580 research outputs found

    Simulation models of technological innovation: A Review

    Get PDF
    The use of simulation modelling techniques in studies of technological innovation dates back to Nelson and Winter''s 1982 book "An Evolutionary Theory of Economic Change" and is an area which has been steadily expanding ever since. Four main issues are identified in reviewing the key contributions that have been made to this burgeoning literature. Firstly, a key driver in the construction of computer simulations has been the desire to develop more complicated theoretical models capable of dealing with the complex phenomena characteristic of technological innovation. Secondly, no single model captures all of the dimensions and stylised facts of innovative learning. Indeed this paper argues that one can usefully distinguish between the various contributions according to the particular dimensions of the learning process which they explore. To this end the paper develops a taxonomy which usefully distinguishes between these dimensions and also clarifies the quite different perspectives underpinning the contributions made by mainstream economists and non-mainstream, neo-Schumpeterian economists. This brings us to a third point highlighted in the paper. The character of simulation models which are developed are heavily influenced by the generic research questions of these different schools of thought. Finally, attention is drawn to an important distinction between the process of learning and adaptation within a static environment, and dynamic environments in which the introduction of new artefacts and patterns of behaviour change the selective pressure faced by agents. We show that modellers choosing to explore one or other of these settings reveal their quite different conceptual understandings of "technological innovation".economics of technology ;

    Fostering cooperation through dynamic coalition formation and partner switching

    Get PDF
    In this article we tackle the problem of maximizing cooperation among self-interested agents in a resource exchange environment. Our main concern is the design of mechanisms for maximizing cooperation among self-interested agents in a way that their profits increase by exchanging or trading with resources. Although dynamic coalition formation and partner switching (rewiring) have been shown to promote the emergence and maintenance of cooperation for self-interested agents, no prior work in the literature has investigated whether merging both mechanisms exhibits positive synergies that lead to increase cooperation even further. Therefore, we introduce and analyze a novel dynamic coalition formation mechanism, that uses partner switching, to help self-interested agents to increase their profits in a resource exchange environment. Our experiments show the effectiveness of our mechanism at increasing the agents' profits, as well as the emergence of trading as the preferred behavior over different types of complex networks. © 2014 ACM.The first author thanks the grant Formación de Profesorado Universitario (FPU), reference AP2010-1742. J.Ll.A. and J.A.R-A are partially funded by projects EVE (TIN2009-14702-C02-01), AT (CSD2007-0022), COR (TIN2012-38876-C02-01), MECER (201250E053), and the Generalitat of Catalunya grant 2009-SGR-1434Peer Reviewe

    From evolutionary ecosystem simulations to computational models of human behavior

    Get PDF
    We have a wide breadth of computational tools available today that enable a more ethical approach to the study of human cognition and behavior. We argue that the use of computer models to study evolving ecosystems provides a rich source of inspiration, as they enable the study of complex systems that change over time. Often employing a combination of genetic algorithms and agent-based models, these methods span theoretical approaches from games to complexification, nature-inspired methods from studies of self-replication to the evolution of eyes, and evolutionary ecosystems of humans, from entire economies to the effects of personalities in teamwork. The review of works provided here illustrates the power of evolutionary ecosystem simulations and how they enable new insights for researchers. They also demonstrate a novel methodology of hypothesis exploration: building a computational model that encapsulates a hypothesis of human cognition enables it to be tested under different conditions, with its predictions compared to real data to enable corroboration. Such computational models of human behavior provide us with virtual test labs in which unlimited experiments can be performed. This article is categorized under: Computer Science and Robotics > Artificial Intelligence

    Coevolutionary algorithms for the optimization of strategies for red teaming applications

    Get PDF
    Red teaming (RT) is a process that assists an organization in finding vulnerabilities in a system whereby the organization itself takes on the role of an “attacker” to test the system. It is used in various domains including military operations. Traditionally, it is a manual process with some obvious weaknesses: it is expensive, time-consuming, and limited from the perspective of humans “thinking inside the box”. Automated RT is an approach that has the potential to overcome these weaknesses. In this approach both the red team (enemy forces) and blue team (friendly forces) are modelled as intelligent agents in a multi-agent system and the idea is to run many computer simulations, pitting the plan of the red team against the plan of blue team. This research project investigated techniques that can support automated red teaming by conducting a systematic study involving a genetic algorithm (GA), a basic coevolutionary algorithm and three variants of the coevolutionary algorithm. An initial pilot study involving the GA showed some limitations, as GAs only support the optimization of a single population at a time against a fixed strategy. However, in red teaming it is not sufficient to consider just one, or even a few, opponent‟s strategies as, in reality, each team needs to adjust their strategy to account for different strategies that competing teams may utilize at different points. Coevolutionary algorithms (CEAs) were identified as suitable algorithms which were capable of optimizing two teams simultaneously for red teaming. The subsequent investigation of CEAs examined their performance in addressing the characteristics of red teaming problems, such as intransitivity relationships and multimodality, before employing them to optimize two red teaming scenarios. A number of measures were used to evaluate the performance of CEAs and in terms of multimodality, this study introduced a novel n-peak problem and a new performance measure based on the Circular Earth Movers‟ Distance. Results from the investigations involving an intransitive number problem, multimodal problem and two red teaming scenarios showed that in terms of the performance measures used, there is not a single algorithm that consistently outperforms the others across the four test problems. Applications of CEAs on the red teaming scenarios showed that all four variants produced interesting evolved strategies at the end of the optimization process, as well as providing evidence of the potential of CEAs in their future application in red teaming. The developed techniques can potentially be used for red teaming in military operations or analysis for protection of critical infrastructure. The benefits include the modelling of more realistic interactions between the teams, the ability to anticipate and to counteract potentially new types of attacks as well as providing a cost effective solution

    Identifying Vulnerabilities of Industrial Control Systems using Evolutionary Multiobjective Optimisation

    Full text link
    In this paper we propose a novel methodology to assist in identifying vulnerabilities in a real-world complex heterogeneous industrial control systems (ICS) using two evolutionary multiobjective optimisation (EMO) algorithms, NSGA-II and SPEA2. Our approach is evaluated on a well known benchmark chemical plant simulator, the Tennessee Eastman (TE) process model. We identified vulnerabilities in individual components of the TE model and then made use of these to generate combinatorial attacks to damage the safety of the system, and to cause economic loss. Results were compared against random attacks, and the performance of the EMO algorithms were evaluated using hypervolume, spread and inverted generational distance (IGD) metrics. A defence against these attacks in the form of a novel intrusion detection system was developed, using a number of machine learning algorithms. Designed approach was further tested against the developed detection methods. Results demonstrate that EMO algorithms are a promising tool in the identification of the most vulnerable components of ICS, and weaknesses of any existing detection systems in place to protect the system. The proposed approach can be used by control and security engineers to design security aware control, and test the effectiveness of security mechanisms, both during design, and later during system operation.Comment: 25 page

    The Spatial Agent-based Competition Model (SpAbCoM)

    Get PDF
    The paper presents a detailed documentation of the underlying concepts and methods of the Spatial Agent-based Competition Model (SpAbCoM). For instance, SpAbCoM is used to study firms' choices of spatial pricing policy (GRAUBNER et al., 2011a) or pricing and location under a framework of multi-firm spatial competition and two-dimensional markets (GRAUBNER et al., 2011b). While the simulation model is briefly introduced by means of relevant examples within the corresponding papers, the present paper serves two objectives. First, it presents a detailed discussion of the computational concepts that are used, particularly with respect to genetic algorithms (GAs). Second, it documents SpAbCoM and provides an overview of the structure of the simulation model and its dynamics. -- Das vorliegende Papier dokumentiert die zugrundeliegenden Konzepte und Methoden des Räumlichen Agenten-basierten Wettbewerbsmodells (Spatial Agent-based Competition Model) SpAbCoM. Anwendungsbeispiele dieses Simulationsmodells untersuchen die Entscheidung bezüglich der räumlichen Preisstrategie von Unternehmen (GRAUBNER et al., 2011a) oder Preissetzung und Standortwahl im Rahmen eines räumlichen Wettbewerbsmodells, welches mehr als einen Wettbewerber und zweidimensionalen Marktgebiete berücksichtigt. Während das Simulationsmodell in den jeweiligen Arbeiten kurz anhand eines Beispiels eingeführt wird, dient das vorliegende Papier zwei Zielen. Zum Einen sollen die verwendeten computergestützten Konzepte, hier speziell Genetische Algorithmen (GA), detailliert vorgestellt werden. Zum Anderen besteht die Absicht dieser Dokumentation darin, einen Überblick über die Struktur von SpAbCoM und die während einer Simulation ablaufenden Prozesse zu gegeben.Agent-based modelling,genetic algorithms,spatial pricing,location model.,Agent-basierte Modellierung,Genetische Algorithmen,räumliche Preissetzung,Standortmodell.

    Socio-hydrological modelling: a review asking “why, what and how?”

    Get PDF
    Interactions between humans and the environment are occurring on a scale that has never previously been seen; the scale of human interaction with the water cycle, along with the coupling present between social and hydrological systems, means that decisions that impact water also impact people. Models are often used to assist in decision-making regarding hydrological systems, and so in order for effective decisions to be made regarding water resource management, these interactions and feedbacks should be accounted for in models used to analyse systems in which water and humans interact. This paper reviews literature surrounding aspects of socio-hydrological modelling. It begins with background information regarding the current state of socio-hydrology as a discipline, before covering reasons for modelling and potential applications. Some important concepts that underlie socio-hydrological modelling efforts are then discussed, including ways of viewing socio-hydrological systems, space and time in modelling, complexity, data and model conceptualisation. Several modelling approaches are described, the stages in their development detailed and their applicability to socio-hydrological cases discussed. Gaps in research are then highlighted to guide directions for future research. The review of literature suggests that the nature of socio-hydrological study, being interdisciplinary, focusing on complex interactions between human and natural systems, and dealing with long horizons, is such that modelling will always present a challenge; it is, however, the task of the modeller to use the wide range of tools afforded to them to overcome these challenges as much as possible. The focus in socio-hydrology is on understanding the human–water system in a holistic sense, which differs from the problem solving focus of other water management fields, and as such models in socio-hydrology should be developed with a view to gaining new insight into these dynamics. There is an essential choice that socio-hydrological modellers face in deciding between representing individual system processes or viewing the system from a more abstracted level and modelling it as such; using these different approaches has implications for model development, applicability and the insight that they are capable of giving, and so the decision regarding how to model the system requires thorough consideration of, among other things, the nature of understanding that is sought

    PSO-based coevolutionary Game Learning

    Get PDF
    Games have been investigated as computationally complex problems since the inception of artificial intelligence in the 1950’s. Originally, search-based techniques were applied to create a competent (and sometimes even expert) game player. The search-based techniques, such as game trees, made use of human-defined knowledge to evaluate the current game state and recommend the best move to make next. Recent research has shown that neural networks can be evolved as game state evaluators, thereby removing the human intelligence factor completely. This study builds on the initial research that made use of evolutionary programming to evolve neural networks in the game learning domain. Particle Swarm Optimisation (PSO) is applied inside a coevolutionary training environment to evolve the weights of the neural network. The training technique is applied to both the zero sum and non-zero sum game domains, with specific application to Tic-Tac-Toe, Checkers and the Iterated Prisoners Dilemma (IPD). The influence of the various PSO parameters on playing performance are experimentally examined, and the overall performance of three different neighbourhood information sharing structures compared. A new coevolutionary scoring scheme and particle dispersement operator are defined, inspired by Formula One Grand Prix racing. Finally, the PSO is applied in three novel ways to evolve strategies for the IPD – the first application of its kind in the PSO field. The PSO-based coevolutionary learning technique described and examined in this study shows promise in evolving intelligent evaluators for the aforementioned games, and further study will be conducted to analyse its scalability to larger search spaces and games of varying complexity.Dissertation (MSc)--University of Pretoria, 2005.Computer Scienceunrestricte
    corecore