440 research outputs found

    Investigating exploration for deep reinforcement learning of concentric tube robot control

    Get PDF
    PURPOSE: Concentric tube robots are composed of multiple concentric, pre-curved, super-elastic, telescopic tubes that are compliant and have a small diameter suitable for interventions that must be minimally invasive like fetal surgery. Combinations of rotation and extension of the tubes can alter the robot's shape but the inverse kinematics are complex to model due to the challenge of incorporating friction and other tube interactions or manufacturing imperfections. We propose a model-free reinforcement learning approach to form the inverse kinematics solution and directly obtain a control policy. METHOD: Three exploration strategies are shown for deep deterministic policy gradient with hindsight experience replay for concentric tube robots in simulation environments. The aim is to overcome the joint to Cartesian sampling bias and be scalable with the number of robotic tubes. To compare strategies, evaluation of the trained policy network to selected Cartesian goals and associated errors are analyzed. The learned control policy is demonstrated with trajectory following tasks. RESULTS: Separation of extension and rotation joints for Gaussian exploration is required to overcome Cartesian sampling bias. Parameter noise and Ornstein-Uhlenbeck were found to be optimal strategies with less than 1 mm error in all simulation environments. Various trajectories can be followed with the optimal exploration strategy learned policy at high joint extension values. Our inverse kinematics solver in evaluation has 0.44 mm extension and [Formula: see text] rotation error. CONCLUSION: We demonstrate the feasibility of effective model-free control for concentric tube robots. Directly using the control policy, arbitrary trajectories can be followed and this is an important step towards overcoming the challenge of concentric tube robot control for clinical use in minimally invasive interventions

    Deep Reinforcement Learning for Inverse Kinematics and Path Following for Concentric Tube Robots

    Get PDF
    Concentric tube robots (CTRs) are continuum robots that allow for bending and twisting motions unattainable by traditional rigid link robots. The curvilinear backbones can benefit surgical applications by improving dexterity, enlarging the workspace, and reducing trauma at the entry point of the instrument. The curvilinear backbone that is attributed is the result of pre-curved, super-elastic tubes arranged concentrically. Each tube has a straight and pre-curved section and is actuated in rotation and translation from the tube base with the neighboring tube interactions producing the curvilinear backbone. The modeling of the neighboring tube interactions is non-trivial, and an explored topic in CTR literature. However, model-based kinematics and control can be inaccurate due to inherent manufacturing errors of the tubes, permanent deformation over time, and unmodelled physical interactions. This thesis proposes a model-free control method using deep reinforcement learning (DRL). The DRL framework aims to control the end-effector of the CTR with limited modeling information by leveraging simulation data, which is much less costly than hardware data. To develop a DRL framework, a Markov Decision Process (MDP) with states, actions, and rewards needs to be defined for the inverse kinematics task. First, action exploration was investigated with this MDP in a simpler simulation as CTRs have a unique extension degree of freedom per tube. Next, state representation, curriculum reward, and adaptation methods over multiple CTR systems were developed in a more accurate simulation. To validate the work in simulation, a noise-induced simulation environment was utilized to demonstrate the initial robustness of the learned policy. Finally, a hardware system was developed where a workspace characterization was performed to determine simulation to hardware differences. By using Sim2Real domain transfer, a simulation policy was successfully transferred to hardware for inverse kinematics and path following, validating the approach

    Deep Reinforcement Learning for Concentric Tube Robot Control with a Goal-Based Curriculum

    Get PDF
    Concentric Tube Robots (CTRs), a type of continuum robot, are a collection of concentric, pre-curved tubes composed of super elastic nickel titanium alloy. CTRs can bend and twist from the interactions between neighboring tubes causing the kinematics and therefore control of the end-effector to be very challenging to model. In this paper, we develop a control scheme for a CTR end-effector in Cartesian space with no prior kinematic model using a deep reinforcement learning (DRL) approach with a goal-based curriculum reward strategy. We explore the use of curricula by changing the goal tolerance through training with constant, linear and exponential decay functions. Also, relative and absolute joint representations as a way of improving training convergence are explored. Quantitative comparisons for combinations of curricula and joint representations are performed and the exponential decay relative approach is used for training a robust policy in a noise-induced simulation environment. Compared to a previous DRL approach, our new method reduces training time and employs a more complex simulation environment. We report mean Cartesian errors of 1.29 mm and a success rate of 0.93 with a relative decay curriculum. In path following, we report mean errors of 1.37 mm in a noise-induced path following task. Albeit in simulation, these results indicate the promise of using DRL in model free control of continuum robots and CTRs in particular

    Deep Reinforcement Learning for Concentric Tube Robot Path Planning

    Full text link
    As surgical interventions trend towards minimally invasive approaches, Concentric Tube Robots (CTRs) have been explored for various interventions such as brain, eye, fetoscopic, lung, cardiac and prostate surgeries. Arranged concentrically, each tube is rotated and translated independently to move the robot end-effector position, making kinematics and control challenging. Classical model-based approaches have been previously investigated with developments in deep learning based approaches outperforming more classical approaches in both forward kinematics and shape estimation. We propose a deep reinforcement learning approach to control where we generalise across two to four systems, an element not yet achieved in any other deep learning approach for CTRs. In this way we explore the likely robustness of the control approach. Also investigated is the impact of rotational constraints applied on tube actuation and the effects on error metrics. We evaluate inverse kinematics errors and tracking error for path following tasks and compare the results to those achieved using state of the art methods. Additionally, as current results are performed in simulation, we also investigate a domain transfer approach known as domain randomization and evaluate error metrics as an initial step towards hardware implementation. Finally, we compare our method to a Jacobian approach found in literature.Comment: 13 pages, 13 figures. Accepted to IEEE Transactions on Medical Robotics and Bionics Symposium Special Issu

    Deep Reinforcement Learning for Concentric Tube Robot Path Following

    Get PDF
    As surgical interventions trend towards minimally invasive approaches, Concentric Tube Robots (CTRs) have been explored for various interventions such as brain, eye, fetoscopic, lung, cardiac, and prostate surgeries. Arranged concentrically, each tube is rotated and translated independently to move the robot end-effector position, making kinematics and control challenging. Classical model-based approaches have been previously investigated with developments in deep learning-based approaches outperforming more classical approaches in both forward kinematics and shape estimation. We propose a deep reinforcement learning approach to control where we generalize across two to four systems, an element not yet achieved in any other deep learning approach for CTRs. In this way, we explore the likely robustness of the control approach. Also investigated is the impact of rotational constraints applied on tube actuation and the effects on error metrics. We evaluate inverse kinematics errors and tracking errors for path-following tasks and compare the results to those achieved using state-of-the-art methods. Additionally, as current results are performed in simulation, we also investigate a domain transfer approach known as domain randomization and evaluate error metrics as an initial step toward hardware implementation. Finally, we compare our method to a Jacobian approach found in the literature

    Deep Reinforcement Learning for Concentric Tube Robot Control with Goal Based Curriculum Reward

    Get PDF

    Sim2Real Transfer of Reinforcement Learning for Concentric Tube Robots

    Get PDF
    Concentric Tube Robots (CTRs) are promising for minimally invasive interventions due to their miniature diameter, high dexterity, and compliance with soft tissue. CTRs comprise individual pre-curved tubes usually composed of NiTi and are arranged concentrically. As each tube is relatively rotated and translated, the backbone elongates, twists, and bends with a dexterity that is advantageous for confined spaces. Tube interactions, unmodelled phenomena, and inaccurate tube parameter estimation make physical modeling of CTRs challenging, complicating in turn kinematics and control. Deep reinforcement learning (RL) has been investigated as a solution. However, hardware validation has remained a challenge due to differences between the simulation and hardware domains. With simulation-only data, in this work, domain randomization is proposed as a strategy for translation to hardware of a simulation policy with no additionally acquired physical training data. The differences in simulation and hardware forward kinematics accuracy and precision are characterized by errors of 14.74±8.87 mm or 26.61±17.00 % robot length. We showcase that the proposed domain randomization approach reduces errors by 56 % in mean errors as compared to no domain randomization. Furthermore, we demonstrate path following capability in hardware with a line path with resulting errors of 4.37±2.39 mm or 5.61±3.11 % robot length

    Surgical Subtask Automation for Intraluminal Procedures using Deep Reinforcement Learning

    Get PDF
    Intraluminal procedures have opened up a new sub-field of minimally invasive surgery that use flexible instruments to navigate through complex luminal structures of the body, resulting in reduced invasiveness and improved patient benefits. One of the major challenges in this field is the accurate and precise control of the instrument inside the human body. Robotics has emerged as a promising solution to this problem. However, to achieve successful robotic intraluminal interventions, the control of the instrument needs to be automated to a large extent. The thesis first examines the state-of-the-art in intraluminal surgical robotics and identifies the key challenges in this field, which include the need for safe and effective tool manipulation, and the ability to adapt to unexpected changes in the luminal environment. To address these challenges, the thesis proposes several levels of autonomy that enable the robotic system to perform individual subtasks autonomously, while still allowing the surgeon to retain overall control of the procedure. The approach facilitates the development of specialized algorithms such as Deep Reinforcement Learning (DRL) for subtasks like navigation and tissue manipulation to produce robust surgical gestures. Additionally, the thesis proposes a safety framework that provides formal guarantees to prevent risky actions. The presented approaches are evaluated through a series of experiments using simulation and robotic platforms. The experiments demonstrate that subtask automation can improve the accuracy and efficiency of tool positioning and tissue manipulation, while also reducing the cognitive load on the surgeon. The results of this research have the potential to improve the reliability and safety of intraluminal surgical interventions, ultimately leading to better outcomes for patients and surgeons
    corecore