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Data-driven Steering of Concentric Tube Robots in Unknown
Environments via Dynamic Mode Decomposition

Balint Thamo1,2, David Hanley1,2, Kevin Dhaliwal2, Mohsen Khadem1,2

Abstract—Concentric Tube Robots (CTRs) are a type of con-
tinuum robot capable of manipulating objects in restricted spaces
and following smooth trajectories. CTRs are ideal instruments for
minimally invasive surgeries. Accurate control of CTR’s motion
in presence of contact with tissue and external forces will allow
safe deployment of the robot in a variety of minimally invasive
surgeries. Here, we propose a data-driven controller that can
repeatedly and precisely direct the robot along predetermined
deployment trajectories. The proposed controller doesn’t rely
on a mathematical model of the robot and employs Extended
Dynamic Mode Decomposition (EDMD) to learn the nonlinear
dynamics of the robot and the interaction forces on the fly. This
enables the robot to follow desired trajectories in the presence of
unknown perturbations, such as external forces. Experiments are
carried out to evaluate the accuracy of the controller in steering
the robot on arbitrary trajectories. Results demonstrate that the
robot can track trajectories with a mean accuracy of 2.4 mm
in repeated trials. Furthermore, we simulate scenarios where the
robot is in contact with a rigid obstacle and is cutting through
phantom tissue. Results show the robot can reach various static
targets with a minimum accuracy of 2 mm.

Index Terms—Model Learning for Control; Learning from
Experience; Surgical Robotics: Steerable Catheters/Needles

I. INTRODUCTION

CONCENTRIC tube robots (CTRs) are comprised of
several nested pre-curved tubes. Shape and position

of CTR end-effector can be controlled by axially rotating
and translating the tubes (Fig. 1). Thanks to their small
footprint and inherent flexibility, CTRs show great potential
for manipulating objects in constrained environments. CTRs
have been developed for use as steerable needles and robotic
manipulators in a variety of surgical applications [1]. Precise
control of the robot’s motion is crucial to the safe deployment
of CTRs.

A. Background

The kinematic model of the CTR proposed in [2], [3] is
widely used to control the robot motion. The model can be
used to pre-compute the forward kinematics model solutions
over the entire workspace for real-time open-loop guidance
of the robot [2] or estimate the differential kinematics of the
robot for closed-loop control of the robot [4]. Researchers
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have developed dynamic models of CTRs [5] that can sim-
ulate CTRs nonlinear dynamics and accurately estimate robot
motion under external forces. The models include several
parameters representing mechanical characteristics of the robot
that often are not easy to identify independently. Moreover, the
models require accurate knowledge of external forces acting
on the robot. Unfortunately, these forces are not always known,
especially when the robot operates in an unknown environment
or is in contact with a deformable object. Therefore, the
majority of model-based approaches for controlling the motion
of the CTRs assume the robot is moving in free space [2], [4],
[6].

In [7], a radically different approach was used to estimate
contacts using real-time medical images and machine learn-
ing. The controller employed this feedback to autonomously
navigate the inner walls of the heart during cardiac surgery.
Several researchers employed CTRs for teleoperated surgical
interventions [8], [9]. During the teleoperation, the CTR is
remotely-controlled by a user under visual feedback. The user
can compensate for controller errors caused by contacts or
external forces. In another work [10], a deep neural network
was used to estimate robot contact forces at its tip as a function
of the robot shape. This information can be used to update
the robot’s model for accurate control of the robot. However,
application of these methods are limited where there is a lack
of visual feedback or the robot is obscured by anatomical
obstacles.

Another approach for safe deployment of CTRs is based
on model-based motion planning with obstacle avoidance
[11]–[13]. The motion planners employ pre-operative medical
images to develop a cloud point representing obstacles [11],
[12] or create a 3D map of robot task space [13]. Next, this
data is used to generate collision free paths for the CTR.
Finally, model-based control approaches are employed to steer
the robot on the pre-planned path.

Data-driven controllers that learn the complex dynamics
of the robot and its interaction with the environment can
overcome the aforementioned difficulties. Commonly, these
methods employ machine learning to learn inverse/forward
kinematic or dynamic models [14], [15] or learn a direct
control policy for moving the robot using Reinforcement
Learning (RL) techniques with/without prior knowledge about
geometric models [16]–[18]. The major disadvantages of these
methods are the requirement for numerous training data. For
example, a deep-neural-network based approach was proposed
in [19] to learn inverse kinematics of CTRs and a dataset of
100000 samples were used to train the network. Gathering
large data sets with a real robot is not always feasible.
Additionally, relying only on simulation dataset for training
leads to unsatisfactory results when the model is deployed on
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Obstacle

Figure 1. Illustration of a CTR with two tubes in contact with an obstacle and
under external forces. The actuation variables ui denote the proximal base
rotation, and translation of the tubes.

the real robot [20]. Moreover, these models that are trained
offline on experimental datasets [19] or simulated [18] datasets
cannot capture the robot’s behaviour in contact with the
environment or external forces, as it would require a very large
training dataset considering numerous robot configurations
with various forces.

Some researchers [21] proposed online learning paradigms
for control of flexible robots. In our previous work [22],
we followed a similar approach to develop a model-less
algorithm to estimate the inverse kinematics of the CTR on
the fly using only the position measurement of the robot’s
tip. However, the proposed work was only tested in computer
simulations. These methods require considerable time for the
algorithm to converge and learn before reaching the desired
accuracy. Additionally, the performance of the algorithm is
very susceptible to the quality of feedback signals, which are
commonly obtained using electromagnetic trackers or stereo
cameras and have a low signal-to-noise ratio. Therefore, these
methods often fail in practice due to the poor quality of the
feedback signal or the slow learning phase. As a result, none
of these methods have been tested on real CTRs.

B. Contribution

In this paper, we aim to control the motion of a CTR with
unknown dynamics in contact with an unknown environment
as shown in Fig. 1. The goal is to follow a desired trajectory
without having prior knowledge of the external forces acting
on the robot or obstacles restricting the robot’s motion. It
is assumed that we can only measure the Cartesian coordi-
nates of the robot’s tip position using commercially available
electromagnetic trackers (EMT). To this end, we propose
a data-driven method that overcomes the difficulties of the
model-based approaches, including predicting the effects of
unknown external forces, robot’s dynamics, and unexpected
disturbances that might happen in a real setting during the
robot’s motion. Additionally, the proposed controller requires
only 250 samples to effectively learn the robot dynamics,
which is significantly less than previous learning-based al-
gorithms. We study the performance of the controller in
extensive simulations and experiments. We consider a variety
of scenarios including the robot under external forces, the
robot in contact with an obstacle, and the robot cutting
through phantom tissue, simulating percutaneous needle-based
interventions. Our algorithm is available online.1

The remainder of the paper is organised as follows. Sec-
tions II details the proposed learning-based controller. In
Section III, an extensive simulation study is performed to tune
the parameters of the controller. Experimental evaluation of

1https://github.com/SIRGLab/CTR-EDMD.git
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Figure 2. A block diagram of the proposed control strategy.

the controller and discussion of the results are presented in
Section IV. Concluding remarks appear in Section V.

II. METHODOLOGY

Here, we present a holistic approach to model the dynamics
of a closed-loop controlled CTR. We use several samples
from the system to develop a linear state space model of the
CTR, i.e., a model that accepts joint inputs and measurements
of the robot’s tip position over a fixed period of time and
predicts the future position of the robot’s tip. Each sample
at time tk contains the Cartesian coordinates of the robot’s
end-effector position x and the robot control inputs u at time
tk. The proposed model is linear, however, it captures the
nonlinear dynamics of the robot and interaction forces. In
particular, rather than describing the evolution of a dynamical
system’s state directly, which may be a nonlinear mapping, the
Koopman operator [23] is employed to describe the evolution
of continuous scalar valued functions of the state. Koopman
operator has been previously proposed for data-driven mod-
elling of nonlinear systems. A review of Koopman applications
in nonlinear control can be found in [24]. Later, we apply
a numerical approximation algorithm known as Extended
Dynamic Mode Decomposition (EDMD) [25] to discretize
the linear system. EDMD is an efficient numerical method
previously proposed for reducing dimensionality of linear
systems [26]. The final model, is a linear dynamical system
that allows established linear control design methodologies to
be used to design controllers for the robot. Finally, we employ
a linear model predictive controller that employs the data-
driven dynamic model to control the position of the CTR.
A block diagram of the proposed control strategy is shown in
Fig. 2.

A. Data-driven Modelling via Dynamic Mode Decomposition

This section describes a data-driven approach for modeling
the dynamics of a CTR as a linear state space system. The
basic idea is to lift (or embed) the nonlinear dynamics into a
higher dimensional space where its evolution is approximately
linear. For this purpose, we use a linear operator known
as the Koopman operator. Later, we apply the Extended
Dynamic Mode Decomposition (EDMD) to compute a finite-
dimensional approximation of the operator to form an in-
put/output discrete dynamical system representing the motion
of the CTR.
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Without loss of generality, we assume the CTR is composed
of two tubes. We can summarize the dynamic behaviour of the
CTR as

x+ = f(x, u), (1)

where x ∈ R3 is the state of the system representing the
Cartesian coordinates of the robot’s tip, u ∈ R4 are the 4
control inputs shown in Fig. 1, x+ is the successor state and
f is the dynamic transition mapping.

The Koopman operator is an infinite-dimensional and linear
operator originally developed to describe the evolution of non-
linear autonomous systems [23]. More specifically, it describes
the evolution of functions of the states of a nonlinear system.
We call these functions of states observables. To this end, we
define a set of scalar valued observables as a mapping

g(x, u) : R3 × R4 → R, (2)

where g belongs to an infinite dimensional Hilbert space H
[27]. Now, the Koopman operator with inputs and control
(KIC) can be defined as a linear operator K : H → H such
that

Kg(x, u) ≡ g(f(x, u), u+). (3)

Linear operators from Hilbert space to Hilbert space have
associated eigenvalues and eigenfunctions, i.e.,

Kϕi(x, u) = λiϕi(x, u), (4)

where ϕi is the ith eigenfunction and λi is the ith eigenvalue.
Consequently, the observable functions can be written as a
linear combination of all the eigenfunctions (since they form
a basis)

g(x, u) =

∞∑
i=1

ϕi(x, u)vi (5)

where vi is called the ith Koopman mode associated with the
ith Koopman eigenfunction. In what follows, we approximate
the infinite-dimensional KIC system with a finite dimensional
system of size N :

Kg(x, u) ≈
N∑
i=1

λiϕi(x, u)vi = Kg(x, u), (6)

where K denotes the linear map from the observables’ space
to the finite dimensional approximation of the KIC’s resulting
Hilbert space, which we call the lifted space.

We compute this approximation to the Koopman operator
using a method called extended dynamic mode decomposition
[26]. First, the observables are partitioned into functions of
the state Yx, input Yu, and both Yx,u

Y =

 Yx

Yu

Yx,u

 =



g1(x, 0)
...

gl(x, 0)
gl+1(0, u)

...
gl+p(0, u)

gl+p+1(x, u)
...

gl+p+j(x, u)


= g(x, u), (7)

where l, p, and j denote the number of basis functions
used to estimate the states, inputs, and input-output coupled
dynamics, respectively. Applying the Koopman operator to the
observables gives

Z =

 Zx

Zu

Zx,u

 = g(f(x, u), u+) (8)

We want the EDMD approximation of KIC to be linear
and affine. Therefore, we set Yx,u = 0. Keeping Yx,u would
result (in the simplest case) in a bilinear approximation to
the dynamical system. Predictors with bilinear form are not
immediately suited for control design. Therefore, we decide to
set Yx,u = 0. This potentially reduces the model’s accuracy.
However, results in a linear control system that is computation-
ally more efficient. Additionally, we are not concerned with
the internal dynamics of the input, thus Zx,u = Zu = 0. We
note that by definition then Zx = Y +

x .
The choice of functions in Yx, Yu and Zx are a design

choice. A common choice is polynomial functions of varying
order [28]. In this work, we set the state vector observables
to be

Yx = [x1 x2 x3 x2
1 x2

2 x2
3

x2
1x2 x2

1x3 x2
2x1 x2

2x3 x2
3x1 x2

3x2]
T (9)

and the input vector observables to be

Yu =
[
u1 u2 u3 u4

]T
. (10)

Assuming that we collect a dataset of tip positions and
control inputs at m consecutive time samples, we get[

Z0 Z1 ... Zm
]
= [ A B ]

[
Y 0
x Y 1

x ... Y m
x

Y 0
u Y 1

u ... Y m
u

]
(11)

where K =
[
A B

]
, superscripts 0, · · · ,m denote the time

steps, with m commonly known the as DMD horizon showing
the number of samples used to estimate the linear model. The
elements of Zx,u are ignored here since we have set those to
zero (as well as Yx,u). We note that functions of states in Yx,
Yu, and Zx are computed directly from the tip measurements
and control inputs. Now we can use the EDMD algorithm to
estimate A and B. EDMD aims to calculate A and B so that
we arrive at the linear differential equation

Y +
x = AYx +BYu. (12)

Given the Datasets Z0, Z1, ..., Zm, Y 0
x , Y

1
x , ..., Y

m
x , and

Y 0
u , Y

1
u , ..., Y

m
u , first we Construct an input matrix

Y =
[
YxYu

]
=

[
Y 0
x Y 1

x ... Y m
x

Y 0
u Y 1

u ... Y m
u

]
, (13)

and an output matrix

Z =
[
Z0 Z1 ... Zm

]
. (14)

Next, we compute the singular value decomposition (SVD) of
the input matrix and partition the result into the first l rows
associated with Yx and the next p rows associated with Yu.

Y = UΣV ∗ =

[
U1

U2

]
ΣV ∗. (15)
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Figure 3. A block diagram of the proposed data-driven modelling approach.

Similarly, we compute the SVD of the output matrix

Z = Û Σ̂V̂ ∗. (16)

Finally, we can estimate matrices A and B as

A = Û∗ZV Σ−1U∗
1 , Û

B = Û∗ZV Σ−1U∗
2 .

(17)

Fig. 3 summarizes the proposed modelling approach. The
model given in (12) will accept the m samples of input u
and output x passed through the observables as Yu and Yx

and predicts the successor observable states Y +
x . We note

that, based on (9), the first three elements of Y +
x will be the

predicted future output of the plant, i.e., xm+1. Additionally,
rank of A describes the dimension of the lifted space (N in
(6)) and is equal to the number of state vector observables.
Based on (9), N is equal to 12. One can always select more
observables to increase the model accuracy at the cost of
reducing the EDMD’s computational efficiency. In Section III,
simulations are performed to demonstrate that 12 observables
are sufficient for estimating the lifted space of the CTR.

B. Model Predictive Control
Here, we employ a model predictive control (MPC) algo-

rithm that uses the linear data-driven model of CTRs in (12)
to steer the CTR over a pre-defined desired trajectory xd. The
model predictive controller aims to find the control inputs (u)
to drive the states (x) to some reference value over a fixed
horizon by solving the following quadratic program:

minimize:
M∑
i=1

(xi − xd
i)TQ(xi − xd

i) + uiTRui

with respect to: u
subject to:
Y +
x = AYx +BYu

uL < ui < uU .

(18)

Table I
MECHANICAL PARAMETERS OF THE CTR USED IN SIMULATIONS.

Tube 1 Tube 2
Inner Diameter[mm] 0.7 1.4
Outer Diameter[mm] 1.1 1.8

Length[mm] 431 332
Curvature[1/m] 21.3 13.1

Young’s Modulus, E[GPa] 64.3 52.5
Shear Modulus, G[GPa] 25 21.4

where i = 1, · · · ,M denotes the time instant, M is the MPC
horizon, Q and R are positive definite matrices penalizing
tracking error and the control inputs. uL and uU denote the
upper and lower limits of the joint inputs. In this work, we used
the algorithm in [29] to solve the MPC problem. The algorithm
employs the Nesterov Accelerated Gradient method to rapidly
estimate the gradient of the cost function and improve the
computational efficiency of the MPC. The gradient is later
used in a gradient descent algorithm for updating control
variables while minimising the cost function.

III. SIMULATION STUDY

In this section, we perform simulations to evaluate the per-
formance of the proposed controller. Simulation environment
for the CTR is developed using the mathematical model of the
CTR presented in [3]. The robot is composed of two tubes.
Mechanical characteristics of the robot used in the simulations
are given in Table I. These are the parameters of an actual
robot used in the experiments. The robot’s tip was steered to
follow a square trajectory with 20 mm base at a velocity of 1
mm/s.

In the first set of simulations of this square trajectory, we
evaluated the effect of DMD horizon (m) on the accuracy of
the controller. Six different horizons ranging from 50 to 300
were selected. To simulate the effects of noise in the sensory
feedback, we added random Gaussian noise with standard
deviation of 2 mm to the measured tip position. Results are
summarised in Fig. 4(a). Furthermore, we simulated a scenario
where the robot’s tip’s Cartesian coordinates are compared
with only the first three states of the Lifted Space, which based
on (9) correspond to the robot tip coordinates. The robot is
moved randomly and the DMD horizon was set to 250. After
the 250 samples, the robot tip position is compared with the
first three states of the lifted space. We note that this is an
open-loop simulation. The average error measured over ten
trials is 0.3 mm with a standard deviation of 0.1 mm. Based
on these results, we selected the DMD horizon m to be equal
to 250 to be later used in the experiments, as it was found to
achieve the minimum error.

In the next simulation, we evaluated the effects of MPC
Horizon (M ). Four different horizons ranging from 3 to 15
sample times were selected. The result of trajectory tracking
error for various MPC horizons are shown in Fig. 4(b). The
results did not show any significant difference between the
different horizons. We selected the largest horizon (i.e., 15).
The proposed data-driven approach accepts the system states,
i.e, robot tip position, and corresponding control inputs for
a fixed period of time (DMD horizon). Next, it develops
a linear map between control inputs and robot states in a
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(a) (b)

Figure 4. (a) Error bars comparing CTR’s tip position error with respect to
the DMD Horizon. Starting from the middle of the box, the line inside the
box corresponds to the median error, box ends indicate the 25th and 75th
percentiles, and the ends of the dashed lines are the maximum and minimum
errors. (b) Error bars comparing CTR’s tip position error with respect to the
MPC Horizon.

Figure 5. Tip position error with respect to sampling frequency and desired
velocity.

higher dimensional space called the lifted space. As shown
in Fig. 4(a), an optimal number of 250 samples are sufficient
to learn the robot behaviour moving at a velocity of 1 mm/sec.
We note that this is a continuous learning process. Therefore,
a change in external disturbance will affect the robot states
and the EDMD has the ability to adapt quickly and update the
model accordingly. However, if the robot is moving too fast,
the sampling frequency must be increased so that the model
can capture the rapidly varying dynamics of the system. To
investigate the effect of sampling frequency on the proposed
model and controller, we performed 16 trials; in each trial the
robot was asked to follow the same trajectory at velocities of
0.5, 1, 1.5, and 2 mm/sec, with sampling frequencies varying
from 10 to 40 Hz. We note that the maximum sampling
frequency of the electromagnetic tracking sensor used in the
experiment is 40 Hz. Therefore, we limit the sensor frequency
in the simulations to 40 HZ. Results are summarized in
Fig. 5. The simulation demonstrates that the tracking error
generally increases with respect to sampling frequency and
tip velocity. Moreover, it is evident that the tracking error
at higher velocities can be minimized by selecting a higher
sampling frequency. Based on this analysis, we selected 1
mm/s as the robot’s desired tip velocity and 40 Hz as the
sampling frequency in our experiments.

The proposed approach can be generalised to a CTR with
3 tubes. For a 3-tube CTR, the control inputs consist of
three translational movements and three rotational movements.

Accordingly, we can update the input vector observables in
(10) as follows

Yu =
[
u1 u2 u3 u4 u5 u6

]T
. (19)

We performed a simulation study on a CTR with 3 tubes. The
parameters of the robot were selected based on a real CTR
[4]. First, the robot’s tip was controlled to follow a square
trajectory with a base length of 20 mm. Next, the robot’s
tip was steered to follow a circular trajectory with a 30 mm
radius. 2 mm Gaussian noise was added to the tip position
to simulate realistic sensory feedback. Results are shown in
Fig. 6. The root mean squared error is 1.06 mm for the
square trajectory and 1.27 mm for the circular trajectory. The
results demonstrate that the proposed method offers similar
performance for a CTR with 3 tubes.

Figure 6. Results of simulation on a CTR with 3 tubes. (a) Tracking a square
trajectory. (b) Tracking a circular trajectory.

IV. EXPERIMENTS AND DISCUSSIONS

Several experiments were performed to evaluate the per-
formance of the proposed controller. The experimental setup
consists of a concentric tube robot with two tubes and a
5-DOF electromagnetic tracker (Aurora, NDI) attached to
its tip (Fig. 7(a)). Based on the manufacturer datasheet, the
electromagnetic tracker has a mean accuracy of 0.7 mm and
maximum error of 1.8 mm. The controller was implemented
in Robot Operating System (ROS) in C++ and tested on a
Desktop Computer with Intel(R) Core(TM) i9-12900K CPU
processor and 32.0 GB of Memory.

The following four scenarios were considered in the exper-
iments:
(S1) Robot following a pre-defined trajectory in free space:

The controller was tested on the CTR in free space.
The robot’s tip was steered to follow three different
trajectories: (i) a square trajectory with 20 mm base
length, (ii) a circular trajectory with a 30 mm radius and
(iii) a longer trajectory towards the edge of the robot’s
workspace, which was given as a sequence of equally
distanced random points. 10 trials are performed for each
trajectory.

(S2) Robot under unknown external forces: The controller was
tested while a point load of 20 grams was applied at the
tip of the robot (Fig. 7(c)). The controller is tasked to
follow a square trajectory with 20 mm base length. 10
trials are performed.
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(a)

(b) (c)

Figure 7. (a) Experimental setup. An electromagnetic tracker is placed at the
tip of the robot to measure the robot’s tip position. (b) Robot in contact with
an obstacle. (c) 20 gram weight is connected to the robot’s tip.

Table II
COMPARISON OF ERROR BETWEEN DESIRED AND ACTUAL TRAJECTORIES.
MEAN ERROR AND THE STANDARD DEVIATION OF ERROR ARE REPORTED

OVER 10 TRIALS. THE VALUES ARE ALL IN MILLIMETER.

Scenario S1 Scenario S2
Trajectory Square Circular Point series Square with weight
Mean error 1.40 0.748 2.40 2.00

std 0.97 0.450 1.70 1.70

(S3) Robot in the presence of an obstacle: The robot’s tip
was steered to follow a sequence of points while a fixed
obstacle was obstructing the robot’s motion (Fig. 7(b)).

(S4) Robot in contact with phantom tissue: The robot was
required to perform multiple tasks while it was in contact
with a phantom tissue.

Based on the simulation study presented in Section. III,
the sampling frequency and the desired tip velocity in all
the scenarios were selected as 40 Hz and 1 mm/sec, respec-
tively. In addition to this, we selected the MPC parameters
Q = 5 × 107I, and R = I,. The MPC horizon was set to
15. The DMD horizon was set to 250 as well. Prior to the
experiments, the robot’s joint inputs were altered randomly
for 10 seconds, while the corresponding tip positions were
recorded. This data-set was used to initially update the data-
driven model.

Representative results of the trajectory tracking in the first
scenario (S1) are shown in Fig. 8(a-c). The proposed data-
driven algorithm is capable of following various trajectories
with high accuracy. The mean tracking error and standard
deviation of error are reported in Table II.

Additionally, we compared the proposed controller with
the hybrid controller from our previous work [22]. The
hybrid controller receives the model-based prediction of the
robot’s differential kinematics (i.e., Jacobian) and updates the
Jacobian iteratively based on the feedback of position of
the robot received from the electromagnetic sensor. As the
controller relies on the robot model, we first performed a
system identification experiment to identify model parameters

accurately. Manual backbone segmentation established the
base and shape of the CTR relative to the aligned calibration
grid. Matching backbone points were selected in both images,
and then triangulated to provide the 3-D point cloud. The
extracted 3-D backbones were used to calibrate for the CTR
model parameters, namely, Young’s and shear moduli of the
tubes. The parameters were identified by fitting the kinematic
model given in [3] to the shape of the robot estimated via
the cameras at 25 different configurations. The identified
parameters of the model are given in Table I and are the same
as those used in the simulations. Later, 20 more trials were
performed to tune controller parameters and learning rate. The
following controller parameters were chosen: control gain was
set to Kp = 3I, learning rates λ1, λ2, and χ [22] were selected
as 10, 10, and diag[0.001, 0.001, 0.01, 0.1], respectively.
These values were tuned via trial and error to achieve the
minimum tracking error. Fig. 9 shows a comparison between
the tracking error of the hybrid controller and the proposed
data-driven controller. As it can be seen, both controllers
offer similar performance. Of note, in contrast to the hybrid
controller, the proposed data-driven controller does not require
any information from the model.

In the second scenario (S2), a weight of 20 grams was
attached to the robot’s tip. Of note, the 20 gram weight at the
tip of the CTR causes a significant change in the CTR’s shape
and tip position as shown in Fig. 7(c). The controller was able
to adapt to these changes without any prior knowledge of the
weight and accurately follow the desired trajectory. The mean
error and the standard deviation of the error over 10 trials are
1.7 mm and 2 mm, respectively.

In the third scenario (S3), the robot was tasked to follow
several target points while it was in continuous contact with
an obstacle. The target positions were selected to be at least 1
cm apart. The controller stops once it reaches the vicinity of
the target and the error becomes less than 2 mm. This value
was selected based on the accuracy of the electro-magnetic
sensor (1.8 mm). Results are shown in Fig. 11. In all cases,
the robot was able to reach the desired target positions with
maximum error of 2 mm.

In the fourth scenario (S4), the robot was navigated in
the presence of a phantom tissue. We simulated two clinical
scenarios. The first case study simulated percutaneous needle-
based interventions such as prostate brachytherapy, where
a needle is steered on a straight line to reach a deeply
nested target in soft tissue [30]. The targets were selected
inside the tissue within the robot’s workspace, 65 mm from
the entry point (Fig. 12(b)). The 2nd case study simulates
percutaneous lung biopsy, where a needle is inserted through
the skin, puncturing the pleura to reach the peripheral lung
for sampling. Commonly, multiple incisions are used to reach
multiple suspicious areas. Here, the robot is tasked to cut
through a phantom tissue with a 25 mm thickness, simulating
skin and pleura. Later it is tasked to reach 6 different points
spread across its workspace from the same point of entry. We
demonstrate that we can reach multiple sites via a single entry
point (Fig. 12(b)). The phantom tissue in all the case studies
is made following the recipe given in [31]. The tissue is made
by mixing bovine gelatin powder with water at a temperature
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Figure 8. Representative experimental results for trajectory tracking in the 1st scenario (S1). (a) Square Trajectory. (b) Circular Trajectory. (c) Long trajectory
towards the edge of robot workspace.

Figure 9. A comparison between the error of the proposed data-driven
controller (blue line) and a hybrid controller developed in [22] (red line).
(a) Following a square trajectory. (b) Following a circular trajectory.

Figure 10. Result for the second experimental scenario (S2), an 20g weight
is attached to the robot’s tip while it’s following a square trajectory. (a) Robot
tip trajectory. (b) Tracking error.

of 70◦C. The weight ratio of gelatin-to-water in the mixture
is 18% and the tissue’s Young’s modulus of elasticity was
estimated to be 59 kPa. The elasticity of the synthetic tissues is
similar to what is found in animal tissue. Although navigating
the CTR inside a soft tissue is particularly challenging, the
first case study shows that the robot is able to move along
its tip direction following a straight line with a length of
65 mm inside the tissue (Fig. 12(a)). Figure 12(c) shows a
representative result from this experiment. Over five insertions,
the mean error of following the straight trajectory was 1.75
mm. As demonstrated by the second experiment, the robot’s
tip can reach target locations in different directions within its
workspace despite making continuous contact with soft tissue.
The robot was able to move its tip within 2 mm of the target
in all 6 cases. (Fig. 12(d)).

(a)

(b)

Figure 11. Experimental results for the 3rd scenario (S3). The CTR is tasked
to reach several target points shown by red circles while it is in contact with
an unknown obstacle.

V. CONCLUDING REMARKS

In this paper, we introduced a data-driven control strategy
for autonomous steering of Concentric Tube Robots (CTR).
The control strategy relies only on a limited data-set and is
capable of rapidly learning the robot’s nonlinear dynamics
resulting in fast and accurate convergence. We studied the
performance of the controller in extensive simulations and
experiments. We consider a variety of scenarios, including the
robot under external forces and the robot in contact with an
obstacle. The proposed controller was capable of following
a variety of trajectories within the robot’s workspace with a
maximum mean error of 2.4 mm at a frequency of 40 Hz
and a velocity of 1 mm/s. Additionally, the controller was
capable of steering the robot in the presence of unknown
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(a) (b) (c) (d)

Figure 12. Experimental setup and results for the fourth scenario (S4) (a) Robot’s tip following a straight line while cutting through phantom tissue. (b)
Robot cuts through the tissue to reach multiple target positions. (c) Results for robot cutting tissue along a straight line. (b) Results for robot’s tip reaching 6
different target positions after cutting through tissue.

obstacles with a maximum error of 2 mm. Future work focuses
on experimentally validating the proposed approach on CTRs
with 3 tubes and investigating application of the DMD for
controlling the robot’s orientation in surgical tasks requiring
higher dexterity.
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