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Abstract—Concentric Tube Robots (CTRs) are promising
for minimally invasive interventions due to their miniature di-
ameter, high dexterity, and compliance with soft tissue. CTRs
comprise individual pre-curved tubes usually composed of NiTi
and are arranged concentrically. As each tube is relatively
rotated and translated, the backbone elongates, twists, and
bends with a dexterity that is advantageous for confined spaces.
Tube interactions, unmodelled phenomena, and inaccurate
tube parameter estimation make physical modeling of CTRs
challenging, complicating in turn kinematics and control. Deep
reinforcement learning (RL) has been investigated as a solution.
However, hardware validation has remained a challenge due
to differences between the simulation and hardware domains.
With simulation-only data, in this work, domain randomization
is proposed as a strategy for translation to hardware of a
simulation policy with no additionally acquired physical train-
ing data. The differences in simulation and hardware forward
kinematics accuracy and precision are characterized by errors
of 14.74±8.87 mm or 26.61±17.00 % robot length. We showcase
that the proposed domain randomization approach reduces
errors by 56 % in mean errors as compared to no domain
randomization. Furthermore, we demonstrate path following
capability in hardware with a line path with resulting errors
of 4.37± 2.39 mm or 5.61± 3.11 % robot length.

Index Terms—Surgical robotics, Robot control, Reinforce-
ment learning, Concentric tube robots

I. Introduction

CONCENTRIC tube robots (CTRs) are a type of con-
tinuum robotic system, first introduced by Furusho

et al. [2] and later established [3], [4], that consist of a
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Fig. 1: (a) Real CTR system with tubes adapted from
[1] and (b) illustration with tubes, actuation and robot
workspace.

number of concentric tubes arranged such that they can
be controlled independently. These tubes are usually made
of a composite of nickel and titanium known as nitinol but
have also been 3D printed [5], [6]. With multiple tubes of
different diameters placed one inside each other to form a
telescoping structure as seen in Fig. 1, the overall shape
of the system can elongate, bend and twist to navigate
through complex and narrow environments encountered in
medicine, such as blood vessels, bronchi or other cavities
in the body [7]. Furthermore, the working channel can be
exploited for optical imaging and ultrasound [8].

Although CTRs have several advantages over tradi-
tional rigid robots for minimally invasive surgery (MIS)
including increased flexibility and maneuverability, con-
trolling these robotic systems is challenging. Learning-
based approaches for kinematics, shape estimation, and
dynamics have shown promise and deep learning-based
forward kinematics and shape estimation for CTRs have
been shown to be more accurate than traditional methods
by training on a large data set of training data [9], [10],
[11], [12], [13]. In terms of simulation data effectiveness,
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Sim2Real learning-based methods [14] can aid neural net-
works and reinforcement learning (RL) policies to adapt-
on-the-fly to changing CTR hardware systems. Domain
randomization has been shown to be able to adapt to sit-
uations not seen in training to solve the Rubik’s cube with
a dexterous shadow hand [15]. In the context of CTRs,
as tube parameters due to manufacturing tolerances are
often inaccurate, and friction and permanent strain are
disregarded in kinematics models, adapting to new tube
parameters, and therefore new CTRs is crucial. Further-
more, fabrication challenges for both 3D printing and heat
setting exist such that the results from fabrication can be
imprecise [16] which domain randomization may be able to
account for. Evidently, only using simulation data with no
domain transfer methods proves to be very inadequate. To
this end, in this work, we investigate the transfer of pre-
vious deep reinforcement learning (DRL) work for inverse
kinematics and path following of concentric tube robots in
simulation to a hardware system. Specifically, we consider
domain randomization as a method of Sim2Real transfer
where the hardware CTR system is out-of-distribution
as compared to the simulation CTR system for inverse
kinematics and path following. The work aims to showcase
that simulation data with domain randomization can lead
to successful deployment of RL techniques on hardware,
without additional hardware data collection. Building on
our previous simulation work [17], we aim to generalize to
hardware with domain randomization [18] by perturbing
tube characteristics and sensor noise to expose the agent
to various CTR systems in simulation, thereby bridging
the gap to the hardware. The method is evaluated with
error metrics on hardware inverse kinematics and path
following, with no additional hardware data used for
training. Summarizing the main contributions:

• Transfer a simulation policy to hardware with domain
randomization.

• Evaluations of error metrics on hardware for
simulation-only data with and without domain ran-
domization for inverse kinematics and path following.

• To our knowledge, the first work on Sim2Real for
CTRs.

II. Related prior work
To our knowledge, all previous work in the litera-

ture concerning DRL for CTRs has been in simulation.
However, other deep learning-based approaches have con-
ducted hardware experiments successfully providing better
accuracy metrics than model-based methods. Grassmann
et al. [9] demonstrated hardware experiments for kine-
matics with state-of-the-art forward kinematics estima-
tion. Kuntz et al. [12] also demonstrate state-of-the-art
hardware experiments for shape estimation using a deep
learning-based method. A takeaway was that simulation
data plus a large set of hardware data was needed for the
best performance, with simulation-only data performing
the worst. Furthermore, Liang et al. [13] demonstrated
forward kinematic joint-to-shape as well as inverse kine-

matic shape-to-joint estimation from images using deep
learning, however only for simulation.

We have previously investigated the exploration prob-
lem associated with the joint sampling of CTRs in sim-
ulation [19]. As each joint is composed of a rotation and
extension degree of freedom, the action exploration noise
must consider the difference in units. In subsequent work,
a more accurate kinematics model was used in simulation
as well as a novel curriculum training methodology and
joint representation to improve sample efficiency. Finally,
in [17], we investigated rotational constraints and their
effects on training and error metrics and the first proof-
of-concept towards generalizing a single policy for a
multitude of CTR systems of various workspace sizes.
Notably, our prior work has all been in simulation, and
hardware validation and verification for deep learning-
based approaches for inverse kinematics has remained a
challenge.

In another work by Kuntz et al, [12], deep learning
is used in forward kinematics shape estimation of the
backbone of CTRs. A deep learning approach where
data of both simulation and hardware as able to outper-
form physics-based approaches in error metrics. However,
simulation-only data performed the worst. The mean
square error along the shaft was 12.40 ± 16.40 mm
with only simulation data and 3.03 ± 4.84 mm with
both simulation and real data. In this work, we aim to
maximize the potential of simulation data by utilizing
domain randomization. In terms of cost, simulation data
is almost always cheaper to collect than hardware data,
and therefore should be exploited as much as possible.

III. Methods
To utilize RL in simulation or hardware, the Markov

Decision Process (MDP) of the system must be fully
defined for the agent to collect data to complete the given
task.

A. Markov Decision Process
The MDP has three main components: the state, re-

ward, and action. In the following section, each component
is defined in relation to the task and how the elements of
the robot setup relate to the MDP.

State (st): The state at timestep t, is defined as the
concatenation of the trigonometric joint representation,
Cartesian goal error between the current achieved position
and desired position, and current goal tolerance. As shown
in Fig. 1b, rotation and extension of tube i (ordered
innermost to outermost) are αi and βi with Li representing
the full length. First, the trigonometric representation [9],
γi, of tube i is defined as:

γi = {γ1,i, γ2,i, γ3,i} = {cos(αi), sin(αi), βi}. (1)

The rotation can be retrieved by taking the arc-tangent

αi = arctan(γ2,i, γ1,i). (2)
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The extension joint βi can be retrieved directly and has
constraints

0 ≥ β3 ≥ β2 ≥ β1 (3)

0 ≤ L3 + β3 ≤ L2 + β2 ≤ L1 + β1 (4)

due to extension actuation constraints. The Cartesian goal
error is the current error between the achieved end-effector
position Ga, and desired end-effector position Gd. Finally,
the current goal tolerance, δ(t) is included in the state
where t is the current timestep of training [20]. The full
state, st, can then be defined as:

st = {γ1, γ2, γ3, Ga −Gd, δ(t)}. (5)

In the work by Grassmann et al. [10], a transformation
matrix was used to decorrelate the interdependence of the
extension joints and normalize extension to 0 to 1. The
matrix defined as

MB =

−L3 0 0
−L3 L3 − L2 0
−L3 L3 − L2 L2 − L1

 (6)

can transform extensions to the interval [0, 1]. Extensions
can be further transformed to the interval [−1, 1] with a
system of linear equations [11]

β3

β2

β1

1

 =

[
1
2MB

1
2MB · 13×1

01×3 1

]
β3,U
β2,U
β1,U
1

 . (7)

With this transformation from extensions to normalized
extensions, sampling valid extension joints can be done
by uniform sampling from the [−1, 1] range. Moreover, at
each step during operation, the extension joints can be
constrained by verifying all joints are within the interval.
Action (at): Actions are defined as a change in rotation
and extension joint positions, [19]:

at = {∆β1,∆β2,∆β3,∆α1,∆α2,∆α3}. (8)

The maximum action in extension and rotation is set to
1.0 mm and 5◦.
Goals (Ga, Gd): Goals are the Cartesian positions in
the Cartesian workspace of the robot. Ga is the current
achieved position of the robot, either in simulation or
hardware. In simulation, a forward kinematics model is
used to compute the current achieved position. After each
step, where new joints are actuated, the current achieved
position is recomputed. In hardware, a tracker is used to
track the position of the end-effector. Similarly, Gd is the
desired goal of the robot end-effector. In simulation, joint
positions are sampled using Eqn. 7 at the start of every
episode and forward kinematics is applied to determine
the desired end-effector position for that episode as seen in
Section III. In hardware, however, workspace exploration
is performed to determine possible end-effector positions
to sample from directly as differences in simulation and
hardware may result in some positions not in the hardware
workspace.

Rewards (rt): Rewards are the scalar values returned
as feedback by the environment to the agent at the
current step. Therefore, at each step, a tuple of state,
action, reward, and next state experiences are collected
and stored. Sparse rewards are used as they have been
shown to be more effective than dense rewards when
using hindsight experience replay (HER) [21]. The reward
function is defined as:

rt =

{
0 if et ≤ δ(t)

−1 otherwise
(9)

where et is the Euclidean distance ||Ga−Gd|| at timestep
t and δ(t) is the goal-based curriculum function that
determines the goal tolerance at training timestep t.

To collect data as well as execute actions from the pol-
icy, the openAI gym framework [22] was used to develop
a simulation and hardware environment. The framework
requires the implementation of a reset and step method,
with returned values of state, rewards, and termination,
allowing for RL algorithm agnostic environments.

B. Simulation System
To collect experiences in simulation, the geometrically

exact kinematics model was used to create a simulation
environment. The model was first presented in [23] and
for externally loaded systems with point and distributed
forces in [24], [25]. The model ignores friction, permanent
strain, and forces along the backbone of the robot. The
environment takes tube parameters describing a CTR
system as shown in Table I and computes the current
achieved position, Ga, and if the desired goal, Gd has
been achieved. The tube parameters were found by pho-
tocopying each tube separately on an A4 sheet of paper,
then using CAD software to determine the parameters.
In previous work, successful inverse kinematics and path
following of various CTR systems have been demonstrated,
but not transferred to hardware, thus a Sim2Real strategy
like domain randomization [18] is required.

1) Domain Randomization: In domain randomization,
the aim is to transfer a policy from a simulation (source
domain) to a similar but different target domain (physical
hardware). In simulation, a set of randomization parame-
ters is selected. As a policy is trained in the source domain,
experiences are collected with these randomizations ap-
plied, exposing the policy to a variety of environments. In
this work, we apply uniform domain randomization, where
for each selected randomization parameter, a bounded
interval is defined where each parameter is sampled
uniformly at the start of each episode. The selected pa-
rameters for each tube were curved length, inner diameter,
outer diameter, stiffness, torsional stiffness, and curvature.
A randomization percentage, ϵ of the nominal value of
each parameter was used to determine the upper and
lower bounds such that for parameter x, the interval was
[x− ϵx, x+ ϵx].

Furthermore, noise was added to the observation
through the joint values and end-effector position or
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Parameter Inner Middle Outer
Length (mm) 340.36 169.69 72.75

Straight Length (mm)1 250.36 82.19 11.72

Curved Length (mm)2 90.00 87.50 61.03

Inner Diameter (mm) 0.51 0.70 1.15

Outer Diameter (mm) 0.66 1.00 1.63

Stiffness (GPa) 7.50 7.50 7.50

Torsional Stiffness (GPa) 2.50 2.50 2.50

Pre-curvature (mm−1)2 24.61 19.12 14.04

Home offset (mm)3 24.61 19.12 14.04
1 There is a straight section of 96.41 mm steel and of 153.95 mm
nitinol. 2 These values were calculated by photocopying each
tube and measuring manually via CAD software (Autodesk
AutoCAD). 3 Home offset is measured from the base plane to
the limit switch of each extension block.

TABLE I: CTR Tube Parameters

achieved goal tracking. The motor joint positions were
perturbed by ω = 5◦ resulting in a 5◦ perturbation in
rotation positions and 0.005 mm in extension positions.
The achieved goal position or tracking of the end-effector
was perturbed by ζ = 1 mm as documented by Aurora
NDI documentation.

2) Training Methodology: In simulation training, a
server cluster with Intel Gold 6130 18C 140W 2.3 GHz
with 19 parallel [21] workers for 500,000 training steps with
stable baselines [26] was used. A goal-based curriculum
with an egocentric joint representation as presented in
[20], [17] was employed.

C. Hardware System
The CTR hardware system consisted of two full nitinol

tubes and a third nitinol tube with a partial steel section
along the straight length. Three brass collets and chucks
were used with custom 3D-printed motor couplings. The
robot chassis had three main aluminum extrusions of 200
mm in length with two 3D-printed plates for motor mounts
and tube entry. To actuate the tubes in rotation three
stepper motors (200 steps per revolution) with a setting
of 4 micro-step and for translation, three stepper motors
with a 16 micro-step setting were used. The linear rails
were of 200 mm stroke and 1 mm lead. For rotation
and translation motors, limit switches were incorporated
for the initial homing operation. For rotation, 3D-printed
rotation bumps were used to set the limit switch, and 3D-
printed limit blocks were used for translation. To home
the motors, limit switches set the zero position for each
rotation and translation motor. In the initial calibration
of rotation, each tube is rotated individually with others
retracted until the tracker is aligned to the Y-axis. For
translation, each motor is set to move forward until a limit
switch is hit, starting from outer to inner tube. For motor
control, two Arduino microcontrollers with GRBL CNC

(a)

(b)

Fig. 2: Hardware experimental setup in (a) the robot
workspace with tracking system and (b) the actuation
system.

shields for rotation and translation separately were used.
To track the end effector position, the Aurora tracking
system was used with a 0.6 mm sensor. A custom tracker
holder was designed and 3D printed. To calibrate the base
of the robot, calibration holders were designed to be used
with the Aurora NDI 6 DOF probe to determine the base
plane and base frame of the CTR system.

1) Workspace Analysis: To analyze the characteristics
of the CTR hardware system, with respect to simulation,
a workspace collection trial was completed whereby joint
commands were sent to the system, and once the end-
effector was in a steady state, the position of the end-
effector with respect to the base frame was collected. Si-
multaneously, the forward kinematics was computed using
the simulation framework and commanded joint positions.
This produced the simulation end-effector positions. By
comparing the errors, a baseline difference of simulation
to hardware was determined which the Sim2Real method
will need to overcome. We present errors in two ways,
the first is in millimeters and the second is in percentage
robot length. In the second, the error is divided by the
current extension of the innermost tube as done previously
in [10]. The error metrics of simulation to hardware for
the workspace were as follows: mean error and standard
deviation in (mm) is 14.5 ± 8.2 mm and for percentage
robot length, the mean error and standard deviation are
26.24± 16.41 %. To examine how well the RL agent can
adapt to the hardware system via domain randomization,

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3303714

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on August 15,2023 at 09:04:37 UTC from IEEE Xplore.  Restrictions apply. 



IYENGAR et al.: SIM2REAL TRANSFER OF REINFORCEMENT LEARNING FOR CONCENTRIC TUBE ROBOTS 5

(a) (b) (c)

Fig. 3: Visualization of hardware workspace Cartesian points. The simulation framework with the joint values
commanded is used to compute the simulation points (blue) and the actual hardware points tracked are in orange.
An (a) x− y , (b) x− z and (c) y − z views are shown.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 4: Home and goal positions used to evaluate each domain randomization method.

no system identification was performed to improve the gap
between the simulation and hardware system.

To examine and differentiate the different elements of
domain randomization, being that of the sensor noise and
model parameter randomization, combinations, and values
of randomization elements were experimented with. Once
these agents were trained in simulation, each was tasked
with solving inverse kinematics tasks in simulation and
hardware. Finally, after testing each relevant experiment
in a line following task, we discuss the results of domain
randomization on error metrics with the hardware system,
acknowledging the initial large system deviation from the
workspace analysis.

IV. Experiments and Results
To compare these experiments, a baseline experiment

with no additional Sim2Real strategies where the learned

policy is directly trained with the given CTR parameters
for comparison. The effects of domain randomization were
explored by performing a set of 10 additional experiments
split into two categories. The first category consists of 4
experiments that vary the domain randomization value for
0.1 and 0.2 with the addition of sensor noise. The second
category of experiments consists of 6 experiments varying
the randomization value for 0.05, 0.08, 0.10, 0.12, 0.15, and
0.20 with no additional sensor noise. With this set of
experiments, the effects of various values of domain
randomization with the combination of sensor noise can
be presented.

In the following section, first, the simulation training
results are analyzed and presented. Success rate and error
metrics were recorded throughout simulation training for
all experimental policies and inverse kinematics trials were
performed in simulation.
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(a) (b)

Fig. 5: Experimental errors for each policy with varied domain randomization parameters shown over trials for (a)
sensor noise with model randomization and (b) with only model noise.

A. Simulation Training Results
During simulation training of the experimental policies,

all were able to converge to below 1.0 mm error by the end
of the 2 million steps of training. Success rate, measured
as a percentage of successful episodes over total evaluation
episodes, was consistently > 97.5% after the first 50, 000
because of the use of the decay curriculum [20]. Having
this curriculum training method greatly improved training
times as successful episodes took fewer steps as a result
of the larger goal tolerance. Moreover, in the final steps
of training, when the policy is already converged, having
the required 1.0 mm still results in a high success rate.
To evaluate the experimental policies, inverse kinematics
was performed for 100 randomly selected points in the
robot workspace based on hardware joint constraints. The
final errors and the success rate was tabulated. With no
domain randomization or sensor noise (ϵ = 0, ω = 0◦,
ζ = 0 mm) error metrics were 0.88 ± 1.87 mm. For the
first category of experiments, where sensor noise of ω = 5◦

and ζ = 1.0 mm was incorporated, the simulation results
are as follows. With no randomization ϵ = 0.0 errors were
0.76 ± 0.73 mm. With domain randomization of ϵ = 0.1
and ϵ = 0.2 errors were 0.81±1.31 mm and 0.77±0.27 mm.
In the second category without sensor noise and domain
randomization only varying from 0.05, 0.08, 0.10, 0.12,
0.15, and 0.20, the error metrics are presented below. In
order, errors were 0.50±0.82, 0.59±1.05, 0.60±0.92 mm,
0.90± 1.85, 0.60± 0.90 and 0.73± 0.99 mm.

B. Hardware Results
The inverse kinematics hardware experiments consisted

of the robot end-effector starting at the home position, and
attempting to reach each desired goal in sequence, before
returning to the home position. This is performed for each
experiment, and repeated for 9 trials. The desired goals
are 9 randomly selected positions in the robot workspace
with the sampling method presented in [11] and remain
the same for all experiments. First, the effects of sensor
noise are illustrated in Fig. 5a over trials where each
trial is shaded. In Fig. 5b, the error metrics are shown
to illustrate the improvements with different values of
domain randomization with no sensor noise. To summarize
inverse kinematics results, we present error metrics per

experiment in mm as well as percentage robot length over
trials as follows. We first present errors with respect to
adding sensor noise and domain randomization as shown
in Fig. 5a. With no domain randomization or sensor noise
(ϵ = 0.0, ω = 0.0◦, ζ = 0.0 mm), error metrics were
8.56 ± 4.58 mm or 19.86 ± 11.29 %. Adding only sensor
noise (ϵ = 0.0, ω = 5.0◦, ζ = 1.0 mm) errors were
13.91 ± 5.39 mm or 27.86 ± 13.93 %. With sensor noise
and domain randomization of 0.10 and 0.20, error metrics
were 11.86 ± 7.87 mm or 23.25 ± 15.48 % for (ϵ = 0.10,
ω = 5.0◦, ζ = 1.0 mm) and 10.10±6.34 mm or 19.43±11.75
% for (ϵ = 0.20, ω = 5.0◦, ζ = 1.0 mm). Removing sensor
noise and evaluating increments of domain randomization
of 0.05, 0.08, 0.10,0.12, 0.15, and 0.20 the following metrics
were found as seen in Fig. 5b. The error metrics for each
increment were 5.78±2.63 mm or 12.14±5.70 %, 5.63±2.45
mm or 12.19± 5.53 %, 6.05± 3.31 mm or 13.35± 8.34 %,
11.20 ± 6.74 mm or 22.69 ± 11.8 %, 4.83 ± 1.18 mm or
11.06± 6.22 % and 14.37± 7.38 mm or 28.39± 13.29 %.

In path following, a line across the workspace discretized
into 8 individual points was used to evaluate various
domain randomization increments including ϵ = 0.0,
ϵ = 0.05, ϵ = 0.08, ϵ = 0.10, ϵ = 0.12, ϵ = 0.15 and
ϵ = 0.20. For each respective randomization increment, the
errors were 8.95±3.90 mm or 11.49±4.96 %, 4.37±2.39 mm
or 5.61±3.11 %, 4.45±2.19 mm or 5.41±2.65 %, 4.45±2.57
mm or 5.59± 3.21 %, 9.49± 4.34 mm or 11.53± 5.82 %,
8.08± 4.36 mm or 10.59± 6.15 % and 6.46± 4.22 mm or
8.09 ± 5.28 %. The error metrics are summarized in Fig.
7.

V. Discussion
Despite the large errors found when comparing the

simulation modeling to the hardware implementation, the
policy is able to approximately reach desired goals and
follow a discretized line path with domain randomization.
For inverse kinematics, the best domain randomization
found was 0.15 although 0.05, 0.08, and 0.10 performed
adequately. 0.12, however, did not perform well as com-
pared to neighboring values. No domain randomization
and 0.20 performed poorly as no randomization does
not help the Sim2Real gap and too much randomization
does not collect enough data on the correct hardware
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(a) (b) (c) (d)

Fig. 6: Line path experiments for ϵ = 0.05.

Domain
Randomization

Parameters
Inverse Kinematics Path Following

ϵ (%) ω (◦) ζ (mm) Simulation
Errors (mm)

Hardware
Errors (mm)

Hardware
Errors (%)

Hardware
Errors (mm)

Hardware
Errors (%)

0 0 0 0.88± 1.87 8.56± 4.58 19.86± 11.29 8.95± 3.90 11.49± 4.96
0 5 1 0.76± 0.73 13.91± 5.39 27.86± 13.93 – –

0.1 5 1 0.81± 1.31 11.86± 7.87 23.25± 15.48 – –
0.2 5 1 0.77± 0.27 10.10± 6.34 19.43± 11.75 – –
0.05 0 0 0.50± 0.82 5.78± 2.63 12.14± 5.70 4.37± 2.39 5.61± 3.11
0.08 0 0 0.59± 1.05 5.63± 2.45 12.19± 5.53 4.45± 2.19 5.41± 2.65
0.10 0 0 0.60± 0.92 6.05± 3.31 13.35± 8.34 4.45± 2.57 5.59± 3.21
0.12 0 0 0.90± 1.85 11.20± 6.74 22.69± 11.8 9.49± 4.34 11.53± 5.82
0.15 0 0 0.60± 0.90 4.83± 1.18 11.06± 6.22 8.08± 4.36 10.59± 6.15
0.20 0 0 0.73± 0.99 14.37± 7.38 28.39± 13.29 6.46± 4.22 8.09± 5.28

TABLE II: A summary of experimental results for various domain randomization parameters in simulation and
hardware for the tasks of inverse kinematics and path following. Inverse kinematics simulation results are over 100
trials of randomly selected desired goal points, however, inverse kinematics hardware results are a sequence of 9 desired
goal points repeated over 9 trials. Path following results is for a straight line along the workplace. Hardware errors
are given in millimeters and % of robot length.

Fig. 7: Path following error metrics for each domain
randomization over 3 trials.

parameters. During simulation training, the joint rotation
of the tube remains unconstrained for the agent to explore
the entirety of the workspace. However, in hardware, the
robot rotation joints are constrained to ±60◦. For ϵ = 0.12,
this causes issues when reaching desired goals. In analyzing
the rotational joint commands by the agent in ϵ = 0.12,
it is evident the agent is aiming to rotate joints past
the constraints, and therefore, unable to progress. The
mean and standard deviation of final rotational joints

in order of innermost to outermost for ϵ = 0.12 was
9.44◦ ± 38.64◦, −66.80◦ ± 78.25◦ and 198.93◦ ± 218.11◦

whereas for ϵ = 0.10 the values were −2.03◦ ± 25.15◦,
19.25◦ ± 34.81◦ and −6.53◦ ± 24.34◦. When training with
constrained rotation, we found results remained similar in
simulation inverse kinematics results.

In the line following task, similar to the inverse kine-
matics task, 0.05, 0.08, and 0.10 performed well over the
trials, with no randomization and 0.20 performing not as
well. Other factors may be affecting the performance of
certain policies depending on the region where the desired
goals are set. For example, although 0.15 performed well
in inverse kinematics, it does not perform as well in
path following. Finally, similar to inverse kinematics, 0.12
does not perform well in path following due to large
tube rotations. The calibration procedure for the tracking
system, inverse kinematics experimental results, and line
following paths are attached in the associated video.

As mentioned in Section II, the work by Kuntz et al.
[12] compares accuracy results for different sources of data
(simulation, real, and simulation + real) in the task for
shape estimation. Looking at mean squared error along
the shaft metrics for the best network parameters for
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each were 12.1 ± 16.5 mm, 3.49 ± 4.72 and, 3.03 ± 4.84
mm using simulation, real and, simulation + real data
respectively. Although errors are difficult to compare, as
errors are presented in mm rather than % robot length,
and a different learning task, it is evident that simulation-
only data performs the worst when evaluated on hardware.
Further study will be required to see the effects of domain
randomization with simulation data, with the addition of
hardware data.

VI. Conclusion
In this paper, the effects of domain randomization

in simulation training and the resulting error metrics
are evaluated on a CTR hardware system in inverse
kinematics and a line-following task. The benefits are
demonstrated by comparing error metric results to the
workspace characterization metrics comparing simulation
and hardware. Moreover, with the availability of more
accurate real-time CTR dynamics [27] and Finite Element
[28] models, better simulation data will further improve
the error metrics achievable on hardware. More work is
needed to understand the peak behavior as related to ϵ.
It could be possible the performance was linked to the
path chosen and future studies may focus on varying these
paths, in a more accurate dynamics model, to understand
the effects of randomization on policy convergence.
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