investigated the impact of specific biometric modalities on overall system performance. In this research study, a Non-Intrusive Continuous Authentication (NICA) framework was applied by utilising two security mechanisms: Alert Level (AL) and Integrity Level (IL). During specific time windows, the AL process is used to seek valid samples. If there are no samples, the identity confidence is periodically reduced by a degradation function, which is 10% of current confidence in order to save power while the mobile device is inactive. In the case of the mobile user requesting to perform a task, the IL is applied to check the legitimacy of that user. If the identity confidence level is equal to or greater than the specified risk action level, transparent access is allowed. Otherwise, an intrusive authentication request is required in order to proceed with the service. In summary, the experimental results show that this approach achieved sufficiently high results to fulfil the security obligations. The shortest time window of AL= 2 min / IL = 5 min produced an average intrusive authentication request rate of 18%, whereas the largest time window (AL= 20 min / IL = 20 min) provided 6%. Interestingly, when the participants were divided into three levels of usage, the average intrusive authentication request rate was 12% and 3% for the shortest time window (AL = 2 min / IL = 5 min) and the largest time window (AL= 20 min / IL = 20), respectively. Therefore, this approach has been demonstrated to provide transparent and continuous protection to ensure the validity of the current user by understanding the risk involved within a given application.Royal Embassy of Saudi Arabia Cultural Bureau in U
    • …
    corecore