
PSO-Based Coevolutionary Game Learning

by

Cornelis J. Franken

Submitted in partial fulfilment of the requirements for the degree

Magister Scientiae (Computer Science)

in the Faculty of Engineering, Built-Environment

and Information Technology

University of Pretoria

Pretoria

May 2004

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

PSO-Based Coevolutionary Game Learning

by

Cornelis J. Franken

Abstract

Games have been investigated as computationally complex problems since the inception of

artificial intelligence in the 1950’s. Originally, search-based techniques were applied to create

a competent (and sometimes even expert) game player. The search-based techniques, such

as game trees, made use of human-defined knowledge to evaluate the current game state and

recommend the best move to make next. Recent research has shown that neural networks

can be evolved as game state evaluators, thereby removing the human intelligence factor com-

pletely. This study builds on the initial research that made use of evolutionary programming

to evolve neural networks in the game learning domain. Particle Swarm Optimisation (PSO)

is applied inside a coevolutionary training environment to evolve the weights of the neural

network. The training technique is applied to both the zero sum and non-zero sum game do-

mains, with specific application to Tic-Tac-Toe, Checkers and the Iterated Prisoners Dilemma

(IPD). The influence of the various PSO parameters on playing performance are experimentally

examined, and the overall performance of three different neighbourhood information sharing

structures compared. A new coevolutionary scoring scheme and particle dispersement operator

are defined, inspired by Formula One Grand Prix racing. Finally, the PSO is applied in three

novel ways to evolve strategies for the IPD – the first application of its kind in the PSO field.

The PSO-based coevolutionary learning technique described and examined in this study shows

promise in evolving intelligent evaluators for the aforementioned games, and further study will

be conducted to analyse its scalability to larger search spaces and games of varying complexity.

Keywords: Machine Learning, Games, Particle Swarm Optimisation, Evolutionary Compu-

tation, Neural Networks, Iterated Prisoner’s Dilemma, Checkers, Coevolution, Computational

Intelligence.

Supervisor: Prof. A. P. Engelbrecht

Department of Computer Science

Degree: Magister Scientiae

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

— For Surina —

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

Preface

Problem Statement and Overview

The study of games as computationally complex systems is not new, and have involved a large

number of researchers as well as professional game playing experts in the past [117]. Apart

from the game rules, a computer has always largely relied on human knowledge to play a game,

with standard data structures and intricate search-based enhancements aiding the man-made

evaluation functions to correctly predict the best possible move to make next.

In his original work on the game of Checkers in the early 1950’s, Arthur Samuel [114] ex-

pressed his hope that future computers will be able to formulate their own evaluation functions

and learn to play the game without human intervention. With the modern progression in

computing hardware and software performance, Samuel’s dreams are now becoming a reality.

Fogel and Chellapilla [53] [27] [26] recently applied neural networks as Checkers evaluation

functions in a population of players that were trained through coevolution, with great success.

These authors’ work combined a number of fields in the computational intelligence domain in

order to address a well-known machine learning problem, and formed the inspiration for the

experimental work in this study.

The advent of swarm intelligence research, and specifically Particle Swarm Optimisation

(PSO) [76] in 1995, have yielded very positive results in a variety of application areas [30]. The

investigation on the use of PSO in a coevolutionary game learning context have been limited to

comparisons against traditional Evolutionary Programming (EP) approaches [97], as applied

by Chellapilla and Fogel [53] [27] [26]. The use of PSO has shown to hold definite advantages

over the GP approach to game learning.

i

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

ii

This study aims to thoroughly investigate the exact nature of the PSO-based coevolution

technique, with specific application to both the zero sum (Tic-Tac-Toe and Checkers) and non-

zero sum (Iterated Prisoner’s Dilemma) game domains. The results of the study will illustrate

the impact on performance of specific PSO parameters choices, neighbourhood information

sharing structures and game-specific representations. A number of enhancements to the study

of game learning are also presented, including new additions to the areas of benchmarking and

coevolution.

Objectives

The main objective of this thesis is to study the application of PSO to the coevolutionary game

learning domain. In reaching this goal, the following sub-objectives are identified:

• To provide an overview of existing techniques in the field of game learning, covering both

search-based and knowledge-based enhancements.

• To provide an overview of the relevant computational intelligence techniques that form

part of the coevolutionary training process, including neural networks and particle swarm

optimisation among others.

• To establish a game learning algorithm that makes use of particle swarm optimisation to

train neural networks as game state evaluators in a coevolutionary environment.

• To initially investigate the performance of the application of the posited learning algo-

rithm on a computationally modest game such as Tic-Tac-Toe, and later extending the

investigation into the much larger problem space provided by the game of Checkers.

• To thoroughly investigate the performance factors involved with the various elements of

the game learning algorithm, possibly introducing enhancements to the existing game

learning methods in order to improve performance.

• To investigate the versatility of the coevolutionary algorithm by applying it to the inter-

esting non-zero sum game of the Iterated Prisoner’s Dilemma.

Contribution

The main contributions of this thesis are:

• The first application and analysis of the Von Neumann PSO neighbourhood information

sharing structure in the game learning domain.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

iii

• Establishing a consistent testing criteria to determine the performance of an evolved

player, by benchmarking against a random-moving player.

• Introduction of a new performance measure that accurately takes into account the number

of games drawn, in addition to the number of games won or lost. This is done in order to

quantify the playing performance of the evolved player, irrespective of the benchmarking

opponent.

• Introduction of certain extensions to the traditional coevolutionary scoring schemes,

based on Formula One Grand Prix. The posited Grand Prix methods include a rac-

ing scheme that rewards consistent playing behaviour towards the end of training, and a

generic scoring system that forms part of a particle dispersement operator that aims to

alleviate swarm convergence on suboptimal solutions.

• The first application of a PSO-based coevolutionary game learning algorithm to evolve

strategies for the Iterated Prisoner’s Dilemma.

• The first application of the Binary PSO algorithm to evolve IPD strategies, as opposed

to neural network weights in the traditional PSO-based algorithm.

• The introduction of a third novel scheme to IPD strategy generation, exploiting the

symmetrical structure of man-made strategies and making use of the PSO function opti-

misation abilities.

Thesis Outline

Chapter 1 provides an overview of different types of games, and the core elements found in

a game playing software model. The history of these elements is covered as well as different

performance improvements that have been discovered during the last couple of decades. The

focus then shifts from search-based techniques to knowledge-based techniques, as game learning

and various evaluation methods are discussed. A section is dedicated to the best human

and machine game players in the world, before lastly examining some of the possible future

directions of game research.

The core computational intelligence paradigms that are used in and/or influenced the exper-

imental work for this thesis, are presented in chapter 2. Typical neural network architectures

and learning approaches are covered. The core evolutionary computation constructs based on

Darwinian evolution are presented, followed by an in-depth discussion of particle swarm opti-

misation and the influence of its various parameter settings. Finally, coevolution is discussed

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

iv

as a competitive training strategy.

Chapter 3 builds on the background established by the first two chapters, and introduces

an algorithm that utilises particle swarm optimisation to train feed-forward neural networks

as board-state evaluators. Different methods to estimate the training performance are also

presented. Finally, the influence of an increased ply-depth is investigated and the viability of

using larger game trees during training is examined.

The training algorithm derived in chapter 3 is applied to the computationally modest prob-

lem of evolving intelligent Tic-Tac-Toe players in chapter 4. An overview of the problem is

followed by a series of experimental work, analysing various PSO architectures and a selection

of basic PSO parameter choices. The training technique is shown to be successful, with the

Von Neumann architecture showing promise as neighbourhood structure of choice.

Chapter 5 extends the experimental analysis of the previous chapter to the Checkers domain,

which inherently poses a much more difficult optimisation problem due to its much larger search

space. The same training algorithm is once again applied, and the neighbourhood structure

performance analysed. The Von Neumann architecture proves to dominate once again, but

overall results are disconcerting and require further in-depth analysis.

Chapter 6 aims to conduct a detailed investigation into the possible causes for the weak

playing performance of evolved Checkers players. The influence of all known PSO parameters

are experimentally examined, followed by a look at neural network related performance issues,

and various coevolutionary algorithm extensions. In the process, a particle dispersement oper-

ator and coevolutionary performance measure based on a scoring system inspired by Formula

One Grand Prix are introduced. The chapter concludes with an analysis of stricter training

criteria.

After resolving the reasons for the initial poor playing performance, chapter 7 takes the

benchmarking of the evolved Checkers players one step further, by analysing playing perfor-

mance against two ‘intelligent’ evaluation functions. The impact of training and playing on

deeper tree depths are also investigated, ending with a discussion on the possibility of improving

the coevolutionary training partner.

Building on the knowledge gained from experiments with zero sum games in the previous

chapters, chapter 8 applies the PSO training technique to the interesting non-zero sum problem

of the Iterated Prisoner’s Dilemma. An overview of the problem and historic work is followed

by an investigation of three different strategy generation approaches – all applying PSO in a

different context.

The thesis concludes in chapter 9, with a summary of the major experimental findings and

a list of future work resulting from the experiments conducted in this study.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

v

A list of appendices provide a glossary of frequently used terms, a summary of symbols,

and a list of publications that followed from the presented work.

Acknowledgements

• Prof Andries P Engelbrecht for his mentorship and invaluable guidance during the

progression of work completed for this thesis.

• Janneman Franken for his mathematical insight, MatLab expertise and always stop-

ping whatever he was doing to come and look at my computer screen upon request in

the middle of the night.

• Adi Eyal for the insightful talks and always questioning my results.

• Andrew Cooks for setting up a Linux-based cluster. Without his technical help, a large

portion of the simulations would not have finished on time.

• My friends inside and outside CIRG for mostly being interested in what I was doing,

or asking when the thesis will be finished!

• The financial assistance of the National Research Foundation towards this research is

hereby acknowledged. Opinions expressed in this thesis and conclusions arrived at, are

those of the author and not necessarily to be attributed to the National Research Foun-

dation.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

Contents

Preface i

List of Figures xi

List of Tables xiv

1 Game Learning 1

1.1 Introduction . 1

1.2 Game Types . 2

1.3 Game Architecture . 3

1.3.1 Game trees . 3

1.3.2 Improvements . 5

1.3.3 Knowledge representation . 8

1.4 Evaluation techniques . 10

1.4.1 Hand-crafted evaluations . 10

1.4.2 Intelligently weighted evaluations . 11

1.4.3 Neural network-based evaluations . 11

1.5 Game Learning . 12

1.5.1 Data Mining approach . 12

1.5.2 Temporal Difference Learning (TDL) . 13

1.5.3 Self-play . 14

1.5.4 Training with a superior opponent . 14

1.6 World Champions . 14

vi

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CONTENTS vii

1.6.1 Great human players . 14

1.6.2 Computer players . 15

1.7 Future directions . 16

1.8 Conclusion . 17

2 Computational Intelligence Techniques 18

2.1 Introduction . 18

2.2 Neural networks . 19

2.2.1 Structure . 19

2.2.2 Training methods . 21

2.2.3 Application areas . 23

2.3 Evolutionary Computation . 23

2.3.1 Data representation . 24

2.3.2 Evolutionary operators . 25

2.3.3 Models of evolution . 26

2.3.4 Application areas . 28

2.4 Particle Swarm Optimisation . 28

2.4.1 Information sharing structures . 30

2.4.2 Parameters: restrictions and influence 32

2.4.3 GCPSO . 35

2.4.4 Binary PSO . 35

2.4.5 Particle repelling . 36

2.4.6 Application areas . 38

2.5 Coevolution . 38

2.5.1 Population dynamics . 38

2.5.2 Credit assignment . 39

2.5.3 Application areas . 42

2.6 Conclusion . 42

3 Training with PSO 43

3.1 Introduction . 43

3.2 Basic algorithm . 44

3.2.1 Population structure . 45

3.3 Measuring performance . 46

3.3.1 Playing position in turn-based games . 46

3.3.2 Incorporating win, lose and draw . 47

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CONTENTS viii

3.3.3 Messerschmidt performance measure . 48

3.3.4 Franken performance measure . 49

3.4 Tree depth . 50

3.4.1 Increasing the depth . 51

3.5 Final algorithm . 52

3.6 Conclusion . 52

4 Tic-Tac-Toe 55

4.1 Introduction . 55

4.2 Game rules . 56

4.2.1 Scoring structure . 57

4.3 Choosing an opponent . 57

4.4 Choosing a PSO architecture . 58

4.4.1 Parameter selection . 58

4.5 Experimental procedure . 59

4.5.1 Training algorithm . 59

4.5.2 PSO configuration . 59

4.5.3 Neural network configuration . 59

4.5.4 Setting the benchmark . 60

4.5.5 Statistical soundness . 60

4.6 Experimental results . 60

4.6.1 Comparison of architecture performance matrices 61

4.6.2 Surface plots . 64

4.6.3 Increase in hidden nodes . 65

4.6.4 Increase in swarm size . 66

4.6.5 Convergence . 66

4.6.6 Optimising performance . 67

4.7 Conclusion . 68

5 Checkers 69

5.1 Introduction . 69

5.2 Game rules . 70

5.2.1 Scoring structure . 72

5.3 Choosing an opponent . 72

5.4 Choosing a PSO architecture . 73

5.4.1 Parameter selection . 73

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CONTENTS ix

5.5 Experimental procedure . 74

5.5.1 Training algorithm . 74

5.5.2 PSO configuration . 74

5.5.3 Neural network configuration . 75

5.5.4 Setting the benchmark . 76

5.5.5 Statistical soundness . 76

5.6 Experimental results . 76

5.6.1 Architecture comparison matrices . 77

5.6.2 Surface plots . 79

5.6.3 Increase in hidden nodes . 80

5.6.4 Increase in swarm size . 82

5.7 Conclusion . 83

6 Investigating performance factors 84

6.1 Introduction . 84

6.2 Particle Swarm Parameters . 85

6.2.1 Influence of maximum velocity (VMax) 86

6.2.2 Influence of c1 and c2 . 87

6.2.3 Influence of inertia weight . 88

6.2.4 Influence of LBest neighbourhood size 88

6.2.5 Updated neighbourhood structure comparison matrices 89

6.2.6 Increase in swarm size . 92

6.2.7 Increase in hidden layer size . 92

6.2.8 Updated surface plots . 94

6.2.9 Overall PSO comparison . 95

6.3 Neural network input representation . 96

6.3.1 Numeric input variations . 96

6.3.2 Windowed input . 97

6.4 Coevolutionary techniques . 100

6.4.1 Introducing Grand Prix methods . 100

6.4.2 Race performance . 100

6.4.3 Particle dispersement . 104

6.4.4 Implementing ‘Hall of Fame’ . 107

6.4.5 Summary of coevolutionary methods performance 110

6.5 Stricter training conditions . 111

6.5.1 Influence of training duration . 112

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CONTENTS x

6.5.2 Winning under pressure . 113

6.5.3 Varying the maximum number of moves 114

6.6 Conclusion . 116

7 Assessing intelligence 118

7.1 Introduction . 118

7.2 Intelligent evaluation functions . 119

7.2.1 Piece-count based evaluation . 119

7.2.2 SmartEval – hand-crafted evaluation . 120

7.3 Benchmarking Intelligence . 121

7.3.1 Self-play . 121

7.3.2 Evolved players . 122

7.4 Increasing tree depth . 124

7.4.1 Q1: Performance against a dominating ply-depth 126

7.4.2 Q2: Does increased complexity outperform increased ply-depth? 127

7.4.3 Q3: Scalability of trained evaluation function 127

7.4.4 Q4: Do deeper training ply-depths require increased complexity? 129

7.4.5 Q5: Compressing game tree knowledge into a neural network 129

7.5 Observations . 130

7.6 Improving the training partner . 131

7.7 Conclusion . 132

8 Iterated Prisoner’s Dilemma 133

8.1 Introduction . 133

8.2 Historic overview . 134

8.2.1 The prisoner’s dilemma . 134

8.2.2 Related work . 137

8.3 Choosing an opponent . 140

8.4 Training algorithm . 141

8.5 Strategy generation . 142

8.5.1 Evolving neural networks . 143

8.5.2 Evolving strategies through Binary PSO 145

8.5.3 Evolving strategies by exploiting symmetry 146

8.6 Experimental procedure . 150

8.6.1 Measuring performance . 150

8.6.2 Noisy environments . 152

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CONTENTS xi

8.7 Experimental results . 153

8.7.1 Parameter choices . 153

8.7.2 Population performance . 156

8.7.3 Strategy performance . 163

8.8 Conclusion . 167

9 Conclusion and future work 172

9.1 Conclusion . 172

9.2 Future work . 174

Bibliography 177

A Glossary 190

B Definition of Symbols 193

C Derived Publications 195

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

List of Figures

1.1 A simple game tree . 4

2.1 Abstract representation of a simple ANN structure. 20

2.2 Various activation function plots used by ANN nodes. 21

2.3 Various PSO neighbourhood information sharing structures. 30

3.1 Abstract training algorithm. 44

3.2 Detailed training algorithm. 54

4.1 Typical end-game sequence for a Tic-Tac-Toe game. 56

4.2 Comparison graph between Messerschmidt et al.’s implementation performance

and performance values computed in this thesis. Larger M-values are preferred. 63

4.3 Surface plot for architecture comparison. 64

4.4 Increase in hidden nodes for specific LBest architecture configuration. 65

4.5 Increase in swarm size for specific LBest architecture configuration. 66

4.6 Convergence of neural network weights. 67

4.7 Optimised performance for a sample LBest configuration. 68

5.1 Dimensions, numbering and setup of a standard Checkers game board. 70

5.2 Basic rules of Checkers explained. 71

5.3 Surface plot for PSO structure comparison in Checkers. 81

5.4 Increase in hidden nodes during Checkers simulations. 81

5.5 Increase in swarm size during Checkers simulations. 82

xii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

LIST OF FIGURES xiii

6.1 Influence of maximum velocity with trend-line. 86

6.2 Influence of c1 and c2 parameters. 87

6.3 Influence of inertia. 88

6.4 Increase in swarm size. 92

6.5 Increase in hidden layer size. 93

6.6 Improved performance surface plot. 93

6.7 Individual gain by each neighbourhood structure. 94

6.8 Overall PSO neighbourhood structure comparison. 95

6.9 Various window formation schemes. 98

6.10 Influence of window formation. 99

6.11 Adapted training algorithm to include GPX racing. 102

6.12 Adapted training algorithm to include particle dispersement. 106

6.13 Influence of dispersement interval. 107

6.14 Influence of ‘Hall-of-Fame’ survival rate. 109

6.15 Performance of various scoring structures. 110

6.16 Influence of training duration. 112

6.17 Winning in less than 50 moves. 113

6.18 Influence of a restricted move count. 114

6.19 Win/Draw/Lose relationship. 115

7.1 Benchmark results for the intelligent evaluation functions. 121

7.2 Performance of evolved players against intelligent evaluation functions. 123

7.3 Increasing configuration as a substitute for tree depth. 126

7.4 Training and playing on deeper ply depths. 128

8.1 Complete IPD training algorithm. 142

8.2 First 32 bits of the TFT strategy represented as a sinusoidal wave. 148

8.3 First 32 bits of the TFTT strategy represented as an adjusted sinusoidal wave. 148

8.4 Combination of sin and cos function to be optimised. 149

8.5 Constructing symmetry in four different ways. 149

8.6 Increase in hidden nodes versus swarm size for Neural Network approach. . . . 154

8.7 Influence of inertia term for BinPSO and symmetry approaches. 154

8.8 Influence of the maximum velocity for BinPSO and symmetry approaches. . . . 155

8.9 Catastrophic collapses occurring in neural network-based population. 156

8.10 Average personal performance of best agent using the BinPSO approach over

500 epochs. 159

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

LIST OF FIGURES xiv

8.11 Average personal performance of best agent using the Symmetry approach over

500 epochs. 159

8.12 Average personal performance of best agent using the Neural Network approach

over 500 epochs in a noisy environment. 161

8.13 Average personal performance of best agent using the BinPSO approach over

500 epochs in a noisy environment. 162

8.14 Average personal performance of best agent using the Symmetry approach over

500 epochs in a noisy environment. 163

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

List of Tables

3.1 Probabilities for a random-moving Tic-Tac-Toe player. 47

3.2 Probabilities for a random-moving Checkers player. 47

4.1 Architecture performance matrix - standard GBest. Larger M-values preferred. 61

4.2 Architecture performance matrix - Local Best. Larger M-values preferred. . . . 62

4.3 Architecture performance matrix - Von Neumann. Larger M-values preferred. . 63

5.1 Architecture performance matrix - standard GBest. Larger M and F-values

preferred. 78

5.2 Architecture performance matrix - Local Best. Larger M and F-values preferred. 79

5.3 Architecture performance matrix - Von Neumann. Larger M and F-values pre-

ferred. 80

6.1 Performance of various methods to restrict the maximum velocity. 86

6.2 Performance of various LBest neighbourhood sizes. 88

6.3 Architecture performance matrix - Updated standard GBest. Larger M and

F-values are preferred. 89

6.4 Architecture performance matrix - Updated standard LBest. Larger M and

F-values are preferred. 90

6.5 Architecture performance matrix - Updated Von Neumann. Larger M and F-

values are preferred. 91

6.6 Performance of various GCPSO search term sizes. 95

6.7 Performance of sliding-window formation techniques. 99

xv

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

LIST OF TABLES xvi

6.8 Performance of various GPX scoring systems. 104

6.9 Performance of various re-dispersement sizes over 50 intervals. 105

6.10 Performance values for various ‘Hall of Fame’ sizes. 108

6.11 Performance of various invocation intervals for the HOF. 110

8.1 General form of the IPD payoff matrix. 135

8.2 Payoff matrix for the IPD as used by Axelrod. 136

8.3 Binary representation of strategies, illustrating symmetrical properties. (‘Op’

refers to the opponent, and ‘My’ to the local player) 147

8.4 ‘Man-made’ strategy benchmark – no noise. 151

8.5 ‘Man-made’ strategy benchmark – 5% noise. 152

8.6 Neural network cooperation results for 20 simulations – noiseless environment. 158

8.7 Binary PSO and Symmetry Approaches’ cooperation results for 20 simulations

– noiseless environment. 158

8.8 Neural Network approach’s cooperation results for 20 simulations – 5% noise

applied. 160

8.9 Exceptions to superb performing Binary PSO and Symmetry Approaches’ co-

operation results for 20 simulations – 5% noise applied. 162

8.10 Best performing individuals, averaged over 20 runs and 10000 games per run –

no noise. 164

8.11 Performance of individual man-made strategies - no noise. 169

8.12 Best performing individuals, averaged over 20 runs and 10000 games per run –

5% noise applied. 170

8.13 Performance of individual man-made strategies - 5% noise. 171

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1

Background on Game Learning

“The programs may indeed consider a lot of moves and positions,

but one thing is certain. They do not see much!”

- Dr Marion Tinsley, 1980

This chapter presents an overview of different types of games, and the core elements found in

a game playing software model. The history of these elements is covered as well as different

performance improvements that have been discovered during the last couple of decades. The focus

then shifts from search-based techniques to knowledge-based techniques, as game learning and

various evaluation methods are discussed. A section is dedicated to the best human and machine

game players in the world, before lastly examining some of the possible future directions of game

research.

1.1 Introduction

The aim of this chapter is to provide the reader with a solid frame of reference regarding

the history of game playing technologies, starting with the fundamental distinction between

perfect information and imperfect information games in section 1.2. The game tree as core data

structure is introduced in section 1.3, along with various enhancements to search techniques

resulting from more than four decades of research.

An overview of some of the more state-of-the-art knowledge-based techniques is also pro-

vided in sections 1.4 and 1.5, which covers the different approaches to intelligent game state

1

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 2

evaluations as well as some of the more mainstream game learning approaches.

Section 1.6 looks briefly at two of the best human game players of recent times, Dr Marion

Tinsley (in Checkers) and Garry Kasparov (in Chess). Their machine counterparts, Chinook

(in Checkers) and Deep Blue (in Chess) are also acknowledged.

The chapter concludes with section 1.7 briefly discussing some possible future directions for

research in games, mentioning some of the well-known search space constraints. A selection

of games that exploit these constraints is listed, that while remaining unsolved, also forms the

‘holy grail’ for games research.

1.2 Game Types

The majority of research conducted in the game playing domain can be subdivided into two

distinct application areas, namely two-player perfect information and imperfect information

games. The term perfect information refers to the fact that all the information about the game

is available to the game players at any moment in time during the progression of the game. For

instance, all the Chess-pieces that are currently in play during a standard Chess game is visible

at all times. There is no hidden component or any form of randomness in perfect information

games. Other examples of perfect information games include Checkers, Tic-Tac-Toe, Othello

and Go. Perfect information games are usually modelled using a game tree architecture and

some form of intelligent evaluation function.

Imperfect information games have a hidden and/or random element in their nature. For

instance, even though all the pieces necessary to play Backgammon is visible to both play-

ers at all times during the game, it has a random element – introduced by the throw of a

dice that determines the speed of progression around the board. Other examples include the

games of Poker and Bridge, where the players are not able to see what cards their opponents

are holding. Imperfect information games have been successfully modelled using simulation

based techniques, such as Monte Carlo methods [117] as well as temporal difference learning

algorithms in the case of Backgammon [130] [131].

It is also important to note that single-player games (or puzzles) have received a certain

amount of research attention, with advances made in solving Sokoban problems, Rubik’s cube

and completing crossword puzzles [117].

Lastly, some games have been ‘solved’ by expert programmes and dedicated algorithmic

research [117]. A solved game implies being able to play as either the first (starting) or second

player, and never losing a match. The computer is able to select the best move in any given

situation, thereby playing a ‘perfect game’. A number of games have already been solved,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 3

including Nine Men’s Morris, Connect-4, Go Moku, Qubic and Tic-Tac-Toe [117].

The remainder of this thesis focuses on game playing techniques pertaining to two player

perfect information games, with specific application to Tic-Tac-Toe in section 4.2 and Checkers

in section 5.2.

1.3 Game Architecture

Ever since the seminal papers in the early 1950’s by Claude Shannon [121] and Alan Turing [135]

on how to program computers to play games, a great deal of work has been conducted in using

games as a test-bed for artificial intelligence and computational research. The basic architecture

used by the majority of programmers to implement the game simulator (apart from the game

rules) includes the use of a game tree and corresponding optimised search method, some way to

represent the knowledge about the game (playing strategies), as well as an advanced intelligent

evaluation function (originating from either human or machine expertise).

Section 1.3.1 introduces the game tree data structure, its history and numerous related

search improvements. Various knowledge representation methods are discussed in section 1.3.3.

Evaluation techniques are covered in section 1.4.

1.3.1 Game trees

John von Neumann first described the basic structure of the game tree in 1928, while doing

research in game theory [143]. It is based on a general tree data structure with some branching

factor, a root node, children and leaf nodes. Given a game played by players A and B, and the

current board state with player A having to make the next move, the game tree (see figure 1.1

for a visual representation) has the following structure:

• Root node: the current board state.

• Immediate child nodes (1 ply depth): board states generated from all possible move

combinations for player A.

• Grandchildren nodes (2 ply depth): board states generated indicating all the possible

moves made by player B in reply to each of the previous player A moves.

• Repeat interleaving of generated moves on subsequent depths until the complete tree is

constructed, or some stopping criterion is met.

Each of the nodes in the game tree thereby contains a specific possible board state in the future

progression of the game. In order to determine the best possible choice for player A, each of the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 4

Figure 1.1: A simple game tree

board states in the tree has to be evaluated according to an evaluation function. A high value

returned by the evaluation function indicates ‘good’ moves, whereas low evaluations indicate

‘bad’ moves.

Following a bottom-up approach and starting with the leaf nodes of the tree, it is the aim

of player A (also referred to as the MAX player) to maximise the possible evaluation values

that gets passed up the tree, and the aim of player B (also referred to as the MIN player) to

minimise the possible evaluation values passed up the tree. The result is a strategy where MAX

makes all the moves that best improve his position, taking into account that MIN will reply

with the best possible move (limiting the damage that MAX can inflict on MIN). This sequence

of moves in a game tree is also referred to as the principal variation. A typical Minimax game

tree algorithm can be found in [101].

Building a Minimax game tree for a game such as Tic-Tac-Toe is not very resource de-

pendent, since the complete search space for all possible moves remains quite small and can

easily be generated and maintained in system memory. For more complex games such as Chess

though it is estimated that the total number of legal moves in a typical game amounts to 1040

moves [29]. Clearly, this is too much information to store in system memory, and will take

immensely long to calculate. The initial attempts to limit the number of nodes that has to

be calculated and evaluated (through pruning of the search tree) appeared independently and

seemingly ‘unknown’ in 1963 by Brundo, a Russian scientist [21]. It was not until the seminal

paper by Knuth and Moore in 1975 [81] that a technique now known as Alpha-Beta pruning

was formalised and its performance analysed.

Various other search techniques were also introduced during this time period, all of them

improving on the standard Minimax and some even on standard Alpha-Beta. The best-first

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 5

search SSS* algorithm was developed by Stockman in 1979 [127], and was theoretically proven

to dominate Alpha-Beta, resulting in fewer node expansions. Its implementation however re-

quired a sorted OPEN list, similar to the traditional A* graph search algorithm, and apart from

the immense memory requirements it also demanded a lot of overhead for inserting/deleting

nodes. It has not been widely adopted by researchers.

Pearl introduced the Scout algorithm in 1980 [102], which improved on Alpha-Beta’s per-

formance due to the fact that it doesn’t compute the final Minimax node values when initially

traversing the tree. Instead, it uses a boolean function to approximate the final node values

and thereby eliminates unnecessary moves further down the tree. The remaining tree is then

re-searched in order to compute the final node values.

Due to the fact that game tree searching is usually time limited (a player is only allowed

a certain amount of time to ‘plan’ the next move in a regulation match), a technique called

iterative deepening has been introduced [84]. It allows for successive searches of the tree at

increased depth bound - ensuring a complete search of the partial tree (up to the previous

depth) before a decision is made. This avoids the problem of searching too deep into the tree

and missing some ‘vital’ moves that are located in the opposite (and as yet unsearched) portion

of the tree.

1.3.2 Improvements

Further improvements on the existing base of Alpha-Beta or Scout-related algorithms can be

categorised into two main types. Section 1.3.2 examines some move ordering techniques used

inside the game trees. Section 1.3.2 lists more search-based enhancements, which improves

performance on the already mentioned algorithms.

Move Ordering

The aim of move ordering is to enable a depth-first search algorithm to search through the ‘best

node’ first, thereby causing a cut-off on sibling nodes and limiting the number of unnecessary

nodes that are searched. The obvious problem with move ordering is that no accurate measure

of ‘best node’ is available. If it was available, then a game tree had no purpose and the

algorithm could be used on its own to solve the game. Various move ordering enhancements

exist, including:

• Hash-tables (Transposition tables) [62]: While searching through the game tree,

the result of searched nodes (actual moves leading to this position) and their evaluations

are stored in a hash-table data structure. When re-searching the tree (due to iterative

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 6

deepening or on subsequent turns) the hash-table is first queried to find the best possible

move from the current position (based on previous searches), before an actual tree search

is undertaken. When new areas of the tree are encountered, the positions in the hash-

table are updated. Hash-tables also allow for move ordering due to the availability of

node evaluations before actually re-searching them – thereby allowing deeper searches

into more interesting parts of the tree.

• Killer moves [94] [1]: Certain situations in a game may require immediate response,

such as a threat of checkmate in 1 move. It is almost guaranteed to assume that whatever

move is able to refute the checkmate threat, is also a good move to continue searching

from. Killer moves are computed and executed, but not stored.

• History heuristic [116]: The history heuristic is similar to the use of hash-tables,

but instead of storing the actual move and its score (the move context), only a counter

is updated to indicate that a move proved to work ‘well’. The counters are stored in

a matrix, indexing ‘source square’ and ‘destination square’ move fields. This heuristic

keeps track of the impact of killer moves and other ‘good moves’ in a long-term memory

data structure, but it doesn’t store the context of the moves as is done in hash-tables.

• Static ordering: Static ordering is a game dependent heuristic to ensure that the best

move is searched first. For example, in Checkers you may want to order moves so that

promotions are searched first, or that piece-captures have preference – ordered by the

number of pieces captured in a single turn.

Search Enhancements

The previous optimisations focused on the occurrence of nodes in the game tree, and how to

order them optimally to increase the efficiency of Alpha-Beta. The following enhancements

make actual changes to the Alpha-Beta algorithm, opting to efficiently search through the

game tree by visiting the fewest number of nodes due to pruning. Various enhancements exist,

including:

• Aspiration search (Windowing): The traditional Alpha-Beta algorithm starts its

search with a search-window of size [–INFINITY : +INFINITY]. It is possible to resize

this window to [–WINDOW : +WINDOW] before searching, assuming the new bounds

will approximate the eventual optimal window size, thereby causing many more cut-offs

earlier on in the search. Obtaining this window size beforehand could be a problem, with

the end result being a repeated search of the game tree with increased window size.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 7

• Principle Variation Search (PVS [93], NegaScout [110]): Principle Variation

Search makes use of the previous assumption that the window size can be effectively

reduced by extending it to adapt the window for interior nodes in the game tree. PVS

relies on the effectiveness of the aforementioned move ordering techniques to cause the

best move to be searched first. A very small window around the best move is thus

necessary. If it can be shown that the first node is indeed inferior, the search window is

increased to include the new nodes and the search is repeated.

• MTD(f) [104]: MTD(f) uses a succession of null window calls on the Alpha-Beta al-

gorithm to determine the true value of the root node. It stores the results of previous

searches and through iterative deepening is able to guess the window size and thereby

compute the true Minimax value, evaluating less nodes.

• Enhanced Transposition Cutoffs (ETC) [103]: Enhanced Transposition Cutoffs

come into play when implementing a hash-table. Normally the program will first check

whether a move on a move-list has a hash-table entry and if not, conduct a search to

determine the node value that could possibly result in a cutoff. ETC simply dictates that

you search through your complete move list for hits in the hash-table, before conducting

any new searches. This only improves performance when there is a relatively large part

of the tree that can be pruned in this manner – otherwise it proves to be too costly.

• Singular Extensions (SE) [3]: Some nodes in the game tree are more promising than

others, which leads to the desire to extend these lines of play further and investigate their

use. The aim of SE is to identify these interesting lines by looking at forced moves of play.

It identifies forced moves by adjusting the search window to evaluate if the best move is

significantly better than the second-best move. The search depth is then increased along

the more interesting/significant nodes.

• Game specific enhancements (Null moves) [13]: The concept of null moves is

based on the premise that every move improves your position in the game. During the

progression of the search the opponent is given the opportunity to make two consecutive

moves (instead of the usual one). If the new position is still in the current player’s favour,

even after the opponent’s two moves, the search for that line is terminated – indicating

that it is already ‘good enough’ and need not be completely investigated.

Another improvement on game tree search is the use of parallel or distributed search algorithms,

running on large clusters of processors and parallel architectures. The interested reader is

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 8

referred to [49] for more information on the successful application of parallel search in the

ZUGZWANG Chess program, using 1024 processors.

1.3.3 Knowledge representation

Up to now, the discussion has focused on the game tree and its related optimisations. The

game tree is able to generate a large selection of potential successor moves from the current

board state, but does not consider existing theoretical knowledge (such as opening theory)

derived by educated scholars through centuries of analysis, in order to select the best node.

Very large annotated databases of games played by Grand Masters exist around the world,

for various popular games [28]. It is possible to utilise this knowledge and construct different

playing strategies depending on the current phase of the game.

Two types of knowledge structures are typically used by high standard game playing sim-

ulators, namely the opening book and an end-game database. Researchers working on Deep

Blue also recently introduced the concept of an extended book [23]. Each of these structures is

discussed in turn below.

Opening books

Most games can be divided into three main phases, namely the opening, middle game and

end-game [118]. The purpose of the opening book is to establish a solid start to the game

being played. It encompasses a vast number of board positions and includes a series of well-

known and expert opening moves. This should provide the computer with some advantage

over amateur players, but keep it on par with expert players who also study so-called ‘opening

theory’.

While working to create structures that add knowledge to Chinook (see section 1.6 for

more information on this world champion Checkers program), the team from the University of

Alberta [118] realised that there are a couple of sure-losses (moves that lead to definite failure

after 20 or more moves in play) as early as the 4th move in the game. This clearly falls in

the domain of the opening book, but by sticking to only making moves from the opening book

caused Chinook to lose some of its creativity, which was a serious advantage against world-class

players. However, by refraining from closely following the opening book Chinook was in danger

of losing the game early on.

They constructed what they called an anti-book [118]. Instead of just maintaining a

database of ‘good’ moves as defined by Checkers experts, they maintained a database of moves

that lead to forced failure later on in the game. This allowed them to maintain creativity, while

avoiding any serious pitfalls.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 9

Some efforts have also been made to learn the contents of the opening book from scratch,

as opposed to manually adding the entries by hand. Buro [22] presents a dynamic growing

opening book, based on games played against humans and other computers on-line (he used

Othello as implementation, but this could easily scale to other games). A number of difficulties

were encountered, including the use of varying sizes of opening books. When using a large

opening book and competing against a smaller opening book, it is difficult to estimate exactly

what the smaller book lacks by only playing against it. The possibility that the larger opening

book may contain some unique superior strategies (a huge advantage) is thereby not used to

its full potential. He proposes to model smaller opening books in order to make effective use

of the large opening book. Other problems included the physical size of the book in memory,

as well as handling the occurrence of directed acyclic graphs.

Finally, Buro makes the interesting distinction between public and private draws. Private

draws can become winning situations if the opponent makes a mistake, whereas public draws

are unavoidable (draws). The relevance of draws in games is covered in more depth in section

3.3.2.

Extended book

The dedicated team of researchers at IBM that worked on the ‘Deep Blue’ project introduced

the concept of an extended book [23]. The extended book is used to guide the program in

selecting its opening book moves, as opposed to using some random measure. This is done

through retrieving knowledge from a database of Grand Master games, and constructing a

new small database. This allows ‘Deep Blue’ to determine the opening playing style of its

opponents by actually ‘studying’ their past games, and consequently use the correct counter

opening moves to ensure a solid start to the game. The team reported the extended book to

be a huge success while playing against Garry Kasparov in 1997.

End-game databases

Another thoroughly studied theoretical aspect of games is the end-game. Players spend hours

training to resolve predefined problem positions in order to win the game. Comprehensive

knowledge of end-game positions and their successful resolution is a serious requirement in any

game played at master level.

For simulation programmers, the use of end-game databases has become obligatory. A

typical end-game database contains the complete search tree for any board position with six

pieces or less. This has been achieved for Chess [134], with the 8-piece database available for

Checkers [118]. The larger databases require enormous storage space, and are usually main-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 10

tained off-line (not in system memory). Various compression schemes are under investigation

to try and reduce the size of the databases [118]. As soon as the end-game database comes

into play, it is possible to play a near perfect game. However, depending on the entry state, a

win is still not guaranteed.

Chinook is able to extend its search from the last opening-book moves, through the middle-

game (usually 20 or 30 ply deep) and into the end-game database. This allows Chinook to

use perfect knowledge very early on in the game, and is a major contributor to Chinook’s very

good overall playing performance.

1.4 Evaluation techniques

Probably the largest single element that allows for ‘intelligent’ behaviour during gameplay

is the evaluation function. It is the evaluation function that makes decisions in the game

tree, chooses the correct opening moves from the opening book, and approximately defines

the principal variation path during initial searches reaching the end-game database. In fact,

Chinook had four different evaluation functions for four different phases of the game (opening,

middle-game, early end-game, late end-game) [118].

There exist different methods of constructing an evaluation function. The following sec-

tions summarise the most popular approaches, namely hand-crafted functions in section 1.4.1,

intelligently weighted functions in section 1.4.2 and finally, neural network-based evaluations

in section 1.4.3.

1.4.1 Hand-crafted evaluations

Arthur Samuel listed in his seminal paper in 1959 [114], an evaluation function consisting of 26

distinct game features that could be used to evaluate the current Checkers board state. These

features could be weighted according to their importance for the current phase of the game.

One of the important questions therefor is how to pick a set of features that can accurately

describe the ‘value’ of the current board state.

Traditionally, authors would refer to existing game literature and hard-code certain im-

portant defensive/offensive positions, rewarding the computer player when maintaining them.

For example, in Checkers, as in Chess, it is beneficial to control the centre squares, because it

provides the most mobility. Immediately, two features have been defined: centre-control and

mobility. Many other features exist [114].

More recently the aid of Grand Master level players have been used to construct evaluation

functions for Checkers [118] (Chinook) and Chess [23] (Deep Blue). They rely on their concise

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 11

theoretical knowledge to identify a set of features that are manually fine-tuned to achieve the

desired style of gameplay.

It should be noted that a trade-off exists between speed of searching and complexity of

the evaluation function. As already mentioned, a limited time is awarded to plan a move in a

regulation match. The program typically aims to search as deep into the game-tree as possible.

By using a very complex evaluation function, valuable computation time is spent on intricately

evaluating board states that might never be used, thereby restricting the depth that can be

searched. Section 3.4.1 examines this trade-off more closely.

1.4.2 Intelligently weighted evaluations

Up to now, all the ‘intelligence’ attributed to the game simulator is actually a direct result of hu-

man knowledge/expertise translated into code form. Recent studies have examined techniques

that allow game-playing programs to benefit from their own experience. The first category

of improvements aims to automatically adjust the weight values for predefined features in the

evaluation function.

Kendall and Whitwell [73] used evolutionary strategies to evolve a population of Chess

evaluation functions. They seeded the population with initial piece-value weights as provided

by Shannon [121]. These weights were adapted through the use of basic evolutionary principles,

where the strongest evaluation function of the current generation influenced the future genetic

make-up (weight values) of the population. Both the ‘undeveloped’ and ‘developed’ players

were tested against commercial software, with decent results.

Another approach has been to adjust the weights according to Temporal Difference Learning

(TDL). TDL is discussed in more detail in section 1.5.2. The result of the application of TDL

to adjusting weights is best described by an extract of correspondence between Don Daily and

Jonathan Schaeffer [117]:

‘Much to my surprise, TDL seems to be a success. But the weight set that comes

out is SCARY; I’m still afraid to run with it even though it beats the hand-tuned

weights. They are hard to understand too, because TDL expresses Chess concepts

any way that is convenient for it. So if you create a heuristic to describe a Chess

concept, TDL may use it to “fix” something it considers broken in your weight set.’

1.4.3 Neural network-based evaluations

The second category of improvements has focused on using neural networks as evaluation func-

tions. This evaluation method has successfully been used by Tesauro [130], Blair and Pollack[18]

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 12

in their approaches to play Backgammon. Fogel and Chellapilla [53] [27] [26] pioneered the

evolutionary training of neural network-based evaluation functions within the game learning

domain with their Anaconda (also known as Blondie24) Checkers-playing program. The board

state (or permutations thereof) would be directly input to the network, and the output cor-

responded to an evaluation value. Anaconda competed against human players through an

on-line games portal, beating master ranked players [53]. It also proved to be superior against

a commercially available software program [27].

The training methods employed in this thesis are loosely based on the groundwork provided

by Fogel and Chellapilla. The details of their implementation will be discussed in the various

relevant sections throughout this thesis. The neural network paradigm is covered in section 2.2.

The interested reader is referred to an exciting account of the work that went into developing

Blondie24 in [53].

1.5 Game Learning

Even though Arthur Samuel provided his own set of features for the evaluation used by his

Checkers program [114], he still believed it should be possible for the computer to learn/discover

its own set of features from repetitive play. After all, Samuel published all his Checkers papers

under the Machine Learning subject heading, another hint at his yearning for true intelligence

in games. The hardware limitations at the time sadly restricted these ideas, but the surge in

development of faster processors and larger storage capacities in recent years have made this

ideal a reality.

The following subsections deal with various approaches to learn new features to be used in

an evaluation function, or new methods of play that induce learning behaviour. The interested

reader is referred to a much broader and in-depth analysis of the most notable approaches in

game learning, in a chapter by Fürnkranz and Kubat [59].

1.5.1 Data Mining approach

Data Mining usually involves the analysis of very large collections of information in order to

extract knowledge in the form of rules, decision trees or clusters – indicating common trends or

interrelationships in the data. As was already mentioned, large collections of annotated grand

master matches exist for various games. These databases provide the ideal platform for Data

Mining experiments in retrieving important features, or adjusting weight values of existing

features, that humans have not yet discovered or understood. Not a lot of successful research

has however been conducted in mining game databases.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 13

The Chinook team [118] used a database of 800 grand master games to tune their evaluation

function. They tried to compare how many times the computer would make the same move

a grand master made in a historical game, and reward it appropriately. It did however occur

that the program discovered moves that were better than the grand master moves, which was

initially attributed to a programming error – since the moves were not well-known. This points

out that the human understanding of the game is still limited in a lot of ways, where a ‘good’

move is only considered to be good if it was played by a grand master.

As was previously mentioned in section 1.3.3, the Deep Blue team [23] mined the information

contained in large Chess databases to construct an extended book. The extended book aided

the program to select the appropriate opening move from the opening book, while still adhering

to good opening theory.

Van Rijswijck conducted experiments on the ancient African game of Awari [141]. Using

perfect information databases (end-game databases of states containing up to 35 pebbles), he

was able to evolve decision trees that acted as evaluation functions. It performed very well

against software with hand-crafted evaluation functions, winning each of its games convincingly.

Kojima et al. [83] used a Data Mining approach to retrieve patterns and sequences from

large Go databases. They were able to extract useful knowledge that was examined by a Go

expert. The expert randomly selected and analysed 27 (1%) of the extracted rules, and classified

them to either be ‘good’, ‘average’ or ‘strange’. Of the 27 rules, 14 (50%) were classified as

‘good’, 6 (22%) as ‘average’ and 7 (26%) as ‘strange’. However promising these results may be,

a lot of Go research still has to be completed in order to properly compete with human world

champions.

1.5.2 Temporal Difference Learning (TDL)

The concept behind TDL was first described by Samuel [114]. It was formalised by Sutton [129]

and applied to the game learning paradigm by Tesauro in his world-champion Backgammon

program [130] [131]. TDL is a reinforcement learning algorithm. It maps inputs (typically the

board state) to a set of outputs (board state evaluations), and given the final result of the game

(win, lose or draw) reinforces the move sequences that lead to a positive result, and punishes

the move sequences that lead to a bad result. Tesauro’s TD-Gammon program used only a

single-ply game tree, in combination with the TDL algorithm to evolve into a world-champion

Backgammon player – beating its human counterparts.

TDL has also been applied to the game of Go [34], where it was used to train neural

networks to estimate the safety of groups, as well as to estimate the territorial potential of

unoccupied points – with encouraging results.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 14

1.5.3 Self-play

It is possible to train an agent to play a game from zero knowledge – apart from the basic game

rules. This is the culmination of Samuel’s ideal. Fogel and Chellapilla [53] [27] [26] trained

a population of Checkers playing agents through coevolutionary techniques. The agents used

neural networks to evaluate the nodes (board states) of a game tree. Through self-play in a

basic tournament scheme, the agents were able to evolve from mediocre novices into skilled

adversaries, able to defeat master level players. The inner workings of coevolution is covered

in more detail in section 2.5.

1.5.4 Training with a superior opponent

As an alternative to self-play, it is possible to train an agent against an already intelligent op-

ponent. Various studies in coevolutionary environments [18] have been conducted to determine

what types of adversaries promote the biggest opportunity for learning [6] [47]. Section 7.6 takes

an in-depth look at the different types of training partners, and provides some experimental

results to illustrate its application in Checkers.

One of the observations made by researchers working on training Go agents against the

open-source GnuGo software [91], is that the evolutionary process stops when the intelligent

player is able to defeat the hard-coded opponent. Coevolved players (through self-play) exhib-

ited much better performance against the GnuGo software and was able to beat it a lot quicker

than their custom-trained counterparts.

1.6 World Champions

Throughout this chapter various references have been made to world-champion human and

computer players. It is perhaps fitting to dedicate a small section of this thesis to the people

and programs that continuously drive research in games, while setting new standards of skill

and computational power in the process.

1.6.1 Great human players

Kasparov

Garry Kimovich Kasparov [147] was born in 1963, and already at the age of 7 showed promise

as a Chess prodigy. He became the youngest player to win the Soviet Junior Championship

– aged 12. He won the World Junior Championship in 1980, and became the youngest World

Chess Champion in 1985, beating Anatoli Karpov. Between December 1981 and February 1991

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 15

Kasparov did not lose a single Chess event he participated in. He has remained the world’s

best ranked Chess player for approximately 18 years.

Kasparov has invested a lot of time and effort introducing Chess to schools and children –

founding the World Schools Chess Championships, while also supporting the Mentor Founda-

tion and various other charities. He has always been interested in the use of computers to play

and analyse Chess. This interest lead to his involvement in the creation of ChessBase [28] (a

very large commercial database of Chess games). He participated in various Man vs Computer

(most notably against Deep Blue from IBM), Man & Computer vs Man & Computer, Internet

(‘Kasparov against the World! ’) and other highly publicised computer tournaments.

Tinsley

Dr Marion Tinsley [115] is unanimously accepted as the greatest Checkers player of all time.

His unblemished record of losing only 7 games in 45 years remains unparallelled in any modern

sport or competition. This mathematics professor from Florida was universally liked and

respected for his kind and gentle manner, responding enthusiastically to Checkers masters and

novice players alike.

After returning from 12 years of retirement – due to a lack of competition – he joined the

Chinook team from the University of Alberta to aid in the creation of the world champion

Checkers program. He resigned his title as World Champion in order to play the initially

unsanctioned challenge match against Chinook in 1992. He won the contest (4 wins, 2 losses

and 33 draws). A repeat challenge was hosted in 1994, but after 6 games (all draws) Dr Tinsley

had to resign for health reasons. He was diagnosed with cancer that following week and sadly

passed away 7 months later. He is remembered fondly.

1.6.2 Computer players

Chinook

Developed by the University of Alberta in the early nineties, Chinook [118] became the first

computer program to receive a world championship title after playing against a human. Chi-

nook’s strength relies on its ability to search very deep into the game tree, sometimes even

reaching the pre-computed 6-piece end-game databases, thereby allowing it to make use of

‘perfect knowledge’. Chinook also made use of an opening book and fine-tuned evaluation

function – partially obtained through the assistance of grand master players, including the

great Dr Marion Tinsley. Chinook has since been retired, but has set a new standard for

world-class Checkers playing programs.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 16

Deep Blue

Deep Blue [71] was developed by IBM, and received widespread public attention during the two

exhibition tournaments against Garry Kasparov in 1996 and 1997. Even though the ultimate

result of their first encounter was a win for Kasparov, Deep Blue came back to level the score in

the second tournament. Deep Blue made use of purpose built hardware, capable of evaluating

approximately 200 million board states per second. The development team was supplemented

by grand master Chess players that aided in the design of Deep Blue’s theoretical knowledge

(evaluation function and move databases). IBM decided to dismantle Deep Blue after the 1997

match, but its legacy still continues to inspire Chess enthusiasts all over the world.

Deep Junior

What initially started out as a hobby for two Israeli programmers, turned into a very successful

commercial product in 1997. Deep Junior [41] has been hailed as the best Chess program avail-

able today, having won the title of Absolute World Computer Chess Champion in Maastricht

in 2002. Garry Kasparov used it as an analysis tool for his Microsoft-sponsored exhibition

tournament on the Internet (‘Kasparov against the World! ’). It has beaten numerous grand

master human players, and recently played against Kasparov in an exhibition tournament. Due

to its commercial nature, not a lot of information on the inner workings of Junior is publicly

available. Its strongest feature is its focus on intelligent play rather than brute force methods.

Deep Junior’s playing style has been positively described as being ‘daring’, ‘creative’ and some-

times appearing as if it was playing on a ‘hunch’ – regularly catching its opponents off-guard.

It remains the latest benchmark for state-of-the-art computer Chess software.

1.7 Future directions

The applicability of computational Chess research has been questioned after the Deep Blue

matches [40], and it seems as if researchers are focusing on other types of more ‘interesting’

games. With the advent of games like Arimaa [7] that purposefully exploit the general inability

of computers to handle very large search spaces, the future for games research luckily remains

bright. More and more research efforts are poured into the challenging ancient oriental game of

Go (estimated to have a search space upward of 10170 moves), which with the current hardware

limitations remains the ‘holy grail’ for simulation writers.

As a final comment, it is interesting to note the reply of Kasparov in an interview with

New Scientist magazine[80], when asked whether he can distinguish between different high-end

Chess programs by just playing against them:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 1. GAME LEARNING 17

‘I can identify immediately Deep Junior or Deep Fritz. Every machine has its own

character, undoubtedly. The machines’ evaluation process is based on the priorities,

and each set of priorities is different. If you place emphasis on one particular

mode of play in the program as Deep Junior’s program does, the machine gets more

adventurous. If you have another style, you have different machine personalities.

Today, any professional could tell Deep Fritz from Deep Junior in 10 to 15 moves.

It’s as easy as differentiating between Kramnik and Kasparov.’

1.8 Conclusion

This chapter aimed to provide background information on existing game playing technologies.

The focus of this thesis was established as presenting research on two-player perfect-information

games, with specific application to the games of Tic-Tac-Toe and Checkers. The game tree

as core data structure was presented, along with a wide range of enhancements to improve its

performance – spanning more than 40 years of research efforts. Different evaluation methods

were covered, including a neural network-based approach that will be experimentally exam-

ined in this study. A discussion followed on knowledge representation and the concepts of

opening-books, extended-books and end-game databases. Various game learning techniques

were examined, with self-play (coevolution) identified as the main training method for experi-

mental testing. A small section was dedicated to the human and computer world champions,

ending with a look at games with large search spaces as the future for games research.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2

Background on Computational Intelligence Techniques

“I not only use all the brains that I have, but all that I can borrow”.

- Woodrow Wilson (1856 - 1924)

The core computational intelligence paradigms that are used in and/or influenced the experimental

work for this thesis, are presented in this chapter. Typical neural network architectures and learn-

ing approaches are covered. The core evolutionary computation constructs based on Darwinian

evolution are presented, followed by an in-depth discussion of particle swarm optimisation and the

influence of its various parameter settings. Finally, coevolution is discussed as a competitive training

strategy.

2.1 Introduction

The previous chapter provided an insight into the game-specific techniques that are imple-

mented in a typical game simulator. In order to add a more intelligent approach to board state

evaluations and player training in general, a series of computational intelligence techniques are

required. This chapter aims to provide an overview of these relevant techniques.

Basic neural network theory is presented in section 2.2, covering aspects such as architec-

ture, weight initialisation, different training approaches and application areas. Evolutionary

computation is introduced in section 2.3, which lays the groundwork for a more detailed discus-

sion on particle swarm optimisation (PSO), its parameters and different information sharing

18

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 19

structures in section 2.4. Coevolution is covered in section 2.5 as a competitive training strat-

egy.

2.2 Neural networks

The human brain can easily be described as the most advanced information processor in the

world today. It handles ‘complex’ tasks such as visual scene analysis, intricate acoustic posi-

tioning as well as speech recognition seemingly instantaneously. Translating these capabilities

to modern day computer systems have been marginally successful, but in comparison have not

yet reached the human brain’s incredible efficiency.

The brain is predominantly constructed out of countless interconnected neurons that each

individually ‘fire’ (or activate) a signal along a network of synapses as soon as a particular

internal chemical threshold is exceeded. Repeated ‘firing’ strengthens certain connections,

while a lack of ‘firing’ results in weakened connections. In a very simplified and abstract sense,

this process can be regarded as ‘human learning’. Artificial neural networks (ANN) aim to

mimic the structural characteristics of actual neurons and synapses – albeit on a significantly

smaller scale – in order to construct a framework for ‘learning’ certain features from a given

set of inputs.

The remainder of this section discusses a selection of the relevant ANN themes pertaining

to the experiments and comparisons conducted throughout this study. The specialised field

of neural networks is extremely vast, and the interested reader is referred to [99] or [15] for a

broader investigation of this interesting topic.

2.2.1 Structure

In its traditional form, the ANN has three layers of interconnected nodes (or neurons). Figure

2.1 shows an abstract graphical representation of such a network. The first layer is called the

input layer. The input layer’s size (number of neurons) is greater than or equal to the number

of features constituting each input pattern. The input layer may sometimes be augmented with

an additional constant neuron – referred to as the bias unit – with a constant input value of

–1 [46].

The second layer is referred to as the hidden layer. The hidden layer is also constructed

out of neurons. Each input neuron is connected to every hidden layer neuron through a set

of weighted connections. Each hidden layer neuron makes use of an activation function. The

activation function is employed to calculate the ‘firing strength’ (output) of each neuron, given

the weighted sum of all connected input neurons [101]. The hidden layer may also be augmented

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 20

Figure 2.1: Abstract representation of a simple ANN structure.

with an additional constant neuron with the value of -1. In simple ANN architectures only

a single hidden layer is constructed, but multiple hidden layers of varying sizes may also be

used. Some of these well-known multi-layer architectures include the Elman recurrent neural

network and the time-based neural network [46].

An ANN’s last layer is called the output layer. Once again, the hidden layer is connected

to the output layer through a set of weighted connections. Each of the neurons in the output

layer also makes use of an activation function. The output from the network is used to make

a decision regarding the training of the network, or in the case of an already trained network

provides the correct response to the given set of inputs.

Weight initialisation

Before training, an initial state has to be constructed for the neural network. Different methods

of initialising the weights of an ANN exist. The use of random numbers in the range (-0.5,

0.5) is often cited, but it remains largely dependent on the specific activation function in use.

Wessels and Barnard [146] derived range–equations for weight initialisation that proved to

facilitate learning with the most success. The range is defined as:(−1√
fanin

,
+1√
fanin

)
(2.1)

where the term fanin refers to the number of incoming connection weights to the specific

neuron. The weight initialisation range specified by equation 2.1 is used for the experimental

work in this study.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 21

Figure 2.2: Various activation function plots used by ANN nodes.

Activation functions

As mentioned in section 2.2.1, the different neurons in the hidden and output layers each make

use of an activation function to calculate the output from a given weighted sum of inputs.

Figure 2.2 graphically depicts plots of various popular activation functions. Previous work in

game learning by Chellapilla and Fogel [26] [27] [53] showed the successful use of the hyperbolic

tangent as an activation function for evaluating Checkers board states. Tesauro [130] used a

sigmoidal function for his temporal difference approach to learning Backgammon. The sigmoid

activation function is used in all of this studies’ experimentally constructed ANNs.

2.2.2 Training methods

The act of training an ANN boils down to the process of updating the weighted connections

between neurons in the different layers of the network. In order to train, a series of input data

is fed into the network and the resulting output compared to an expected output. This process

is also known as supervised learning, since it uses pre-built data sets that accurately describe

the input/output relationships. A popular application of ANNs that makes use of supervised

learning, is that of the classifier system.

The main reason for using an ANN as a classifier system lies in the network’s ability to

detect and approximate underlying correlations in the provided input data. By training an

ANN on a representative set of input data, it should afterwards be able to correctly classify a

new pattern that has not been seen by the network before. This ability to classify previously

unseen patterns correctly is known as generalisation, which also characterises a well-trained

network.

It is possible to over-specialise a network by choosing an overly large architecture, using a

non-representative set of training data containing large amounts of noise, or continuing to train

the network well after optimal generalisation has been achieved. This limits the ANN’s ability

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 22

to generalise on the data, and is known as overfitting. It is the aim of the network designer to

optimise an ANN’s ability to generalise and avoid overfitting [45].

It is also possible to train networks using an unsupervised approach. Unsupervised learning

is suited to situations where it is difficult or impossible to calculate an accurate error measure

between the given inputs, and an expected output. In most cases, there is no expected output

to compare against. The self-organising map [82] is a good example of a neural network-based

approach that relies on unsupervised learning to cluster data.

It is possible to train populations of neural networks through competitive coevolution [53].

By representing the weights of the neural network as an individual in the population’s genetic

structure, it is possible to adapt the structure (train the network) to more closely resemble

individuals with higher fitness. Fitness is usually calculated through some competitive tour-

nament scheme. Training neural networks through coevolution is discussed in greater detail in

chapter 3, but is mentioned here for completeness.

Feed forward networks

In order to start any training process there needs to be input data. Providing the input data

to the network (also referred to as ‘feeding’ the network) constitutes assigning the value of

each of the input pattern’s features to a specific input neuron. These input values are then

‘fed forward’ through the network. The nodes residing in the hidden layer each calculates a

weighted sum of the inputs and corresponding network weights. The node’s activation function

(see figure 2.2 for example plots of activation functions) receives the weighted sum as input

and produces a numeric value that is in turn fed through to the output layer. After calculating

the weighted sum for the output nodes, and discovering the final output value after activation

function processing has completed, the network is able to produce a set of outputs. It is the job

of the network designer to analyse the output values (possibly comparing them with expected

output values) in order to start updating the network weights – thereby allowing the network

to start ‘learning’.

Gradient descent learning

The feed-forward phase produces an output based on the given set of inputs. In supervised

learning the network output can be compared against a correct expected output, and the mean

squared error between the outputs computed. This error represents a position on the search

function landscape that needs to be minimised. As the error declines, the network is said to

be descending the gradient of the landscape until it converges on a local minimum.

Werbos [145] introduced a set of weight adjusting equations based on the result of the error

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 23

function that will allow the network to perform gradient descent learning, and called it back-

propagation. An in-depth exploration of gradient-based learning is beyond the scope of this

study, but the interested reader is referred to a book by Bishop [15] that has optimised examples

of training based on the gradient descent paradigm, namely conjugate gradient descent, scaled

conjugate gradient descent and Levenberg-Marquardt methods.

Since no error can be computed during training for the provided inputs to the neural network

in the game learning environment of this study, gradient descent learning is not applied. It is

mentioned in this chapter for completeness only.

2.2.3 Application areas

Neural networks have been extensively applied to a wide range of specialised areas. As previ-

ously mentioned in chapter 1 on game learning, neural networks have been trained as board-

state evaluators (see section 1.4.3), and a learning method based on temporal difference has

used neural networks to successfully train intelligent Backgammon players (see section 1.5.2 on

TD-learning).

One of the other well-known application areas of the neural network is its use as a highly

developed classification tool. Examples of typical data sets that are classified by neural net-

works can be found at the UCI Machine Learning repository [19]. In addition, neural networks

can be trained to perform time forecasting on historical financial data, to analyse and recognise

objects in images (image analysis), perform real-time classification of biometric data and aid

in medical diagnosis, to name but a few [46].

2.3 Evolutionary Computation

Evolutionary computation is a broad term that refers to a population-based [12] stochastic

search and optimisation method, derived from the principles of ‘survival of the fittest’ as defined

by Darwinian evolution [39]. The algorithmic processes involved in standard evolutionary

computation was defined by Holland [67], and a thorough treatment of this very broad field

can be found in [60].

The biological cycle of life follows the familiar pattern of birth, reproduction and death over

time. The rate at which these events occur depends on a large number of factors, including

the living environment, the size of the existing population, the overall fitness of the members

of the population and the distinctive diversity of genetic material available in the population.

These same concepts can be directly mapped to the algorithmic approach to evolution. An

evolutionary computing simulation is performed over a finite period of time, with each time

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 24

step referred to as an epoch and the current population also called the current generation.

The evolutionary environment is represented by an optimisation problem, with the population

of individuals representing possible solutions to the optimisation problem. Individuals that

represent more optimal solutions are said to be more fit than their neighbours. A number of

evolutionary operators are applied to the population at the end of each epoch. The aim of the

operators correspond to the aforementioned Darwinian principle of ‘survival of the fittest’. A

percentage of the fittest solutions in the population are selected to survive to the next generation

– a process referred to as elitism. The surviving individuals are involved in replacing the void

formed by the culled individuals through reproduction. A slight probability usually exists

that mutation will occur during reproduction, in order to maintain diversity and counteract

premature convergence. The fitness of the individuals are recomputed and the cycle restarted

to construct the next generation.

The evolutionary process is usually continued for a predetermined length of time, or ter-

minated as soon as the population converges on a suitable solution. The manner in which a

potential solution is individually represented is discussed in section 2.3.1, followed by a more

detailed exposition of various evolutionary operators in section 2.3.2. An overview of the broad

range of existing evolutionary computation models is provided in section 2.3.3, after which a

short list of the applications of evolutionary computation is given in section 2.3.4 to conclude

this part of the chapter.

It should be noted that the pure form of evolutionary computation as it generally applies

to problem solving is not applied to the experimental work in this study. Instead, a more

specialised subfield – called particle swarm optimisation – is used to evolve potential solu-

tions, driven by a competitive coevolutionary scheme. Both particle swarm optimisation and

coevolution is discussed in more detail later on in this chapter. This section on evolutionary

computation only serves to introduce the basis of inspiration for these methods.

2.3.1 Data representation

As already mentioned, each individual in the population represents a candidate solution to

the optimisation problem. Two main distinctions can be made when discussing the solution

representation. A genotype encodes the genetic information required to obtain the fitness of

the problem (the parameters of a mathematical function for example). The genotype is usually

comprised of real-valued numbers, or in the case of genetic algorithms may even correspond to

a binary bit string. A fixed length bit string is usually applied, but a variable length string

has also had some success [61]. The second distinction refers to the phenotypic representation

of the solution. The phenotypic representation aims to model the behaviour of the individual,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 25

rather than the problem composition.

An intricate relationship can exist between the two representations [95]. The first is called

pleiotropy, and occurs when random genetic mutations can cause unexpected variations in the

phenotypic behaviour of an individual. The second relationship is termed polygeny, and occurs

when a specific set of genes contribute to a certain phenotypic trait. Removing the trait from

the individual requires removing or replacing the associated genes.

2.3.2 Evolutionary operators

The evolutionary process updates the data values presently represented by the individuals in

the population, through the use of various operators inspired by Darwinian evolution. These

operators are briefly discussed below.

Selection

Selection in the evolutionary computation context can have a two-fold meaning. The first

involves the selection of the particular individuals that survive and form part of the next

generation. The second involves selecting individuals as parents for reproduction in order

to construct the new individuals for the next generation. The details of reproduction in an

evolutionary context is discussed below.

The first commonly used selection scheme is called random selection. Random selection

involves choosing individuals in the population with no regard to their current fitness, but

instead relies on a pure stochastic method of selection. Another popular selection scheme is

tournament selection, where small groups of individuals are randomly selected and the overall

best performing individual determined through independent tournaments between the small

groups.

Research by Ficici et al. [50] indicated that normal selection schemes might not work as

well in coevolutionary environments as was hoped. Further research into selection schemes

for coevolutionary environments need to be conducted, and a series of new selection schemes

inspired by Formula One Grand Prix are presented in chapter 6.

Reproduction

Reproduction in an evolutionary computing context is largely dependent on the specific evo-

lutionary model employed. In the majority of cases, reproduction requires the selection of two

existing individuals as parents before spawning offspring. The exceptions to this rule are the

evolutionary programming model that produces offspring through mutation, and differential

evolution that allows for more than two parents to contribute to the reproduction process.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 26

Assuming a bit-level data representation, genetic algorithms allow for operations on bit-level

to create offspring by identifying one or more pivot points and performing the appropriate cross-

over operations. In genetic programming, reproduction involves swapping subtrees between the

individuals selected as parents [101].

Reproduction allows for the genetic material of the more fit individuals in the population

to propagate through multiple generations, hopefully combining with other fit individuals to

evolve into a globally optimal solution.

Mutation

It is possible for a population of individuals to stagnate on locally optimal solutions, with all

the individuals sharing a large portion of identical genetic material. Mutation aims to add

an element of noise to the search process, hopefully guiding the individuals to more optimal

solutions without causing premature convergence. This is also referred to as the need to

maintain diversity within a population.

The application of mutation is also dependent on the particular model of evolution em-

ployed. In GAs it may involve randomly changing bit values to their compliment representation,

or randomly selecting and deleting subtrees in the case of genetic programming.

The rate of mutation is also an important factor to consider while evolving a population

of individuals. A low mutation rate may be insufficient to combat premature convergence,

while a too large mutation rate may not result in locating optimal solutions that require fine

adjustment. It is accepted that a declining mutation rate provides the best results, with

the initially large mutation rate supporting global exploration of the search space, ultimately

specialising on a particularly promising area of the search space as the rate declines [46].

2.3.3 Models of evolution

A wide variety of evolutionary models exist to implement the aforementioned evolutionary

constructs. A selection of the more popular approaches are discussed below. The interested

reader is referred to [106] for more information on differential evolution and [46] for a more

detailed algorithmic treatment of the following models.

Genetic algorithms (GA)

The genetic algorithm has been a very popular model of evolutionary computation. Originally

described by Fraser [58] and formalised by Holland [67], genetic algorithms represent individuals

as chromosomes – usually some bit string representation in genotypic space. The traditional

evolutionary operators are applied to the bit string representation, and evolution continues until

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 27

a suitable solution has been found. A more detailed explanation of the specific application of

the evolutionary operators to genetic algorithms can be found in [46] and [119].

Genetic programming (GP)

Genetic programming was invented by Koza [85] and makes use of a tree representation for each

individual. An individual’s fitness corresponds to traversing the tree, executing the various

operations described therein and recording the output. Reproduction between individuals

involves randomly swapping subtrees to form new individuals. Mutation may involve randomly

changing an operator or value defined in the tree, deleting certain portions of the tree, or

extending the tree in a random fashion by adding more child nodes [46] [119].

Evolutionary strategies (ES)

Evolutionary strategies model the evolution of evolution with the aim of optimising the pro-

cesses involved [109] [46]. Originally defined by Rechenberg [108] and Schwefel [120], evolu-

tionary strategies evolve both the genetic and phenotypic representations of individuals. A

difference to the traditional evolutionary algorithm includes the application of mutation only

if it results in a more fit individual [46] [119].

Evolutionary programming (EP)

Evolutionary programming was invented by Fogel [54] and focuses on the phenotypic behaviour

of an individual. It does not make use of the normal reproduction operators as defined by

evolutionary algorithms, but instead produces offspring through mutation only. In addition it

also makes use of the elitism operator as described in [46] and [119]. Evolutionary programming

was used to successfully train the Checkers program Anaconda (Blondie24) by Chellapilla and

Fogel [53] [27] [26].

Cultural evolution

Cultural evolution [68] aims to positively bias the search process by introducing domain-specific

information in the form of a belief space. In society, cultural evolutionary processes progress

much quicker than biological evolutionary processes, as indicated by the rapid adoption of

fashion and other lifestyle trends. The simulated cultural evolutionary process involves evolving

both a belief space, and the traditional population space – hopefully resulting in faster discovery

of an optimum solution to the optimisation problem. The interested reader is referred to [46]

for a more complete algorithmic discussion on the topic.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 28

Coevolution

Coevolution [42] does not rely on an explicit fitness function to determine the fitness of the

individuals. Instead, individuals are evaluated in relation to the other individuals in the pop-

ulation, or against the individuals in other populations. Competitive coevolution induces an

arms race that results in overall improved performers. Coevolution is discussed in greater detail

in section 2.5.

2.3.4 Application areas

Evolutionary algorithms have been applied to a very broad range of fields, from scheduling and

control applications to classification and data mining operations [46]. In the game learning

context, evolutionary programming has been successfully applied by Chellapilla and Fogel to

evolve intelligent game playing agents [53] [27] [26], and GA-based niching algorithms have

been used to construct various playing strategies in Checkers [79].

2.4 Particle Swarm Optimisation

In recent years a novel new population-based optimisation method was introduced, inspired by

the flocking behaviour of birds. The Particle Swarm Optimisation (PSO) algorithm was first

described by Kennedy and Eberhart [76] in 1995, and have since proven to be more successful

than traditional evolutionary computing (EC) approaches in complex problem solving [46] [43].

The PSO technique borrows some basic elements from any EC approach, with the traditional

terms such as the population being referred to as the swarm and the individuals referred

to as particles. The operators traditionally associated with evolutionary computation, such

as selection, reproduction and mutation are not applicable to the standard PSO algorithm.

Recent extensions to the standard PSO algorithm by various researchers have however added

both selection [4] and reproduction [89], with notable success. The particle repelling techniques

described in section 2.4.5 can be seen as variants of the mutation operator, due to their similar

aim: to increase diversity.

In particle swarm optimisation each particle is represented as an n-dimensional vector ~x,

and signifies a potential solution to the optimisation problem. An element unique to the PSO

technique is the addition of a velocity for each particle. The velocity allows the particle to

‘fly’ through the n-dimensional search space, which constitutes the evolution of the potential

solution.

Each particle maintains a copy of its best position found during the simulation thus far.

The particles also share information about possible better solutions found by other particles in

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 29

the swarm. Neighbourhood information sharing structures are discussed in more detail below,

but in short allows a particle to compare its performance against as little as two neighbouring

particles, or against the complete swarm.

The particle is proportionally steered in the direction of the neighbourhood best and previ-

ously found personal best positions, through the use of cognitive (c1) and social (c2) acceleration

constants. Depending on the specific optimisation problem at hand, a restriction may be placed

on the domain that the particle is allowed to explore in each dimension. Additionally, a restric-

tion may be placed on the maximum velocity of a particle to counteract any velocity explosions

and subsequent particle scattering into unimportant areas of the search space. Lastly, a particle

may be subject to maintaining only a portion of its previous velocity – a concept referred to

as inertia. The inertia term adjusts the level of local or global exploration of each particle in

the swarm.

Here follows a more concise mathematical definition of the steps involved in the standard

particle swarm optimisation algorithm:

1. Instantiate a swarm Φ of particles to random positions in an n-dimensional hyperspace

Ω, where each particle ~xi is a vector representing a potential solution to the optimisation

problem.

2. Set initial personal best positions, ~yi equal to original particle positions ~xi.

3. Set initial velocities, ~vi, to 0.0.

4. Repeat until converged:

(a) Determine each particle’s fitness, f , using a problem-dependent method.

(b) Compare current fitness against previous best fitness, updating the personal best

position ~yi at time step t as follows:

~yi(t+ 1) =

 ~yi(t) if f(~xi(t+ 1)) ≥ f(~yi(t))

~xi(t+ 1) if f(~xi(t+ 1)) < f(~yi(t))
(2.2)

(c) Determine the neighbourhood’s best particle position ~z (different neighbourhood

structures are described in more detail below).

(d) Update the velocity for each particle, taking into account the personal ~yi and neigh-

bourhood best ~z positions. The velocity vij(t) for the j-th dimension of particle ~xi

at time step t is updated as follows:

vij(t+ 1) = vij(t) + p1j(t)(yij(t)− xij(t)) + p2j(t)(zj(t)− xij(t)) (2.3)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 30

Figure 2.3: Various PSO neighbourhood information sharing structures.

where p1j = r1 × c1 and p2j = r2 × c2. As already mentioned, c1 and c2 are the

cognitive and social acceleration constants respectively, and r1 and r2 are random

numbers such that r1, r2 ∼ U(0, 1).

(e) Update the position for each particle as follows:

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1) (2.4)

2.4.1 Information sharing structures

The previous section mentioned the purpose of the neighbourhood information sharing struc-

tures, namely to allow particles to propagate knowledge of superior solutions found by other

particles in their particular neighbourhood. The neighbourhood best particle, ~z, also influences

the velocity update process as defined by equation 2.3. Two traditional PSO neighbourhood

structures are examined in this study, namely Global Best (GBest) and Local Best (LBest).

In addition, the recently developed Von Neumann structure [78] is examined and for the first

time applied to the game learning domain. Each structure is defined in more detail below, with

a graphical representation given in figure 2.3.

It should be noted that the neighbourhoods discussed below are constructed in variable

space, and not fitness space. Various other neighbourhood structures are briefly mentioned at

the end of this section.

Global Best (GBest)

The GBest neighbourhood information sharing structure was introduced in the original PSO

paper by Kennedy and Eberhart [76]. It is graphically depicted in the first sub-image in figure

2.3, and can simply be described as a completely interconnected network of nodes, where

each particle shares information with all the other particles in the swarm. It is the easiest

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 31

information sharing structure to implement. The neighbourhood encompasses the complete

swarm, with the Global Best particle representing the overall best performer in the swarm.

GBest suffers from premature convergence on suboptimal solutions that are not even guar-

anteed to be local optima [137]. An improvement on the basic GBest information sharing

structure is presented by the Guaranteed Convergence PSO (GCPSO) algorithm, described in

section 2.4.3 and originally introduced by Van den Bergh [137] [140].

Local Best (LBest)

The LBest neighbourhood information sharing structure makes clearer use of smaller predefined

neighbourhoods within the context of the larger swarm. It is graphically depicted in the centre

image of figure 2.3, and conceptually represents a one-dimensional lattice structure with a

sliding window that is able to move freely around the lattice. The size of the window represents

the neighbourhood size. As an example, an inclusive neighbourhood size of 3 particles will

allow a specific particle to compare its performance (fitness) against its immediate left and

right-sided neighbours. As already mentioned, a neighbourhood size equal to the complete

swarm size corresponds to the GBest neighbourhood structure, allowing the LBest structure

to operate as the GBest structure if the need exists.

Experimental analysis by a number of researchers have shown that LBest does take slightly

longer to converge on a particular solution, but ultimately result in more optimal solutions when

compared to GBest [124]. As will be seen by the experimental work in this study, the LBest

neighbourhood structure consistently outperforms GBest to evolve more intelligent players in

Tic-Tac-Toe [56], Checkers [55] and the Iterated Prisoner’s Dilemma [57].

Von Neumann

The Von Neumann neighbourhood information sharing structure is the last image depicted

in figure 2.3, and extends the one-dimensional lattice structure of the LBest neighbourhood

to form a two-dimensional lattice. With this extension, each particle is able to compare its

performance against its immediate left and right-sided neighbours, as well as the neighbours

immediately above and below it in variable space.

The Von Neumann structure was originally introduced by Kennedy and Mendes [78], and

on initial experimental work by the same authors showed to outperform the traditional PSO

neighbourhood structures. This study will examine the first application of the Von Neumann

neighbourhood structure to game learning, and show some definite increased performance char-

acteristics under certain experimental conditions [56] [55] [57].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 32

Other neighbourhood structures

It should be noted that a wide variety of other neighbourhood structures have recently been

introduced by researchers in the field. The decision to use the standard GBest and LBest PSO

neighbourhood structures was made in order to ease possible future comparative study. The

Von Neumann network structure was chosen due to the suggested performance gain mentioned

by its authors, and still relatively unexplored nature. For completeness, a selection of other

neighbourhood structures that were not examined in this study are briefly mentioned below.

Hu et al. [70] introduced a dynamic neighbourhood structure that finds the closest neigh-

bours in fitness space (not variable space). Kennedy [75] conducted interesting research on

social network structures based on the ‘small world’ phenomenon [98], and introduced the

modified wheel and star topologies that included some ‘small-world randomisation’ in connec-

tions. Suganthan [128] used a dynamically changing neighbourhood size – incorporating the

calculated Euclidean particle distances – starting with only single particles (LBest neighbour-

hood size of 1) and gradually increasing the neighbourhood size over time to finally encompass

the whole swarm (representing GBest). Mendes et al.’s work in [96] also resulted in the creation

of the Pyramid, 4Clusters and Square architectures. More ‘obscure’ randomly created architec-

tures are discussed in [78]. All of the above authors presented an increase in performance when

using their respective neighbourhood structures, and a broader examination of all the different

neighbourhood structures’ performance in a game learning environment is left as future work

resulting from this research.

2.4.2 Parameters: restrictions and influence

A large part of a successful PSO implementation lies in understanding the interaction of the

various parameters present in the underlying PSO algorithm. In most cases the parameters

settings are problem specific. For example, sometimes there are certain restrictions on the

ranges of the problem domain that need to be enforced, and sometimes those restrictions are

not applicable. The following subsections will examine a variety of parameters, their influence

on swarm behaviour and the restrictions that might be applicable in certain instances. Most

of the parameter settings are directly involved in either guaranteeing convergence, or resulting

in accelerated convergent behaviour.

Acceleration constants

As was previously mentioned in the discussion on the standard PSO algorithm, the velocity

update equation involves a comparison of both the difference between the current and previous

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 33

best performance values, as well as the current en neighbourhood best performance values. The

particle’s velocity is proportionally updated to take into account both the differences, which

are in turn independently managed by the cognitive (c1) and social (c2) acceleration constants.

A comparatively larger c1 value will steer the particle in the general direction of its previous

best solution, while a larger c2 value will steer it towards the neighbourhood best solution.

Some restrictions on the c1 and c2 values have been defined by Kennedy [74], based on the

convergent behaviour of a swarm. The restriction forces particles to not exhibit escalating

oscillatory behaviour, and is formally stated as:

c1 + c2 ≤ 4 (2.5)

The cognitive and social acceleration constants used for the experimental work conducted in

this study adhered to equation 2.5 to avoid oscillatory behaviour.

Inertia weight

The first extension to the standard PSO algorithm to induce accelerated convergence was

introduced by Shi et al.[122] in 1998, namely inertia. The inertia weight, φ, has a significant

influence on convergence, and is added to the velocity update originally listed in equation 2.3

as follows:

vij(t+ 1) = φvij(t) + p1j(yij(t)− xij(t)) + p2j(zj(t)− xij(t)) (2.6)

The inertia weight adjusts the retained size of the previous velocity for the current time step.

It primarily balances out the local and global search capabilities of the swarm. A large inertia

weight value facilitates global search, while a smaller inertia weight facilitates local search. Shi

et al. [123] extended the static inertia weight to form a linearly decreasing inertia over time,

and reported a suitable improvement over previous results. The linearly decreasing inertia

weight causes a global search at the start of the simulation, and ends with a local search.

It should be noted that the linearly decreasing inertia weight is sometimes not sufficient in

dynamic environments, and it is due to this fact that only a static inertia weight is applied

in the experimental work in this study. In order to address the occasional problem-associated

inefficiency of the inertia weight, Shi et al. [125] developed a fuzzy system to adapt the inertia

weight according to a set of fuzzy rules, resulting in yet another slight performance gain.

Finally, Van den Bergh [137] empirically examined the interaction of the various PSO

parameters, with specific reference to convergent behaviour. Experimental analysis indicated

that not all values for c1, c2 and φ resulted in the swarm converging on a specific solution. Van

den Bergh derived an equation that represents the limits to parameter values that will result

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 34

in convergence on a local solution. The equation is formally represented as:

φ >
(c1 + c2)

2
− 1 (2.7)

Inertia weight values used in the experiments conducted in this study adhered to the afore-

mentioned equation for convergence.

Maximum velocity

In some optimisation problems and parameter combinations the particle velocities may explode

into very large values for all dimensions, resulting in inferior performance and non-convergent

swarm behaviour. A number of solutions exist to restrict the maximum velocity. The first is

simply to clamp the velocity in each dimension to [-VMax, +Vmax], where VMax represents

the maximum velocity. If a problem has a restricted domain space, the maximum velocity

is usually chosen as a proportionally smaller value. The second approach to enforcing the

maximum velocity recognises the fact that strictly clamping the velocity vector in all dimensions

may cause a change in direction for the particle. In order to maintain the original direction of

the velocity vector, it can be proportionally scaled in all dimensions instead.

The last approach to addressing the potential explosive velocity of a particle was introduced

by Clerc et al. [31] [32], namely the use of a constriction coefficient in the velocity update

equation. The velocity update method originally listed in equation 2.3 is changed accordingly

to:

vij(t+ 1) = κ(vij(t) + p1j(yij(t)− xij(t)) + p2j(zj(t)− xij(t))) (2.8)

where

κ = 1− 1
p

+
√
|p2 − 4p|

2
(2.9)

with p = p1+p2 > 4. In the above equations, κ is referred to as the constriction coefficient, and

its use should alleviate the necessity for any implicit maximum velocity clamping or scaling in

all dimensions. Shi et al. compared the constriction coefficient approach for managing velocity

to using an inertia weight in [44], and concluded that the use of the constriction approach is

preferred – unless the values for c1, c2 and φ are chosen to not show divergent behaviour. This

conclusion corresponds to equation 2.7 by Van den Bergh that eliminates the use of a maximum

velocity while still resulting in a converging swarm in most problem environments.

The approach of strictly clamping the maximum velocity is experimentally compared to

the linearly scaled and constriction coefficient approaches in chapter 6.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 35

2.4.3 GCPSO

The first specific improvement on the standard PSO algorithm that is applied to experimental

work in this study, is the Guaranteed Convergence PSO (GCPSO), introduced by Van den

Bergh [137] [140]. GCPSO improves on the poor performance of the GBest structure, by

recognising that in some instances, the following relation holds for the neighbourhood (global)

best particle:

~x = ~y = ~z (2.10)

where, ~x represents the current position, ~y represents the previous best position, and ~z repre-

sents the neighbourhood (global) best position. The impact of this relation on the update of

the particle velocity is that the last two terms of the equation become zero, and the particle

is ultimately only propelled by its inertia. The GCPSO algorithm requires that if the relation

in equation 2.10 holds, the position of the neighbourhood (global) best particle at index α be

updated using the new equation:

~xα(t+ 1) = ~z(t) + φ~vα(t) + δ(t)(1− 2r2(t)) (2.11)

The inclusion of the δ term results in the neighbourhood best particle to perform a random

search in the close proximity of its current position, hopefully leading to a more optimal solution

and restricting premature convergence. In the original work by Van den Bergh [137] [140], the

size of the search term was dynamically adjusted during the simulation based on the rate of

convergence.

The GCPSO optimisation is applied to the problem of evolving Checkers agents later in this

study. The appropriate search term size is experimentally determined in section 6.2.9, along

with a performance comparison of extending the GCPSO technique to other neighbourhood

structures such as LBest and Von Neumann.

2.4.4 Binary PSO

The second specific variant of the standard PSO algorithm applied for experimental work in

this study, is the Binary PSO algorithm (BinPSO). BinPSO was introduced by Kennedy and

Eberhart [77] in 1997, and allowed for particles to operate in a discretized search space –

in contrast with the continuous search space of the standard PSO algorithm. The BinPSO

algorithm can still make use of the traditional neighbourhood information sharing structures,

since the only change to the standard PSO algorithm involves the position update equation.

The equation is changed as follows:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 36

xij(t+ 1) =

 0 if ri(t) ≥ f(vij(t))

1 if ri(t) < f(vij(t))
(2.12)

where

f(vij(t)) =
1

1 + e−vij(t)

and xij(t) is the value of the j-th parameter of particle Pi at time step t, vij(t) is the corre-

sponding velocity and ri(t) ∼ U(0, 1). The traditional PSO velocity update equations remain

the same [76]. However, the original authors of the BinPSO algorithm recommend clamping

the maximum velocity in the range [-4,4] to avoid saturation of the sigmoid function [43].

The BinPSO algorithm is applied in this study to evolve strategies for the Iterated Prisoner’s

Dilemma in chapter 8 – the first known application of its kind in the field of evolutionary game

learning. More specific details on the IPD strategy generation process with BinPSO are given

in section 8.5.2.

2.4.5 Particle repelling

When applying PSO to multi-modal problems, the swarm encounters the problem of premature

convergence on suboptimal solutions and it struggles to keep track of changing optima. Various

researchers have introduced so-called repelling techniques to combat this side-effect of the

traditional PSO algorithm. A selection of the techniques are described below.

Riget and Vesterstrøm [142] introduce a modification to the standard PSO algorithm that

includes attractive and repulsive components, abbreviated as ARPSO (Attractive and Repulsive

PSO). The introduction of these components allow for a way to control the diversity of the

swarm. As soon as the diversity drops below a certain threshold, the particles’ velocities are

reversed (the repulsing behaviour), causing an explosion of the particles into search space. As

soon as diversity is regained, the velocities are returned to normal (the naturally attractive

behaviour as defined by the standard PSO algorithm). The authors indicate a definite increase

in performance on a series of standard and highly dimensional mathematical functions.

Blackwell and Bentley [17] introduce similar attractive and repulsive components for the

creation of musical melodies. The uniqueness of the melody is subject to the diversity of

the swarm, where a converged swarm will result in a repetitive melody, which should prefer-

ably be avoided. The authors introduce collision-avoidance operators based on work done by

Reynolds [111] on the simulation of animal flocking behaviour in a computer graphics context.

The operators are applied to the particles in order to combat convergence, where particles

in close proximity repel each other. The overall swarm is attracted to a global moving tar-

get provided by an external source, such as another musical improviser. The attraction and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 37

collision-avoidance scheme allows for close matching of a fast-changing global target, without

premature convergence.

Blackwell extends the aforementioned particle collision-avoidance research by introducing a

charged PSO (CPSO) algorithm, based on polarised particles that are typically found in elec-

trostatics [16]. Blackwell considers the original PSO as a neutrally charged (uncharged) swarm,

where all the particles are allowed to converge on a single global optimum. The aforementioned

collision-avoidance scheme can be visualised as a swarm that is completely charged, and all

the particles repel each other in a uniform manner. The CPSO technique combines these two

approaches in a manner reminiscent of atomic behaviour, with the neutrally charged swarm

forming the nucleus and the fully charged swarm consistently orbiting around the optimum.

This approach combines the exploitation and exploration characteristics of the PSO algorithm,

and is found to be successful in a variety of highly dynamic environments.

Silva et al. [126] follow a novel approach to particle repelling by classifying a swarm as

either being a group of predators, or prey. A prey swarm’s particles are equal to the standard

PSO algorithm particles, and they are attracted to the global optimum. A swarm of predators

are attracted to the best performing particles in the swarm of prey. The remainder of the

particles in the prey swarm are repelled by the predators, which inherently results in continued

diversity among the potential solutions and a wider exploration of the search space. The

authors reported positive results from optimising standard benchmarking problems.

Finally, Løvberg and Krink [88] introduce a particle dispersement scheme based on the self-

organised criticality (SOC) principle. Each particle maintains a critical rating, indicating its

level of convergence with the best globally found optimum so far. As a particle approaches the

global optimum, its critical level rating increases. Should a particle’s rating exceed a predefined

critical limit, the particle is repositioned in the search space through one of two methods. The

first re-initialises the particle into the search space, allowing it to ‘forget’ its previous best

position. The second relocation method only pushes the particle further in its current direction,

according to a ratio with which it exceeded the critical limit. After relocation, the particle’s

critical rating is decreased, but its original neighbouring particles’ critical limits are increased

– thereby allowing for possible chain reactions (or so-called ‘avalanches’) of repositioning and

increased diversity. The authors also link the SOC methodology to the inertia term for improved

convergence, and report superior performance over the standard PSO algorithm on a selection

of mathematical optimisation problems.

For experimental work in this study, a new particle dispersement operator is introduced that

borrows some characteristics from the aforementioned techniques. The dispersement operator

is explained in more detail in section 6.4.3, and is in its current form more suited for use in a

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 38

coevolutionary training environment.

2.4.6 Application areas

Particle swarm optimisation has been extensively studied in the past nine years since its in-

ception. A large portion of theoretical work has focused on analysing particle and swarm

behaviour, including convergence and information dissemination through various information

sharing structures. A selection of the theoretical PSO research applicable to this study has

been mentioned in the previous sections of this chapter.

In addition to the theoretical research, PSO has been applied to train different variations

of neural networks [136][72][96] – a topic covered in more detail in the next chapter. PSO

has also been applied to mathematical function optimisation, multi-objective optimisation,

constraint-based optimisation, training support vector machines, image analysis, data cluster-

ing and artificial immune systems to name a few. Research papers containing examples of the

aforementioned applications and a wide selection of more detailed computational intelligence

studies are available at [69].

2.5 Coevolution

The concept of coevolution was earlier mentioned as a specific model of evolution. Coevolution

is formally defined in [42], and can easily be described at the hand of a competitive relationship

in nature [46]. A plant has to adapt (evolve) in order to survive the continued attacks by native

ant species. The plant excretes fluids to harden its defences, and the ant evolves stronger jaws

to penetrate these defences. This tit-for-tat relationship continues indefinitely, resulting in

an arms race of improved offensive and defensive strategies and subsequently stronger/better

adversaries.

The above example illustrates competitive coevolution – the model employed to train game

playing agents in this study. Another form of coevolution exists in which the two or more

subpopulations in the environment cooperate in order to improve their fitness, commonly re-

ferred to as symbiosis. Symbiosis is not applied to the experimental work in this study, but

the interested reader is referred to [137] for a summary of the main cooperative approaches to

evolution.

2.5.1 Population dynamics

The coevolutionary process applies to one or more populations in the problem environment (or

species in nature). Different models have been used to represent this interaction between the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 39

individuals and the different populations. The first model only relies on a single population

of players that compete against themselves in order to determine the fittest individual, and

is often referred to as the global model [24]. The various approaches to determining fitness is

discussed in more detail in section 2.5.2.

The second model is referred to as the island model [63], and makes use of separate pop-

ulations of individuals that evolve in isolation. This approach was invented to add a level

of parallelism to the optimisation process, and the various populations may even exist on re-

mote computers connected through some communication framework. Each isolated island’s

population evolves as described in the first model, through competition between native indi-

viduals. Individuals are additionally allowed to migrate to neighbouring islands, and by doing

so increase the level of diversity due to the injection of foreign genetic material.

The third model divides a large population into overlapping subpopulations of individuals,

and is referred to as the neighbourhood model [92]. It closely resembles the island model,

but instead operates on a single machine and allows individuals to belong to more than one

(sub)population. In some instances the neighbourhood model may show increased convergence

speeds over the island model.

The global model is applied to experimental work conducted in this study.

2.5.2 Credit assignment

The main benefit of using a coevolutionary approach over traditional evolutionary techniques

is the absence of a predetermined fitness function. Instead, the fitness of an individual is

measured in relation to the other individuals in the population. This allows for a ‘moving target’

to be established in the fitness of the population, as evolution enhances certain individuals’

performance and the remainder of the population tries to overcome the dominance of an ever-

changing ‘best’ individual.

One obvious drawback of not having a standard universal fitness function is the occurrence

of so-called ‘one-shot wonders’ in the population, also referred to as the ‘Buster Douglas effect’

by Blair and Pollack [18] in their paper on the success of a coevolutionary-trained Backgammon

player. Buster Douglas was the world heavyweight boxing champion for nine months in 1990.

It may be possible for an individual to outperform the majority of the population in the last

generation due to a chance mutation. This may cause an individual to be selected as the

‘overall best’ individual, even though its playing strategy may only be exploiting the general

population’s genetic deficiencies. Usually, more thorough analysis through benchmarking or

exposure to other playing environments will illustrate the strategy’s lack of robustness against

a wider selection of strategies.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 40

In game learning it is equally difficult to identify and reward an exact sequence of decisions

or moves that lead to a superior strategic position. Sometimes a ‘mistake’ made in the opening

exchange of moves may lead to disaster 40 moves later in the game. Credit is instead usually

assigned based on the outcome of a game, and not the sequences of moves themselves. It is

the accumulated credit in a specific generation that determines the performance of the player,

and may result in the aforementioned problematic situation of a ‘one-shot wonder’.

Rosin and Belew [112] [113] have derived a selection of improved credit assignment tech-

niques in order to more accurately determine an individual’s overall performance. The following

sections will look at the use of relative fitness evaluation, fitness sampling and the use of a ‘Hall

of Fame’ to improve performance assessment. This study experimentally examines a selection of

these techniques in chapter 6, and subsequently introduces a new coevolutionary performance

measuring technique based on Formula One Grand Prix [48] in section 6.4.1.

Relative fitness evaluation

The first improvement to more accurately reward individuals for their performance was in-

troduced by Rosin and Belew [112] in 1995. Relative fitness evaluation aims to measure the

performance of a primary population’s individuals in relation to a competing population’s

individuals. This can be achieved by using one of three approaches.

The first approach is referred to as calculating the individual’s simple fitness, and involves

taking a selection of individuals from the opposing population to serve as a benchmark suite of

opponents. The simple fitness of a particular individual in the primary population corresponds

to the number of benchmark opponents it was able to beat.

The second approach to relative fitness evaluation is known as fitness sharing. Fitness

sharing extends the aforementioned simple fitness measurement and compares the number of

structurally similar opponents in the primary population. The simple fitness value is sub-

sequently divided by the number of similar individuals in the primary population, thereby

rewarding individuals with a larger diversity.

The last approach aims to reward individuals that beat opponents very few other individuals

could beat, and is known as competitive fitness sharing. An individual’s fitness is inversely

calculated to the number of fellow individuals that could beat a particular opponent, thereby

rewarding more points to an individual that was able to beat an opponent no or few other

primary population members could beat.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 41

Fitness sampling

The second major approach to more accurately determine an individual’s fitness was also

introduced by Rosin and Belew [112] in 1995. The previous discussion only mentioned the

‘selection of a set of benchmark opponents’, without detailed reference to how the selection is

performed. The manner in which the opponents are chosen can greatly influence the overall

performance value for a particular individual. A number of selection methods exist to perform

the required fitness sampling, and a few of these are also experimentally examined in this study.

The first is the obligatory all versus all scheme, in which each individual in the primary

population competes against each of the individuals in the opposing population. This method

provides the most accurate assessment of fitness, but in comparison with other approaches

induce a significant performance penalty – especially with large population sizes. A variation

of this scheme is called all versus best, in which all the individuals in the primary population

is tested against the fittest individual of the opposing population.

The next scheme simply involves composing the benchmark suite out of a random selection

of one or more individuals from the opposing population, and is formally defined as random

sampling. This method is drastically less computationally expensive when compared to the all

versus all method, and is applied to the initial experimental work in this study.

The last two schemes make direct use of the relative fitness measures defined earlier, with

the first applying the relative fitness of the individuals to construct a tournament sampling

scheme. The last method is called shared sampling and selects the opponents with the largest

shared competitive fitness.

Hall of Fame

Rosin and Belew [113] extended their contribution to optimising coevolutionary approaches by

introducing the concept of a ‘Hall of Fame’ (HOF). The HOF maintains a finite list of unchanged

copies of previous best performing individuals. The aim of the HOF is to combat the negative

effects of the ‘moving target’ introduced by the coevolutionary approach, by ensuring that

more recent population-best particles still compete against the HOF entrants for a position

in the list. This approach allows the evolutionary system to maintain possible characteristics

that represented good individuals in the past, but that have been ‘lost’ due to the process of

evolution. It stands to reason that the competitive exposure of these earlier characteristics will

increase the overall robustness of the evolved solutions.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE TECHNIQUES 42

2.5.3 Application areas

Coevolution is specifically applied in this study to train intelligent game playing agents in the

games of Tic-Tac-Toe, Checkers and the Iterated Prisoner’s Dilemma. The applications to

game learning have been extensive, with groundbreaking work by Fogel and Chellapilla [53]

[27] [26] in combining coevolution with evolutionary programming to train neural networks as

game state evaluators. Angeline and Pollack [5] used coevolution to evolve a high-level language

to play the game of Tic-Tac-Toe. Further applications of coevolution include the evolution of

military strategies, path planning and structural optimisation [46].

2.6 Conclusion

This chapter presented an overview of the different computational intelligence paradigms that

are applied in or influenced the implementation of the experimental work in this study. The

structure of a neural network and the relevant training approaches were discussed, followed by a

broad overview of traditional evolutionary computation techniques. A more recent population-

based optimisation method inspired by the flocking behaviour of birds, namely particle swarm

optimisation, was discussed thereafter. The different parameters involved in the PSO algorithm

were presented, along with recommended settings to induce accelerated convergence. Finally,

an overview of coevolution was given to illustrate the type of learning/training environment

that the agents will be exposed to for the experimental work conducted in this study.

A training algorithm that incorporates neural networks, particle swarm optimisation and

coevolution is presented in the following chapter.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 3

Training with PSO

“Experience teaches only the teachable”.

- Aldous Huxley (1894 - 1963)

This chapter builds on the background established by the previous two chapters, and introduces an

algorithm that utilises particle swarm optimisation to train feed-forward neural networks as board-

state evaluators. Different methods to estimate the training performance are also presented. Finally,

the influence of an increased ply-depth is investigated and the viability of using larger game trees

during training is examined.

3.1 Introduction

The first chapter provided an overview of traditional game learning paradigms, illustrating the

strong focus on game trees as core data structure. The evaluation function employed by the

game tree was predominantly developed by human expertise in the specific game. It was noted

that one way of adding intelligence to the evaluation process was to replace the man-made

evaluation function with a neural network, hoping that it could correctly classify a board state

as being favourable or unfavourable. The traditional training process applied to Feed Forward

neural networks (as discussed in chapter 2) is no longer valid, since the principal variation

of the game tree (the perfect move sequence) is not available, and no error measure can be

computed. This chapter provides more detailed information on the use of Particle Swarm

Optimisation to train the neural network as board state evaluator, driven by a competitive

43

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 3. TRAINING WITH PSO 44

1. Instantiate particles in swarm.

2. Repeat for 500 epochs:

(a) Determine each particle’s performance.

(b) Compute neighbourhood’s best particle.

(c) Update velocity and position of particles accordingly.

3. Determine overall best performing particle.

4. Measure playing performance against a random player.

Figure 3.1: Abstract training algorithm.

coevolutionary environment. The reader is referred back to chapter 2 for detailed information

on the computational intelligence paradigms applied in the algorithm.

The basic algorithm is discussed in section 3.2, after which the details behind the population

structure and various performance measures are covered in sections 3.2.1 and 3.3 respectively.

The game tree as core data structure is not ignored, and insightful research results are discussed

in section 3.4, while considering the use of the game tree during training. The final algorithm

is listed in section 3.5.

3.2 Basic algorithm

The use of PSO to train neural networks as game playing agents is not entirely new. Messer-

schmidt et al. posited a training algorithm to learn how to play Tic-Tac-Toe in [97]. Figure 3.1

lists an abstract version of the original training algorithm. In its abstract form, the algorithm

can be subdivided into three main sections. The first section requires the implementation of a

PSO algorithm and subsequent representation of game agents as particles in the swarm. The

second section requires the game engine and a specific way to determine a particle’s perfor-

mance during training. Lastly, the algorithm requires a way to validate the performance of the

most successful particle after evolution has taken place.

The general theory behind the PSO algorithm was introduced in chapter 2. The specific

aspects surrounding particle representation and other population matters are described below.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 3. TRAINING WITH PSO 45

3.2.1 Population structure

The use of any PSO algorithm relies on the presence of a population of particles, each repre-

sented in a uniform manner, each possessing a velocity as well as some historical information

regarding previous best solutions that have been found in the search space.

Each game playing agent relies on the use of a neural network to evaluate game states. Dif-

ferent playing strengths (or varying strategy ‘intelligence’) are directly related to the strength

of the evaluation function. It is logical that each game playing agent therefore contains its own

unique neural network configuration – allowing for individual playing behaviour in the context

of a larger population.

The training of neural networks using PSO has been very successful in past research, with

Van den Bergh illustrating the training of summation unit neural networks [136] and Ismail

et al. training product unit neural networks [72] with positive results. Van den Bergh also

introduced the concept of cooperative swarms that break up the neural network into multiple

parts, allowing for more specialised optimisation [138] [139]. Mendes et al. [96] investigated

the performance of a selection of PSO architectures to train neural networks for regression and

classification tasks, comparing them with standard back propagation (and some enhanced)

methods.

The process of training a neural network through PSO involves the conversion of the com-

plete set of weights that connect the neural network layers into a single augmented vector.

This results in each single weight vector to represent a complete neural network, which in turn

represents a unique game playing agent. The dimensionality of the particle usually plays a sig-

nificant role in the performance of an optimisation algorithm, as well as the degree of difficulty

associated with finding an optimum solution. For experiments conducted in this study, the

neural network weight sets ranged in size from 34 values in the most simplistic configuration

to 1531 values in the most complex configuration.

Since a particle is only a different representation of a neural network, the weight initialisation

schemes associated with neural networks that were mentioned in the previous chapter still apply.

The initialisation process corresponds to positioning the particle in an n-dimensional search

space, where n corresponds to the number of weights in the network. The scheme introduced

by Wessels and Barnard [146] has proven to work well, but it is also possible to use Faure

sequences [132] or some other pseudo random number generator such as Sobol sequences [105]

for proper initialisation.

In addition, it is necessary to address the PSO algorithm requirement for a ‘personal best’

performance comparison. Since each particle represents a unique neural network that competes

against fellow members of the population, it stands to reason that the only way of accurately

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 3. TRAINING WITH PSO 46

comparing a historic configuration’s performance is by forcing both the current and historic

configurations to compete against the same individuals. This results in the personal best

configuration of a particle to be inserted as an additional player in the population – thereby

doubling the population size. The numbers quoted to represent the swarm size in the experi-

mental sections of this study exclude the presence of the personal best particles, even though

they remain present and form a critical part of the training process.

The individuals in the population each play a game against 5 randomly selected opponents,

always starting as player one. The performance of each player is determined, which in turn

drives the evolutionary process. The following section looks more closely at various performance

measures.

3.3 Measuring performance

Any evolutionary process requires the evaluation of the fitness of an individual in the pop-

ulation. The fitness drives the individuals to inherit traits common to the more successful

members of the population. Measuring the performance (fitness) in two-player perfect infor-

mation games is not as simple as keeping track of the number of games won by each individual.

The following sections deal with the intricacies associated with playing position and scoring

structures in traditional games, after which two distinct particle performance measures are

introduced.

3.3.1 Playing position in turn-based games

Most two-player perfect information games are turn-based. The game rules usually specify how

to determine the player that starts the game, be it through some random method (such as the

roll of a dice) or based on historical game results (winner of the previous game starts first, or

vice versa). One aspect of playing position in turn-based games is the fact that some games

suffer from severe playing-side imbalances.

This implies that should both players be aware of the specific game’s principal variation,

it will be possible for a player to start the game, play a perfect series of moves and never lose

– even though the opponent is making the best possible counter-moves. This also assumes

that the principal variation of the game does not result in a draw. The only definitive way

of accurately measuring the imbalance of a game is by constructing the principal variation

through the complete game tree, thereby solving the game. The concept of solving a game was

mentioned in section 1.2, and the process is by no means an easy one.

There may be a way to approximate the probabilities for a game tree in order to give an

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 3. TRAINING WITH PSO 47

Table 3.1: Probabilities for a random-moving Tic-Tac-Toe player.

Games won if playing first: 0.58

Games won if playing second: 0.28

Games drawn: 0.14

Table 3.2: Probabilities for a random-moving Checkers player.

Games won if playing first: 0.43

Games won if playing second: 0.43

Games drawn: 0.14

indication of any potential balance problems. Messerschmidt et al. achieves this by competing

two random-moving players for an extended period of time (usually in the order of 1 million

or more games) and noting the number of games that are won, lost or drawn [97].

The games of Tic-Tac-Toe and Checkers are examined as examples of perfect information

games in the experimental sections of this study. Tables 3.1 and 3.2 list the results of 1 million

games between random-moving players for Tic-Tac-Toe and Checkers respectively.

It is interesting to note the severe balancing problems present in Tic-Tac-Toe, and the

almost even playing field present in Checkers.

3.3.2 Incorporating win, lose and draw

The easiest measure of the success of a player in any particular game is simply the number

of games won. Some games however do include the possibility of draws and usually assign

a fraction of the payoff normally associated to winning a game instead, should a draw occur

between two players. Each player builds up a collection of ‘points’ during the progression of

the round-robin tournaments. The total points awarded to each player forms part of its fitness

calculation, and has a direct impact on its location (or importance) in the population during

evolution.

Previous work by Chellapilla and Fogel [53] [27] [26] on evolving intelligent Checkers playing

agents assigned +1 for a win, 0 for a draw and -2 for a loss. The larger negative value assigned

to losing (as compared to the positive value for winning) is attributed to the fact that the

system should clearly ‘punish’ the player for losing. Messerschmidt et al. [97] followed the

exact same scoring structure for training Tic-Tac-Toe playing agents.

A new approach to game-by-game performance analysis is introduced in section 6.4.1, based

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 3. TRAINING WITH PSO 48

on the well-known Formula One Grand Prix scoring structure – including the previous and most

recent editions introduced by the Fédération Internationale de l’Automobile (FIA) [48].

It should be noted that all of the aforementioned scoring measures are only used during

the evolutionary training process, and do not factor into the benchmarking of a specific game

playing agent. The next section takes a closer look at the technique employed by Messerschmidt

et al. to accurately determine a game playing agent’s performance. A refined version developed

by the author for use in Checkers agent benchmarking is described thereafter.

3.3.3 Messerschmidt performance measure

After training has been completed, the global best particle is determined. This particle repre-

sents the pinnacle of playing behaviour achieved after 500 epochs of evolution. Since coevolu-

tionary training is employed to drive the PSO process, the fittest individual is based solely on

its originating environment. Different populations will result in different ‘intelligent players’,

mainly due to the constantly adapting optimum (also referred to as a ‘moving target’) common

to all coevolutionary environments. It is important for comparative study to benchmark the

final evolved player against a common and consistent player not vulnerable to the underlying

genetic deficiencies introduced by the training process.

The use of a player making moves at random (a ‘random player’) has previously been

employed by various researchers [47] [6] [8] [97] as a benchmark player. After approximating

the probabilities for the Tic-Tac-Toe game tree (as illustrated in table 3.1), Messerschmidt et

al. derives a suitable performance measure that takes into account the number of games won by

the agent when starting the game, as well as when playing second. The performance measure,

M , is defined as follows:

M = (w1 − 58.8%) + (w2 − 28.8%) (3.1)

where w1 represents the percentage of games won against the random player when the evolved

strategy play as player one, and w2 represents the percentage of wins when playing as player

two.

A confidence value is also computed to strengthen the statistical soundness of the reported

performance value. The confidence value is computed as:

M ±
(
zα/2 ×

σ̂√
n

)
(3.2)

where zα/2 is such that P [Z ≥ zα/2], with Z ∼ N(0, 1) and α is the confidence coefficient. Z is

a random real number that Messerschmidt et al. sets equal to the outcome of the benchmark

games [97]. The confidence coefficient is set to be 90% (or 1−α = 0.9). The σ̂ term in equation

3.2 signifies the standard deviation for a particular player, given by:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 3. TRAINING WITH PSO 49

σ̂ =
√
π̂1(1− π̂1) + π̂2(1− π̂2) + 2σ̂12 (3.3)

where π̂1 and π̂2 represent the probabilities for winning as player one and player two respectively

– computed by dividing the number of games won by the number of games played. Lastly, the

term σ̂12 represents the covariance, defined as:

σ̂12 =
1

m− 1

(
m∑

i=1

(x1ix2i)−
(
∑m

i=1 x1i)(
∑m

i=1 x2i)
m

)
(3.4)

where m represents the total number of games played, x1i and x2i represents the outcome for

game i as player one and two respectively – assuming the value 1 represents a win and 0 a loss

for a particular game.

Successful game playing agents will have a high final M value when benchmarked against

a random player, with lower M values signifying poor playing ability. The Messerschmidt et

al. performance measure is applied to experimental work conducted on Tic-Tac-Toe games,

discussed in the following chapter.

3.3.4 Franken performance measure

The aforementioned performance measure introduced by Messerschmidt et al. [97] works well

in simple games where winning is a major factor in measuring player performance. When

applied to more intricate (and balanced) games, such as Checkers or Chess, the performance

measure does not provide an accurate representation of player performance. Taking highly

publicised tournament games in Chess and Checkers as an example (such as the Kasparov and

Deep Blue duels, as well as the Tinsley and Chinook encounters), the winning margins are

more often than not decided over a single win, with the participants leaving a series of draws

in their wake.

Drawing is an important aspect of more complex games, and should be factored into a per-

formance measure. The mean of the observed probabilities during benchmarking is calculated

using the standard mean function for discrete random variables [100] as follows:

F =
3∑

i=1

xif(xi) (3.5)

where xi represents a weight associated with losing, drawing and winning the game respectively,

and f(xi) represents the corresponding outcome probability. When applied to the experimental

work (15 simulations of 10000 games), the mean is calculated twice, once for 150000 games

played as player one, and once for 150000 games played as player two. The average of the two

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 3. TRAINING WITH PSO 50

means is calculated and scaled to a value between 0 and 100. A value closer to 0 means that

the player is losing a lot of its games, while a value closer to 100 indicates that a player is

winning most of its games.

Substituting the random Checkers player’s values (as listed in table 3.2) into the above

equation yields a performance value of 50, indicating that the random player wins as many

games as it loses, which is true. This performance measure will benefit a player that draws

and wins more of its games as opposed to winning and losing equal amounts.

The ‘Franken performance measure’ is applied in conjunction with the Messerschmidt et

al. performance measure during experimental work conducted with Checkers in chapters 5 to

7.

3.4 Tree depth

Before presenting the final training algorithm, a last aspect relating to training performance

should be examined. The bread and butter of traditional game engine programmers are the

game tree and its associated optimisations – as mentioned in chapter 1. A lot of effort goes

into optimising the performance of the tree algorithm in order to be capable of analysing a

state further into the future (deeper down in the tree). It should be interesting to observe

the trade-off between evaluation function strength and tree depth. Before investigating this

particular problem in section 3.4.1, a debate regarding the inclusion of a game tree in the

intelligent evolutionary approach should first be resolved.

Even though the game tree is considered to be a ‘traditional approach’, its underlying

structure is invaluable during training. In its primitive form (single ply), the game tree allows

for the immediate expansion of all possible game states to follow the current state. This move

generating process forms the basis of any perfect-information game playing system and cannot

easily be argued against.

The impact on performance when increasing the tree depth does however have to be taken

into account. As the tree depth is extended, the number of board states that need to be

evaluated grows exponentially. The intelligent evaluation process itself (using a neural network)

is also more processor intensive than most of its hard-coded human crafted counterparts.

Since the training and benchmarking processes rely significantly on stochastic techniques,

a large number of simulations need to be completed in order to dampen the influence of noise

induced by these methods. An increase in the number of simulations, coupled with an increase

in tree depth pose a tremendous constraint on the time allocated to training and benchmarking.

Previous work by Tesauro on TD-Gammon [130] [131] limited the tree depth to single ply.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 3. TRAINING WITH PSO 51

Even though the main reasons for this decision were largely due to the influence of the dice-

roll in this probabilistic game, Tesauro was still able to evolve an expert Backgammon player

capable of beating international computer and human champions.

For the experimental work conducted in this study, a single ply game tree is used in order

to compensate for the large number of simulations required for comparative study. Since the

focus of the study is to study the application of PSO and its related parameters to game

learning, and not to create a world champion game playing agent, the aforementioned decision

is justified. Some studies with extended tree depth (2-ply) are however described in chapter

7, including sections that cover the comparison of performance between evolved players and

hard-coded evaluation functions, as well as the impact of an extended tree depth on training

behaviour.

3.4.1 Increasing the depth

Even though a decision has already been made regarding the tree depth to be used for experi-

mental work in this study, the following section briefly looks at research that aimed to determine

the relationship between an increase in tree depth and the strength of the evaluation function.

A recent article by Heinz [66] provides a compact history of research in relating tree depth to

playing performance – work that spans over 15 years. First pioneered by Thompson [133] with

100 self-play experiments in 1982, work conducted by Berliner et al. [14] is worth mentioning

in more detail. Berliner and his research team are the creators of the chess program Hitech.

In order to address this research problem the team crippled Hitech’s evaluation function (in

effect reducing its ‘intelligence’), and called the new version of the program Lotech. Lotech

was allowed to search one ply deeper into the search tree than its ‘smarter’ companion, Hitech.

After allowing Hitech and Lotech to compete in over a thousand round-robin games, each

with its own ply-depth restriction, it became clear that the less intelligent but further seeing

Lotech consistently beat the smarter but shallow seeing Hitech. It should be within reason

to suspect that a point of cross-over exists where an increase in ply-depth no longer matters

– more prominently referred to as diminishing returns – that will thereby allow Hitech to

overtake Lotech. The researchers observed a slight level of diminishing returns after 6-ply,

but solid proof of significant diminishing returns in chess has been hard to find.

Experimental work conducted prior to 2003 by Fierz [51] on his world-renowned Checkers

program ‘Cake++’, did show significant signs of diminishing returns at very deep ply depths,

illustrating the scientific difference between the two game application areas.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 3. TRAINING WITH PSO 52

3.5 Final algorithm

The final training algorithm is listed in figure 3.2, detailing the expansion of the various parts

of the algorithm as discussed in the preceding sections of this chapter. The same algorithm

is applied without change to experimental work on Tic-Tac-Toe and Checkers training in the

following chapters, and a slightly modified version is applied to the Iterated Prisoner’s Dilemma

at the end of this thesis.

In summary, the algorithm broadly approaches the learning task by taking into account

the fact that traditional game tree techniques require human intelligence for board state eval-

uations. In order to learn its own game strategy, each game playing agent is equipped with a

neural network that performs board state evaluations on a single ply game tree. Traditional

neural network training approaches require the calculation of an error measure before updating

the weights. Since no error measure can be computed (no perfect target evaluation exists), an

evolutionary method of training neural networks is required. Each individual game playing

agent is represented as a particle in a swarm, with the dimensions of the particle equal to

the number of the neural network weights. By ‘flying’ the particle through the n-dimensional

search space, the weight values are updated and the network trained. The particle swarm

optimisation method requires the calculation of a fitness value in order to perform the required

velocity and position updates. Once again, since no pure mathematical approach is available to

examine the game playing strategy, the swarm of particles compete in a coevolutionary fashion

in order to determine each particle’s relative fitness. The training process continues for 500

epochs after which the best individual is benchmarked against a random-moving player.

3.6 Conclusion

This chapter aimed to bring together the various game learning and computational intelligence

concepts – previously only discussed in isolation – and combine them into a training algorithm

to be used for the remainder of the experimental work conducted in this study. An abstract

training algorithm based on work done by Messerschmidt et al. was presented, and subsequently

expanded. The first discussion focused on population structure, and how PSO has been used

to train neural networks. It explained the representation of a neural network’s weight set as a

single vector – thereby forming the particle in the swarm.

The playing position in games and subsequent balance problems prevalent in two-player

perfect information games were discussed alongside various ways to incorporate winning, losing

and drawing in a typical game. The need for a benchmark performance measure for the

eventual best evolved individual player was discussed, after which the details behind the specific

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 3. TRAINING WITH PSO 53

measure introduced by Messerschmidt et al. were listed. A different approach to performance

measurement, aptly dubbed the ‘Franken performance measure’, were introduced thereafter to

cope with the occurrence and significance of draws in more intricate games such as Checkers.

The chapter ended with a discussion on the depth of the game tree, its possible influence

on game playing performance as well as its impact on training time. The detailed training

algorithm provided at the end of the chapter incorporated all the necessary points of discussion

into a usable algorithm for training game playing agents using PSO.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 3. TRAINING WITH PSO 54

1. Instantiate population of agents.

2. Repeat for 500 epochs:

(a) Add each agent’s personal best NN configuration to the population.

(b) For each individual in the population:

i. Randomly select 5 opponents and play a game against each, always

starting as ‘player one’.

A. Generate all single valid moves from the current board state.

B. Evaluate each board state using the neural network.

C. Select the highest scoring board state, and move appropriately.

D. Test if game has been won or drawn.

E. Switch players at end of turn, until game over.

ii. Assign +1 point for a win, -2 for a loss, and 0 for a draw after every game.

(c) Compute best performing particle according to PSO algorithm in use.

(d) For each agent (excluding personal best) in the population do:

i. Compare performance against personal best.

ii. Compare performance against neighbourhood’s best particle.

iii. Update velocity for each particle according to PSO algorithm.

iv. Update weights according to PSO algorithm.

3. Determine single best performing agent in whole population

(including personal best players).

4. Best agent plays 10000 games against a random moving player as ‘player one’.

5. Best agent plays 10000 games against a random moving player as ‘player two’.

6. Return to step 1 until 30 simulations have been completed.

7. Compute confidence interval over the 30 completed simulations.

8. Compute performance value over the 30 completed simulations.

Figure 3.2: Detailed training algorithm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4

Tic-Tac-Toe

“Everything should be made as simple as possible,

but not one bit simpler”.

- Albert Einstein (1879 - 1955)

The training algorithm derived in the previous chapter is now applied to the computationally modest

problem of evolving intelligent Tic-Tac-Toe players. An overview of the problem is followed by a

series of experimental work, analysing various PSO architectures and a selection of basic PSO

parameter choices. The training technique is shown to be successful, with the Von Neumann

architecture showing promise as neighbourhood structure of choice.

4.1 Introduction

With all the necessary background information established in chapters 1 and 2, and a practical

training algorithm constructed in chapter 3, the first set of experiments can now be conducted

to determine the viability of using PSO as an approach to game learning.

The well-known computationally modest game of Tic-Tac-Toe (Noughts and Crosses) is

used as an initial testbed for the posited framework. The game of Tic-Tac-Toe is introduced

in section 4.2, after which a discussion on possible opponents available during training and

benchmarking in section 4.3, leads to a description of one of the main experimental testing

criteria – the performance of various PSO neighbourhood structures – in section 4.4.

55

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 56

Figure 4.1: Typical end-game sequence for a Tic-Tac-Toe game.

The experimental procedure is clearly outlined in section 4.5, followed by a series of experi-

mental results in section 4.6. The experimental results are compared to published results from

Messerschmidt et al.’s [97] experiments that made use of GAs and traditional PSO structures

to evolve Tic-Tac-Toe game playing agents, with interesting results.

4.2 Game rules

Tic-Tac-Toe is a two-player perfect-information game, played on a 3-by-3 grid of initially empty

squares. Each player is assigned a set of game pieces, enabling them to play as either a circle

(nought) or a cross. Starting conditions to the game are not set in stone, and a random player

selection for the first move in the first game can be followed up by a ‘loser plays first’ or ‘winner

plays first’ scheme thereafter.

As explained during the discussion on imbalanced games in the previous chapter, a player

starting the game has a significant advantage to win in the end. Therefore, all the players in

the evolving population play 5 games as player one, and are selected at random to play an

additional 5 games as player two – forming the opponents for a particular individual currently

playing as player one.

Each player makes a move in turn by placing a game piece (either a cross or a circle) in a

specific open square. A player is not allowed to place a piece in an already occupied square, and

the game ends when all the squares have been filled up. It is the aim of each player to arrange

a sequence of three pieces into a straight line, either horizontally, vertically or diagonally. At

the same time the player should keep its opponent from achieving the same goal – for whoever

achieves it first, wins the game. In the case of all the squares filling up without a straight line

being formed for either player, a draw is declared.

A typical ‘end-game’ sequence is depicted in figure 4.1, with the current player’s move

highlighted in red (the opening moves for each player are not shown individually, but can be

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 57

inferred from the first diagram – assuming crosses started the game). The player playing crosses

eventually wins the game by aligning three pieces in a straight line along the right diagonal.

4.2.1 Scoring structure

The traditional scoring structure for Tic-Tac-Toe simply assigns a point to the player winning

the game. Other variants to scoring such as a ‘doubling cube’ found in Backgammon are

not available in Tic-Tac-Toe. As explained in the previous chapter’s discussion on how to

incorporate winning, drawing and losing (section 3.3.2), a value of +1 is assigned to each

player winning a game, 0 for a draw, and -2 for a loss. The larger losing factor is once again

only used to clearly punish a losing player, keeping its neural network from stagnating on

weight sets that produce poor game-state evaluations.

4.3 Choosing an opponent

Tic-Tac-Toe is introduced in this chapter as a ‘computationally modest’ game, due to the fact

that it has already been solved, and the complete game tree consisting of 9-factorial nodes can

be algorithmically constructed without much effort – allowing for a potential ‘perfect player’

as an opponent.

The use of human players as training opponents are not viable, since humans are not

consistent players and are subject to lapses in both concentration and fatigue. Time is also

a valuable resource during experimental testing, and will be wasted by competing against

human players. Instead, the random-moving player as introduced in the previous chapter

is employed as a consistent, yet unpredictable player. The Rand3 pseudo-random number

generator designed by Knuth [105] is used for consistency.

Previous researchers have made use of the random-moving player as a training opponent

for Tic-Tac-Toe games [47] [6]. In addition, the researchers also provide intermediate levels

of more intelligent opponents, using hand-crafted evaluation functions that allow for improved

intelligent playing behaviour, forming a stepping stone for continuous learning. Usually, a

perfect player is also present in the population to form an upper-bound on the population

performance. Since the focus of the training technique is coevolution, with a strong emphasis

on the lack of human intelligence, no hand-crafted human evaluation functions are present in

the training population, and the random-moving player is only employed to benchmark the

ultimate evolved player’s performance.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 58

4.4 Choosing a PSO architecture

Section 2.4.1 introduced the three primary PSO architectures for information sharing, namely

the Global Best (GBest), Local Best (LBest) and Von Neumann (VN) structures. Previous

research in the application of PSO to function optimisation [96] [137] show a clear distinc-

tion in performance between the different structures. Messerschmidt et al. [97] compared

the performance of GA and PSO-based coevolution in the game learning domain, showing a

definite advantage to using PSO. It should be interesting to examine the specific impact the

neighbourhood structure has on an individual’s training and playing performance.

4.4.1 Parameter selection

For the experimental work conducted in this study, various parameters pertaining to PSO are

tested to determine their specific influence on training and playing behaviour. The various

parameters relating to the functioning of the PSO algorithm were described in section 2.4.2.

Experiments on Tic-Tac-Toe will largely focus on PSO architecture comparisons, with a set of

default parameter settings based on existing research.

The cognitive (c1) and social (c2) acceleration constants are set to 1.0 each, adhering to

the convergence equation by Van den Bergh [137] as listed in section 2.4.2. The inertia weight

is fixed at 1.0. A significant departure from the research conducted by Messerschmidt et al. is

the absence of the VMax parameter in this study. The maximum velocity is not restricted for

any of the particles present in the experiments to compare the three neighbourhood structures’

performance. The aforementioned parameter choices adhere to the restrictions identified by

Van den Bergh and described in section 2.4.2, thereby allowing the removal of the maximum

velocity cap.

For each of the three different neighbourhood architectures, an ‘Architecture performance

matrix’ is constructed, measuring the change in swarm size to the change in hidden nodes over

a number of experiments. The reader is reminded that due to the need for a personal best

comparison, the swarm size actually reflects only half of the true population size – due to the

inclusion of the personal best configuration as an additional player in the population. The

personal best configuration is only used as a performance comparison and does not get altered

– only replaced if it is outperformed.

Some experiments were performed to try and optimise the aforementioned baseline con-

figurations (parameter settings) using other values for the c1, c2, inertia weight and VMax

parameters, with adequate success (described in section 4.6.6). The focus for these experi-

ments however, should be stressed to be on neighbourhood structure comparison only.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 59

4.5 Experimental procedure

As already mentioned, the first aim of the experiments in this chapter is to test the viability of

using PSO in the game learning domain, on a computationally modest problem. The second

major aim of the experimental work is to examine the influence of the various neighbourhood

information sharing structures.

The following subsections summarise the exact experimental setup present during the per-

formance analysis.

4.5.1 Training algorithm

The final core training algorithm listed in section 3.5 is applied to the Tic-Tac-Toe problem.

As already discussed, each particle consists of an n-dimensional weight vector that corresponds

to the weights of a neural network. Each particle can be seen as a single game playing agent

in a population of players, with the substitution of particle information (weight values) into a

neural network framework resulting in unique board evaluations for that specific player.

The use of coevolution to drive the training process, should result in more intelligent players

emerging over time. The best individual after 500 epochs of evolution is benchmarked against

a random-moving player.

4.5.2 PSO configuration

In summary, the PSO parameter choices are as follows: c1 = c2 = 1.0, inertia = 1.0, VMax is

not applied. Each of the three neighbourhood structures are compared for performance. The

swarm sizes range from 5 to 50 particles in the case of GBest and LBest, and between 15 and

50 particles for Von Neumann. The Von Neumann information sharing structure’s lower bound

is chosen due to the 2-dimensional lattice representation that may cause the same particle to

be represented more than once in the same neighbourhood, which is not allowed. The LBest

structure makes use of a neighbourhood size of 5 particles, including the particle currently

being evaluated.

4.5.3 Neural network configuration

The neural network has been identified as an evolvable evaluation function for game board

states in section 3.2.1 of the discussion on the training algorithm. An aspect not yet covered

by the discussion on neural networks is how the board state is fed into the network. The board

state representation differs from game to game, and different approaches will be shown in the

later chapters on Checkers.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 60

For Tic-Tac-Toe however, each grid (or board state) is represented as a vector of 9 spaces

(numbered from left to right, top to bottom). Each space can have one of three states, namely:

it can be an empty space (represented as 0.5), occupied by a ‘friendly’ (own) piece (represented

as 1.0) or it can be occupied by an opponent piece (represented as 0.0). The use of the ‘my

piece’ versus ‘opponent piece’ representation scheme, results in the exact same board-state to

be inversely represented to each player. This approach differs from other approaches used by

various researchers [97], and effectively doubles the number of input states available to the

neural network – hopefully allowing it to better differentiate between states caused by ‘starting

the game’ or ‘playing second’. Messerschmidt et al. [97] instead included an additional neuron

to identify the current player. In order to differentiate between piece types (noughts or crosses),

a different fixed value is used for each player.

Since the piece values for the pieces in the game do not vary (a nought and cross have equal

importance/value), the input values can remain constant throughout training. Chellapilla and

Fogel [53] [27] [26] evolved the value for Checkers pieces, since a Checkers-king is supposed to

be of higher value than a Checkers-man. The piece-values for this study’s Checkers simulations

are covered in the following chapter.

4.5.4 Setting the benchmark

The benchmark playing behaviour for random-moving Tic-Tac-Toe players were listed in table

3.1, with the player moving first winning approximately 58% of the time, and the player playing

second winning approximately 28% of the time. These percentages directly form part of the

Messerschmidt et al. performance measure, as detailed in section 3.3.3 and equation 3.1. The

performance values calculated from the experimental work on Tic-Tac-Toe in this study will

be directly compared to the values computed by Messerschmidt et al.

4.5.5 Statistical soundness

Confidence intervals are calculated with regard to the Messerschmidt et al. performance values,

as clearly described in section 3.3.3. A confidence coefficient (alpha value) of 0.9 is used, and

the required covariance and standard deviation values are computed.

4.6 Experimental results

The following subsections provide an analysis of experiments conducted according to the afore-

mentioned experimental procedure. The three architecture performance matrices (one for each

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 61

Table 4.1: Architecture performance matrix - standard GBest. Larger M-values preferred.

Hidden Units

Particles 3 5 7 9 11 13 15 Averages

5 23.87500 18.57200 31.30600 22.73530 18.03670 28.16830 21.00530 23.38551

± 0.00204 ± 0.00206 ± 0.00199 ± 0.00205 ± 0.00205 ± 0.00201 ± 0.00204 ± 0.00204

10 24.68600 20.01570 30.02070 30.42130 26.02430 25.70270 21.84070 25.53020

± 0.00204 ± 0.00205 ± 0.00200 ± 0.00199 ± 0.00201 ± 0.00205 ± 0.00204 ± 0.00202

15 29.45630 25.82200 29.74770 27.99130 28.87530 25.60500 22.53070 27.14690

± 0.00200 ± 0.00202 ± 0.00200 ± 0.00201 ± 0.00200 ± 0.00201 ± 0.00204 ± 0.00201

20 26.86470 27.74970 27.42330 27.21170 29.45400 30.10430 26.17900 27.85524

± 0.00200 ± 0.00201 ± 0.00201 ± 0.00201 ± 0.00199 ± 0.00198 ± 0.00203 ± 0.00201

25 25.50830 29.46430 24.14230 28.69970 26.00700 31.54570 29.01270 27.76857

± 0.00202 ± 0.00200 ± 0.00203 ± 0.00199 ± 0.00201 ± 0.00196 ± 0.00200 ± 0.00200

30 22.26000 22.85600 25.35570 27.94700 27.61600 23.54570 28.45130 25.43310

± 0.00204 ± 0.00204 ± 0.00202 ± 0.00200 ± 0.00201 ± 0.00202 ± 0.00200 ± 0.00202

35 21.97270 30.97430 27.88270 26.04500 24.17770 28.50270 31.13130 27.24091

± 0.00202 ± 0.00199 ± 0.00201 ± 0.00201 ± 0.00203 ± 0.00200 ± 0.00197 ± 0.00201

40 27.72070 25.50430 24.12330 29.04930 26.66370 29.56730 26.89400 27.07466

± 0.00200 ± 0.00202 ± 0.00202 ± 0.00200 ± 0.00201 ± 0.00199 ± 0.00202 ± 0.00201

45 30.05800 28.09400 25.32670 32.35430 29.31170 32.44800 27.37030 29.28043

± 0.00199 ± 0.00200 ± 0.00201 ± 0.00197 ± 0.00199 ± 0.00198 ± 0.00201 ± 0.00199

50 25.82900 25.28000 26.73500 29.00330 24.69870 27.92670 22.50300 25.99653

± 0.00202 ± 0.00202 ± 0.00200 ± 0.00200 ± 0.00203 ± 0.00202 ± 0.00204 ± 0.00202

Average M 25.82307 25.43323 27.20634 28.14582 26.08651 28.31164 25.69183

± 0.00202 ± 0.00202 ± 0.00201 ± 0.00200 ± 0.00201 ± 0.00200 ± 0.00202

of the neighbourhood structures) are listed in section 4.6.1, and a selection of the newly com-

puted results are graphically compared to the experimental results previously obtained by

Messerschmidt et al.. The performance value computed by the Messerschmidt et al. measure

is abbreviated as an ‘M-value’ for the duration of the study. The matrices are visualised as

heightmaps (surfaces) and analysed accordingly in section 4.6.2. The effects of an increase in

swarm size and hidden nodes are discussed in sections 4.6.4 and 4.6.3, followed by a brief illus-

tration of neural network weight convergence in section 4.6.5. The effect of using an optimised

parameter set (mentioned earlier) is graphically depicted in section 4.6.6.

4.6.1 Comparison of architecture performance matrices

Tables 4.1, 4.2 and 4.3 list the newly computed architecture performance matrices for the

standard GBest, LBest and Von Neumann neighbourhood structures respectively. Each matrix

depicts the change in performance for an increase in swarm size (from top to bottom) and an

increase in the hidden layer size (from left to right). The result of the Messerschmidt et al.

performance measure after 150000 games as player one, and 150000 games as player two against

a random-moving player is listed in each matrix entry, along with its associated confidence

value.

A couple of interesting observations can be made before applying any of the additional visual

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 62

Table 4.2: Architecture performance matrix - Local Best. Larger M-values preferred.

Hidden Units

Particles 3 5 7 9 11 13 15 Averages

5 24.13830 27.14100 28.59900 28.78330 29.28070 27.57530 25.08970 27.22961

± 0.00203 ± 0.00200 ± 0.00200 ± 0.00200 ± 0.00199 ± 0.00200 ± 0.00202 ± 0.00201

10 32.92700 28.65970 30.92730 29.12300 30.20130 28.58070 29.43730 29.97947

± 0.00195 ± 0.00199 ± 0.00197 ± 0.00198 ± 0.00198 ± 0.00200 ± 0.00200 ± 0.00198

15 33.69430 28.78600 30.15430 33.61730 28.67500 30.04970 30.68630 30.80899

± 0.00196 ± 0.00201 ± 0.00199 ± 0.00195 ± 0.00200 ± 0.00199 ± 0.00197 ± 0.00198

20 28.80500 30.26700 31.10170 31.37070 33.14500 33.04930 33.88700 31.66081

± 0.00199 ± 0.00198 ± 0.00197 ± 0.00198 ± 0.00195 ± 0.00196 ± 0.00195 ± 0.00197

25 29.51230 32.28630 30.48330 28.60870 29.64030 34.76100 29.16870 30.63723

± 0.00200 ± 0.00196 ± 0.00198 ± 0.00201 ± 0.00199 ± 0.00195 ± 0.00199 ± 0.00198

30 26.91530 28.94070 31.80770 28.12200 30.24300 30.59830 31.96370 29.79867

± 0.00201 ± 0.00199 ± 0.00197 ± 0.00200 ± 0.00198 ± 0.00199 ± 0.00196 ± 0.00199

35 31.50770 29.48670 30.76100 25.98430 29.39330 31.70430 28.40900 29.60661

± 0.00198 ± 0.00199 ± 0.00198 ± 0.00202 ± 0.00200 ± 0.00198 ± 0.00200 ± 0.00199

40 28.52870 30.09000 31.00270 30.22700 27.64700 30.73770 31.88130 30.01634

± 0.00199 ± 0.00197 ± 0.00199 ± 0.00199 ± 0.00200 ± 0.00198 ± 0.00197 ± 0.00198

45 28.56300 27.46170 27.89400 27.40030 33.58730 30.88930 26.91370 28.95847

± 0.00199 ± 0.00201 ± 0.00201 ± 0.00200 ± 0.00196 ± 0.00198 ± 0.00201 ± 0.00200

50 31.92370 30.25670 29.12000 26.71670 32.62700 31.38270 30.65500 30.38311

± 0.00195 ± 0.00198 ± 0.00200 ± 0.00201 ± 0.00196 ± 0.00197 ± 0.00198 ± 0.00198

Average M 29.6515 29.3376 30.1851 28.9953 30.4440 30.9328 29.8092

± 0.00198 ± 0.00199 ± 0.00199 ± 0.00199 ± 0.00198 ± 0.00198 ± 0.00199

analysis techniques. A search for the best individual constructed from all the simulation runs

for each neighbourhood structure, reveals the already well-established fact – GBest performs

slightly worse than LBest in the majority of test problems. Looking at the specific performance

ratings for Tic-Tac-Toe, the best GBest player scored 32.448 on a configuration with a swarm

size of 45 particles, and 13 hidden nodes. The best LBest individual had an improved score of

34.761, with a swarm size of 25 particles and 13 hidden nodes.

The interesting development is the introduction of the Von Neumann neighbourhood struc-

ture to the game learning domain. The best Von Neumann individual scored a superior 34.849,

with the smallest swarm size of 20 particles, in addition to only using a hidden layer of 7 nodes.

The trend continues if a global average is computed across the cells of each of the different

matrices. The average GBest performance is still very poor, with a value of 26.67121. LBest

continues to outperform GBest with an average value of 29.90793, while the average Von

Neumann performance remains superior with 30.10109.

Figure 4.2 compares the performance values computed for experimental work on Tic-Tac-

Toe in this study to previously published results by Messerschmidt et al. [97], assuming a hidden

layer of 7 hidden nodes and a swarm size varying between 15 and 50 particles. Messerschmidt

et al. compared the performance between an evolutionary programming approach to game

learning (as first introduced by Chellapilla and Fogel [53] [27] [26]) with a PSO approach to

game learning. The results show a definite improvement to using PSO. The results computed

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 63

Table 4.3: Architecture performance matrix - Von Neumann. Larger M-values preferred.

Hidden Units

Particles 3 5 7 9 11 13 15 Averages

15 31.05670 28.75400 31.31300 31.91870 32.29270 28.37470 29.33330 30.43473

± 0.00198 ± 0.00199 ± 0.00198 ± 0.00197 ± 0.00196 ± 0.00200 ± 0.00198 ± 0.00198

20 29.14400 29.28230 34.84900 33.33230 33.44530 32.32530 32.03730 32.05936

± 0.00199 ± 0.00199 ± 0.00195 ± 0.00196 ± 0.00195 ± 0.00196 ± 0.00196 ± 0.00197

25 30.07170 30.00000 32.63100 32.21170 31.04230 33.52300 31.06070 31.50577

± 0.00198 ± 0.00199 ± 0.00196 ± 0.00195 ± 0.00197 ± 0.00196 ± 0.00198 ± 0.00197

30 28.56370 30.88870 31.69570 28.65230 31.56730 29.11230 26.56270 29.57753

± 0.00201 ± 0.00197 ± 0.00198 ± 0.00200 ± 0.00197 ± 0.00200 ± 0.00202 ± 0.00199

35 32.63000 31.08730 27.64570 27.96570 29.15730 31.69670 28.48070 29.80906

± 0.00196 ± 0.00198 ± 0.00200 ± 0.00200 ± 0.00199 ± 0.00197 ± 0.00201 ± 0.00199

40 29.39830 28.97830 30.28770 27.30300 29.94200 29.31970 32.70270 29.70453

± 0.00199 ± 0.00199 ± 0.00198 ± 0.00200 ± 0.00199 ± 0.00200 ± 0.00196 ± 0.00199

45 29.97770 29.61200 29.61200 29.77130 29.71600 26.83570 27.84630 29.05300

± 0.00198 ± 0.00199 ± 0.00199 ± 0.00199 ± 0.00200 ± 0.00200 ± 0.00201 ± 0.00199

50 24.87400 26.32730 30.99930 30.71830 28.92130 32.37170 26.44130 28.66474

± 0.00201 ± 0.00203 ± 0.00199 ± 0.00199 ± 0.00200 ± 0.00197 ± 0.00201 ± 0.00200

Average M 29.46451 29.36624 31.12918 30.23416 30.76053 30.44489 29.30813

± 0.00199 ± 0.00199 ± 0.00198 ± 0.00198 ± 0.00198 ± 0.00198 ± 0.00199

Figure 4.2: Comparison graph between Messerschmidt et al.’s implementation performance

and performance values computed in this thesis. Larger M-values are preferred.

for the experimental work in this study clearly outperform even the best available individual

score computed by Messerschmidt et al.

The increased performance can be attributed to the different manner in which a board state

is presented to the neural network, along with the use of slightly adjusted PSO parameters –

most notably the absence of the maximum velocity.

Furthermore, the Von Neumann information sharing structure continues its dominance in

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 64

Figure 4.3: Surface plot for architecture comparison.

this specific configuration, outperforming the other neighbourhood structures in 5 out of the 8

cases. The GBest information sharing structure remains the worst performer, only achieving

the 2nd best performance on one occasion. The LBest structure manages to provide strong

competition to the Von Neumann structure in most cases.

4.6.2 Surface plots

In order to ease global comparison between the different neighbourhood structures, the perfor-

mance values in each performance matrix can be regarded as a height value, thereby forming

a three-dimensional surface when plotted as a heightmap.

The heightmaps constructed from the performance values for the recently computed Tic-

Tac-Toe experiments are depicted in figure 4.3, with each surface assigned a different colour for

visual distinction. Higher lying areas on the various surfaces indicate increased performance,

with the visible parts of a surface indicating its superiority in the specific swarm size/hidden

node configuration.

From visual inspection it is clear that the Von Neumann architecture dominates a significant

portion of the overall surface area, specifically in configurations with smaller swarm sizes and a

fair number of hidden nodes. The LBest architecture surpasses the Von Neumann dominance

in experiments with very large hidden layer sizes, while the GBest architecture manages to

briefly outperform the other two structures in very large configurations of swarm and hidden

layer sizes.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 65

Figure 4.4: Increase in hidden nodes for specific LBest architecture configuration.

The opacity of the Von Neumann surface has been lowered to visibly indicate the difference

in performance between it and its nearest underlying competitor. With the lowered opacity

enabled, it is clear that the LBest neighbourhood structure remains the biggest competitor to

Von Neumann, with GBest sporadically making inroads in both these structures’ performance.

The three large bumps visible on the surface (for Von Neumann in-line with 7 hidden nodes,

GBest and LBest in-line with 13 hidden nodes) indicate the overall best performers for each

neighbourhood structure. The LBest structure’s 2nd best performer (13 hidden nodes, 45

particles) also makes a significant visual impact.

4.6.3 Increase in hidden nodes

It is difficult to identify a definite trend among the neighbourhood structures with regards to

a performance increase/decrease after increasing the number of hidden nodes for each configu-

ration. The Von Neumann architecture seems to favour mid-range hidden layer sizes, peaking

quite early on as indicated by its best performing player.

Even within a specific neighbourhood structure the trend cannot be consistently isolated.

Figure 4.4 illustrates an almost perfect example of an increase in performance due to an increase

in the number of hidden nodes for the LBest neighbourhood structure. The example is based

on a configuration with a swarm size of 20 particles. It would seem that both GBest and

LBest tend to prefer larger hidden layer sizes, as both these neighbourhood structures’ best

performing individuals are located at the far end of the hidden layer size spectrum.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 66

Figure 4.5: Increase in swarm size for specific LBest architecture configuration.

4.6.4 Increase in swarm size

The inability to identify a definite trend among hidden layer sizes repeats itself with an increase

in swarm sizes. After some analysis it would seem as if both the Von Neumann and LBest

neighbourhood structures prefer mid-range swarm sizes, which is also confirmed by the location

of both these structures’ best performing individuals.

Figure 4.5 depicts the change in performance for the LBest neighbourhood structure, as-

suming a configuration with 13 hidden nodes. The graph clearly shows the initial rise in

performance, early peak, and resultant stabilising of the performance value as the swarm size

is increased. It should be stressed that the aforementioned trend is not consistently repeated

throughout the various neighbourhood structures.

Finally, it would seem as if the GBest neighbourhood structure tends to prefer larger swarm

sizes, as it is the only instance in which it manages to make any serious attempts to overtake

the LBest and Von Neumann neighbourhood structures as dominant players. This is more

clearly illustrated with the aid of the surface plot (figure 4.3).

4.6.5 Convergence

The ability of the particles in the swarm to converge on a (hopefully optimum) value, is a

defining characteristic of the PSO algorithm. An easy way to determine particle convergence

is the plot of the absolute neural network weight values over the duration of the simulation –

in this case 500 epochs. Figure 4.6 depicts such a plot for a configuration of 20 particles and 5

hidden nodes utilising the LBest structure, clearly illustrating the convergent behaviour on a

stable solution.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 67

Figure 4.6: Convergence of neural network weights.

Studies by Messerschmidt et al. on convergence for PSO in game learning show instances

of sudden oscillating behaviour arising after the duration of a seemingly stable state [97]. This

can be attributed to the coevolutionary training scheme developing a player able to exploit

the genetic weakness of the larger population – thereby causing the particles to move to the

newly located optimum. It may also be a consequence of stray particles’ maximum velocity

escalating in such a way as to negatively effect the swarm – pulling particles to undiscovered

and unrelated areas of the search space.

4.6.6 Optimising performance

As a final note, it should be stated that the default PSO parameters selected to perform these

experiments have been chosen to cause convergent swarm behaviour on suitable solutions – in

order to analyse neighbourhood information sharing structures. It stands to reason that with

some level of ‘tweaking’, each and every simulation can be optimised to produce more intelligent

players. This allows for any number of PSO parameter configurations to be successful – a fact

that should not be forgotten.

An example optimisation for an LBest configuration of 5 particles is depicted in figure

4.7. The ‘comparative configuration’ reflects the original parameter choices as described in

the aforementioned sections, and the ‘optimised configuration’ reflect the performance for a

parameter selection of c1 = 1.0, c2 = 2.5 and VMax = 170. The performance is drastically

improved, yet does not rival the overall best performing player evolved in earlier simulations

for the LBest neighbourhood structure.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 4. TIC-TAC-TOE 68

Figure 4.7: Optimised performance for a sample LBest configuration.

4.7 Conclusion

This chapter applied the training algorithm derived in chapter 3 to the computationally mod-

est problem of Tic-Tac-Toe. The specific PSO and neural network settings were discussed,

whereafter experimental analysis was conducted to measure the performance of three PSO

neighbourhood structures – GBest, LBest and Von Neumann.

It was the first application of the Von Neumann structure to game learning, which yielded

surprisingly good results. The Von Neumann structure seems to be superior to both the LBest

and GBest neighbourhood structures, capable of evolving more intelligent players – using even

smaller swarm sizes and neural network configurations. Visual performance analysis using

three-dimensional surface plots of the architecture performance matrices provided more insight

into the strong and weak points of each neighbourhood structure.

The swarm has shown to converge on suitable solutions, even though no definite trend in

increasing the swarm or hidden layer sizes could be found. The reader is reminded that the

default parameter choices were made to cause convergent behaviour, and a uniquely optimal

set of parameters could exist for each individual configuration.

The aim of the experiments – to apply the algorithm to Tic-Tac-Toe learning, and to

investigate neighbourhood structures – were successfully achieved. The application of the

algorithm to a more complex optimisation problem in game learning – that of Checkers – is

considered in the following chapters.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5

Checkers

“Perfection is achieved, not when there is nothing more to add,

but when there is nothing left to take away”.

- Antoine de Saint-Exupery (1900 - 1944)

The experimental analysis of the previous chapter is extended to the Checkers domain, which

inherently poses a much more difficult optimisation problem due to its much larger search space.

The same training algorithm is once again applied, and the neighbourhood structure performance

analysed. The Von Neumann architecture proves to dominate once again, but overall results are

disconcerting and lead to further in-depth analysis in chapters to come.

5.1 Introduction

After successfully applying a PSO-based training algorithm to evolve intelligent Tic-Tac-Toe

agents in the previous chapter, a more challenging problem – Checkers – allows for the analysis

of the PSO-based training algorithm on a significantly larger search space.

The game of Checkers is introduced in section 5.2, describing the detailed rules as imple-

mented for the experimental work, along with intricacies surrounding the scoring structure.

The choice of benchmarking opponent is once again discussed in section 5.3, followed by a

short description in section 5.4 on the specific PSO parameter choices made with regard to the

various information sharing neighbourhood structures.

The experimental procedure in section 5.5 summarises the various components that have an

69

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 70

Figure 5.1: Dimensions, numbering and setup of a standard Checkers game board.

impact on the experimental work, including the training algorithm, the PSO and neural network

configurations as well as the benchmark results and associated statistical computations.

Section 5.6 provides a listing of various experimental results, with graphical analysis through

surface plots and graphs providing more insight into the underlying relationships between the

neighbourhood structures. Section 5.7 concludes the chapter by summarising some of the major

experimental findings.

5.2 Game rules

The game of Checkers (also known as Draughts) has been so collectively absorbed by the

general public, that an actual set of official rules has been hard to obtain. The rules included

in the commercial game sets only state the obvious use of the supplied equipment (game pieces

and board), along with the tournament conditions on how to start a game and exceptions to

using a clock during the game itself [90]. The rules do not even mention the restriction of the

checkerboard to only 8-by-8 squares! After querying numerous sources [90] [53], including the

official American Checkers Federation rules [2], the following set of rules have been selected as

the internationally accepted ‘Official (US) rules’, and should be used to compare any future

experimental work to the experimental results listed in this study.

A standard checkerboard has dimensions of 8-by-8 alternately coloured squares (depicted

in figure 5.1). Checkers is a two-player game, with red (sometimes black) and white pieces.

Before the game starts, the players toss a coin to determine who plays red (red always starts

the game). The starting behaviour is alternated thereafter. As explained in section 3.3.1 on

potential imbalanced games, Checkers has shown to not clearly favour either the first or second-

moving player. During the training process, each player plays against 5 randomly selected

opponents from the competition pool, always starting as player one. The current player is

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 71

Figure 5.2: Basic rules of Checkers explained.

thereafter available to play an additional 5 games as the opponent (player two) to any of the

remaining players in training.

It is the aim of the game to restrict the movement of the opponent’s pieces. Each player

has to make a move on every turn. The first player that is unable to move – either due to

restriction or a loss of pieces – is the loser.

Each player is assigned 12 pieces, referred to as ‘men’ (standard value piece). The pieces

are arranged according to figure 5.1. Each piece is only allowed to move in a forward diagonal

direction, for a total distance of one square per turn. A piece is not allowed to move off the

side of the board. A piece is not allowed to move on top of or over a friendly piece. A friendly

piece is able to jump over an opposing piece, assuming that there is a free landing-spot (an

open square) located directly behind the target piece and in-line with the jumping direction

(see figure 5.2). The opposing piece is said to be ‘captured’, and removed from the board.

All captures are forced, and should be taken immediately when they arise. Should two

or more captures be possible by separate friendly pieces, a player is allowed to finish a single

capture this turn – irrespective of the possible higher value of the parallel available capture.

Multiple captures (a ‘double jump’) in the same turn are also forced, with the restriction

that it should be completed by the same piece (see figure 5.2) and not involve a standard

directional movement (i.e. it should originate from a forced capture, and immediately end

after the last capture – see figure 5.2).

Should a piece reach the very last row on the opponent’s side of the board without being

captured, the piece is ‘crowned’ (the piece-name also changes from a ‘man’ to a ‘king’ and is

deemed of higher value – see figure 5.2). A king is allowed to move in both a forward and

backward diagonal direction as from the next turn, while still adhering to the basic rules for

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 72

capturing. A man is allowed to capture a king, and vice versa. Multiple captures that result

in a piece being crowned midway through the move is halted as soon as the piece reaches the

back row. The newly crowned piece is allowed to complete any immediately available captures

in the next round only.

Human matches have no drawing rule, and a draw is supposed to be offered by an opponent.

Repeating the same three moves in succession is not illegal in Checkers (as it is in Chess), and

can not be regarded as a measure for losing or drawing the game. For the experimental work

in this study, a game is considered a draw if it exceeds 100 moves – a scheme followed by

Chellapilla and Fogel [53] [27] [26].

5.2.1 Scoring structure

The scoring structure for Checkers in tournament play is similar to that of Chess, assigning +1

for a win, +1
2 each for a draw, and 0 for a loss. Due to the use of coevolution as the principal

training method, a value of +1 is assigned for a win, 0 for a draw and -2 for a loss – identical

to the previous work on Tic-Tac-Toe, as well as work by Chellapilla and Fogel [53] [27] [26].

The larger negative value of -2 for a loss, as opposed to only receiving +1 for a win, is justified

to clearly punish the losing player for overall weak board state evaluations.

Once again, no variants to the standard scoring structure – such as the doubling cube found

in Backgammon – are used for the Checkers simulations in this study.

5.3 Choosing an opponent

In contrast to the previous chapter on Tic-Tac-Toe, Checkers is not a ‘solved’ game, and no

perfect player is available for either benchmarking or training. Initial work by Chellapilla

and Fogel [53] used human players as training opponents, but quickly reverted to computer

opponents after the significant drawback in time was observed. Chellapilla and Fogel later

made use of an on-line Checkers ‘game portal’ to get a rough estimation of the best evolved

agent’s playing strength – albeit with some complications induced by the dark side of human

nature (specifically sore losers).

Training a game playing agent over thousands and even millions of games is impractical

with a human opponent. Apart from the obvious time drawbacks, the previously mentioned

lapses in concentration and eventual fatigue play a major role in playing performance.

Computer-based players – specifically random-moving players – can consistently play at

the same level, without repeating the same playing strategy. In chapter 3, table 3.2 lists

the benchmark performance for two random-moving players competing in 1 million games,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 73

using the Rand3 pseudo-random number generator of Knuth [105]. Random moving players

will only be used to benchmark the eventual best evolved player (as explained in chapter 3),

while coevolutionary training will allow similarly constructed agents to compete in a randomly

selected tournament scheme. Several advanced evaluation functions, such as a piece count-

based player and an extensive hand-crafted evaluation function (‘simple checkers’ - provided

by Martin Fierz [51], author of the well-known Cake Sans Saucy and Cake++ Checkers games),

will play an important role in assessing intelligence in chapter 7.

5.4 Choosing a PSO architecture

The PSO neighbourhood structures originally introduced in section 2.4.1, and analysed in

section 4.6 on Tic-Tac-Toe, is once again analysed to test the structures’ performance in a

more difficult problem domain. The GBest, LBest and Von Neumann architectures will be

alternately selected and compared using a default set of PSO parameters (discussed below).

The Messerschmidt et al. performance measure introduced in section 3.3.3 and utilised in the

previous chapter to analyse Tic-Tac-Toe performance, is replaced by the Franken performance

measure – introduced in section 3.3.4, due to the need for proper handling of drawn games as

a sign of intelligence.

5.4.1 Parameter selection

The PSO parameters listed in section 2.4.2 are once again set inside a default range that will

cause convergent behaviour, as illustrated by the equations originally derived by Van den Bergh

and listed in section 2.4.2 for choosing the cognitive (c1) and social (c2) acceleration constants,

as well as the exclusion of VMax. Convergence on possibly optimal solutions will enable the

cross-architecture comparison required as part of the experimental work in this study.

More specifically, the cognitive (c1) and social (c2) acceleration constants are set to 1.0 each.

The inertia weight too, is set to 1.0. The maximum velocity for each particle is not restricted.

An ‘architecture performance matrix’ is once again constructed for each neighbourhood struc-

ture, measuring the change in performance over an increase in swarm size, and an increase in

hidden layer size. Each performance matrix is represented as a heightmap for improved visual

comparison and analysis.

The reader is once again reminded that due to the need of a personal best comparison

in the PSO algorithm, the personal best solution of each particle is added as an additional

player in the competition. The personal best particles remain unaffected by normal velocity

updates (do not change), and only gets replaced if they are outperformed. The swarm size

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 74

numbers quoted in the experimental configurations only represent half the true swarm size

(i.e. excluding personal best particles).

A detailed analysis of particular PSO parameter influence is conducted in the next chapter,

so no ‘tweaking’ on parameters are done to improve performance for this round of experiments.

5.5 Experimental procedure

The aim of the following experimental work is once again two-fold. Firstly, the coevolutionary-

based training algorithm has proven to work well in the computationally modest problem space

of Tic-Tac-Toe. The experiments now aim to judge its ability to scale to larger problem spaces,

such as the one provided by Checkers.

Secondly, some interesting observations with regard to neighbourhood structures were made

in the previous chapter, with the introduction of the Von Neumann structure outperforming

both the LBest and GBest structures. It should be interesting to see if the trend repeats itself

in this significantly larger and more difficult problem domain.

5.5.1 Training algorithm

The final training algorithm listed in section 3.5 is once again applied to this game learning

problem, with the only change being the use of the Franken performance measure for primary

performance comparison between the different PSO neighbourhood structures.

To quickly recap, each particle consists of an n-dimensional weight vector that corresponds

to the weights of a neural network. Each particle can be seen as a single game playing agent

in a population of players, with the substitution of particle information (weight values) into a

neural network framework resulting in unique board evaluations for that specific player. Board

state evaluations are limited to a single ply-depth only, with the reasoning behind this decision

already discussed in section 3.4.

The use of coevolution to drive the training process, should result in more intelligent players

emerging over time. The best individual after 500 epochs of evolution is benchmarked against

a random-moving player.

5.5.2 PSO configuration

In summary, the PSO parameters are configured as follows: c1 = c2 = 1.0, inertia = 1.0,

maximum velocity is not restricted. Each of the three PSO neighbourhood information sharing

structures are analysed in turn, with swarm sizes ranging from 5 to 50 particles in the case of

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 75

the GBest and LBest architectures, and between 15 and 50 particles for Von Neumann. The

LBest structure makes use of an inclusive neighbourhood size of 5 particles.

5.5.3 Neural network configuration

In order for the agent to intelligently evaluate a board state, the board should be presented

to each agent’s neural network. Figure 5.1 illustrated the specific numbering of the standard

Checkers game board, starting in the lower double-corner on the side of the board playing red,

and finishing on the opposing player’s opposite corner. Each board therefore is represented by

at least 32 features – one for each playable square of the game board.

As mentioned in the rules of the game, a distinction is made between the value of a ‘man’

and a ‘king’, with a ‘king’ being more valuable. Chellapilla and Fogel [53] [27] [26] evolved the

value for ‘king’-pieces, resulting in a definite change in playing behaviour on the part of the

players, as some players would recognise the importance of crowning pieces, while other would

focus on restricting the opponent’s playing behaviour using normal ‘men’.

The ‘my-piece vs opponent-piece’ inverse board state representation introduced in section

4.5.3 on Tic-Tac-Toe evaluations is once again applied to Checkers. A friendly ‘man’ is rep-

resented as 0.75, and a friendly ‘king’ is represented as 1.0. An open space is represented by

0.5, with the intuitive reverse ordering for the opponent pieces – 0.25 for opponent men and

0.0 for an opponent ‘king’. Alternate piece value representations are analysed in more detail

in section 6.3.1 to possibly improve performance.

A ‘sliding-window’ is used by Chellapilla and Fogel to create various resolutions of the

board state, allowing for more spatial information to be input to the network. The window

would be initially sized as big as the complete board state (8-by-8), where after it decreases by

a single square in both rows and columns (7-by-7, 6-by-6 etc.) and moves across the board to

still cover all the possible playing squares. The result of each window is concatenated into a

much larger numerical board state evaluation, and provided to the network for evaluation. The

effect of using a sliding window as input to the neural network is compared in the following

chapter on specific performance enhancements, along with a custom oriented window position.

For the experimental work in this study, only the standard 32 playable board squares are used

as input to the neural network.

The neural network implemented by Chellapilla and Fogel also made use of an additional

hidden layer to (in the authors’ words) improve spatial analysis on the board. In order to reduce

the complexity of the neural network structure, allowing for faster board-state evaluations, only

a single hidden layer (with varying size) is used.

Lastly, Chellapilla and Fogel include an additional bias to the network by providing the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 76

piece-count advantage of the current board-state as an additional input feature, fed directly

into the output layer. The performance of a piece-count player is surprisingly good, and its

inclusion into any neural network structure will introduce significant ‘human knowledge’ about

the game. The inclusion of the piece-count as an additional input is justified by the authors

due to the fact that most humans will intuitively recognise a superior local piece-count to be

an advantage, even without a clear understanding of the game rules.

The neural network’s performance against a piece-count player is analysed in more detail

in chapter 7, along with other more intelligent evaluation functions. The experimental work in

this study never makes use of the piece-count as an additional input feature.

5.5.4 Setting the benchmark

Table 3.2 lists the performance of two random-moving players competing in 1 million games.

The Messerschmidt et al. performance measure directly relies on these probabilities to indicate

superior playing behaviour – only taking into account wins and losses.

As explained in section 3.3.2, for more complex games (such as Checkers) a draw is often

an indication of intelligent playing behaviour, and should be considered as well. The Franken

performance measure described in section 3.3.4 allows for the inclusion of draws, and is applied

to measure performance in the following experimental work. For all the performance matrices,

the Messerschmidt et al. performance value (M-value) that makes use of the substituted prob-

abilities for Checkers is listed along with the newly computed Franken performance (F-value)

for completeness.

For all experimental results listed in this chapter, a Franken performance value larger than

50 indicates an increase in intelligent playing behaviour.

5.5.5 Statistical soundness

Confidence intervals are once again calculated with regard to the Messerschmidt et al. perfor-

mance values, as clearly described in section 3.3.3. A confidence coefficient (alpha value) of 0.9

is used, and the required covariance and standard deviation values are computed.

5.6 Experimental results

The following experimental results list the various PSO neighbourhood information sharing

structures’ performance values, after benchmarking each particular configuration against a

random-moving player for 150000 games as player one, and 150000 games as player two. Section

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 77

5.6.1 provides the detailed performance matrices for each neighbourhood structure, listing both

the M and F performance values for a change in swarm size versus a change in hidden nodes.

The performance matrices are converted into heightmaps for further visual analysis in

section 5.6.2, after which the specific trends relating to an increase in swarm size and increase

in hidden layer size to playing performance is discussed in sections 5.6.4 and 5.6.3 respectively.

5.6.1 Architecture comparison matrices

Tables 5.1, 5.2 and 5.3 list the Franken (F) and Messerschmidt et al. (M) performance values

(along with a confidence value) for the varying simulation configurations for each of the PSO

neighbourhood structures – standard GBest, LBest and Von Neumann respectively. Each

matrix illustrates the performance for a change in swarm size (increasing configurations from

top to bottom) and a change in hidden layer size (increasing configurations from left to right).

Once again, a couple of interesting observations can be made before making use of the visual

representation for an overall performance comparison. The generally accepted research finding

that LBest outperforms GBest on most problem areas – as also illustrated in the Tic-Tac-Toe

experiments – is once again repeated in the Checkers results.

The overall best GBest performer scored 62.3292 using the Franken performance measure-

ment, with a swarm size of 40 particles and 5 hidden nodes. Compared to the location of the

best GBest performer in the Tic-Tac-Toe results, it seems that the GBest algorithm still prefers

the use of an increased swarm size.

The overall best LBest performer improved on the GBest score (as expected) with a highest

value of 62.6382 – making use of a swarm size of 50 particles and 7 hidden nodes. Compared

to the Tic-Tac-Toe results, it seems as if LBest has shifted slightly in its optimal configuration,

using a larger swarm size, yet fewer hidden nodes to solve the more difficult problem.

The Von Neumann structure once again outperforms both the GBest and LBest information

sharing structures, scoring 62.7935 with a configuration consisting of a swarm size of 50 particles

and 7 hidden nodes. The increase in swarm size for both the LBest and Von Neumann structures

can be attributed to the fact that a larger number of particles may be required to adequately

cover the more complex search space introduced by Checkers.

The previous experimental results on Tic-Tac-Toe showed that LBest was able to compete

closely with the Von Neumann structure. This observation is repeated in the Checkers results,

even though the performance difference between the two structures’ best particles is itself very

small.

When computing an overall average performance value for all configurations in each perfor-

mance matrix, the observations made with Tic-Tac-Toe is repeated once again. The average

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 78

Table 5.1: Architecture performance matrix - standard GBest. Larger M and F-values pre-

ferred.

Hidden Units

Particles 3 5 7 10 15 25 45 Averages

5 (F) 59.07150 57.99867 59.30317 59.48517 56.72700 58.23850 57.89400 58.38829

(M) 2.20000 1.97000 4.40000 3.66000 -1.80000 1.70000 1.54000 1.95286

± 0.00609 ± 0.00613 ± 0.00610 ± 0.00608 ± 0.00618 ± 0.00615 ± 0.00616 ± 0.00613

10 (F) 60.21550 59.71300 59.48600 58.91783 59.34783 58.10000 60.05717 59.40533

(M) 4.84000 4.89000 3.08000 2.74000 4.31000 1.04000 6.50000 3.91429

± 0.00609 ± 0.00610 ± 0.00612 ± 0.00613 ± 0.00611 ± 0.00616 ± 0.00610 ± 0.00612

15 (F) 58.47583 59.99500 60.09183 59.48600 58.66650 59.62033 59.98667 59.47460

(M) 3.83000 5.52000 5.08000 4.56000 1.64000 5.56000 5.94000 4.59000

± 0.00610 ± 0.00608 ± 0.00609 ± 0.00610 ± 0.00614 ± 0.00612 ± 0.00610 ± 0.00610

20 (F) 60.43400 59.65467 58.24433 59.09633 59.31433 57.85833 58.38467 58.99810

(M) 6.80000 5.05000 1.86000 2.32000 4.21000 1.01000 2.07000 3.33143

± 0.00607 ± 0.00610 ± 0.00615 ± 0.00613 ± 0.00611 ± 0.00616 ± 0.00614 ± 0.00612

25 (F) 59.20617 59.71583 60.43083 59.24317 60.13217 59.03717 58.62533 59.48438

(M) 3.93000 4.03000 7.42000 4.58000 6.58000 3.97000 3.20000 4.81571

± 0.00607 ± 0.00610 ± 0.00609 ± 0.00610 ± 0.00609 ± 0.00612 ± 0.00614 ± 0.00610

30 (F) 59.16283 59.08300 60.02500 57.54567 57.57767 57.73800 58.86617 58.57119

(M) 3.71000 3.14000 4.71000 0.30000 0.21000 1.20000 2.81000 2.29714

± 0.00612 ± 0.00612 ± 0.00607 ± 0.00615 ± 0.00615 ± 0.00616 ± 0.00614 ± 0.00613

35 (F) 59.36033 58.73350 59.30950 59.60667 59.52833 58.82267 60.55783 59.41698

(M) 2.86000 2.59000 3.74000 4.81000 4.64000 3.09000 6.36000 4.01286

± 0.00611 ± 0.00611 ± 0.00611 ± 0.00612 ± 0.00612 ± 0.00613 ± 0.00606 ± 0.00611

40 (F) 58.44583 62.32917 58.48617 57.63150 59.73350 57.95317 58.15433 58.96195

(M) 2.47000 10.74000 2.47000 0.66000 4.65000 0.63000 1.70000 3.33143

± 0.00606 ± 0.00601 ± 0.00608 ± 0.00614 ± 0.00611 ± 0.00617 ± 0.00615 ± 0.00610

45 (F) 58.72867 58.96950 58.92700 58.18833 58.46533 58.01367 58.78817 58.58295

(M) 3.53000 2.65000 4.99000 1.02000 2.16000 0.61000 3.18000 2.59143

± 0.00611 ± 0.00606 ± 0.00606 ± 0.00612 ± 0.00614 ± 0.00617 ± 0.00614 ± 0.00612

50 (F) 58.95217 57.72817 59.46533 59.39617 58.63617 56.04917 59.85467 58.58312

(M) 1.47000 2.06000 3.51000 4.94000 2.52000 -2.20000 5.10000 2.48571

± 0.00608 ± 0.00612 ± 0.00611 ± 0.00609 ± 0.00613 ± 0.00620 ± 0.00612 ± 0.00612

Average F 59.20528 59.39205 59.37692 58.85968 58.81288 58.14310 59.11690

Average M 3.56400 4.26400 4.12600 2.95900 2.91200 1.66100 3.84000

± 0.00609 ± 0.00609 ± 0.00610 ± 0.00612 ± 0.00613 ± 0.00615 ± 0.00613

overall best performing GBest score is 58.99 – the worst performer among the three structures

once more. The overall average best performing LBest score is 59.78, closely followed by the

best performing Von Neumann average score of 60.30.

A first glance at the specific performance values (both M and F) show that the players are

not performing all too well against the benchmark random moving player. The Messerschmidt

et al. performance measure shows only a slight increase over the minimum possible M score

of 0.0 for all configurations (an M score larger than 0.0 assumes positive learning occurred).

The Franken performance measure states a result of 50.0 for a random-moving player (in this

case an F score larger than 50.0 assumes positive learning took place). An overall best value

of 62.7935 by Von Neumann does not seem to be such a large improvement – considering the

opponent. These disconcerting observations lead to a more in-depth analysis of PSO parameter

influence, discussed in more detail in the following chapter.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 79

Table 5.2: Architecture performance matrix - Local Best. Larger M and F-values preferred.

Hidden Units

Particles 3 5 7 10 15 25 45 Averages

5 (F) 60.17183 60.53133 59.40717 57.27417 61.30850 59.00967 58.83367 59.50519

(M) 7.12000 8.12000 3.76000 0.34000 8.28000 2.77000 2.39000 4.68286

± 0.00607 ± 0.00605 ± 0.00612 ± 0.00617 ± 0.00606 ± 0.00612 ± 0.00614 ± 0.00610

10 (F) 61.61900 61.76900 59.17900 59.11317 59.37133 58.92567 58.94250 59.84567

(M) 9.16000 9.71000 4.87000 4.42000 5.02000 4.14000 3.26000 5.79714

± 0.00604 ± 0.00603 ± 0.00611 ± 0.00612 ± 0.00610 ± 0.00612 ± 0.00614 ± 0.00610

15 (F) 58.16717 60.40867 60.31167 60.73383 58.96450 59.02917 59.62550 59.60579

(M) 2.96000 8.01000 7.07000 8.40000 4.65000 3.67000 4.89000 5.66429

± 0.00604 ± 0.00604 ± 0.00608 ± 0.00606 ± 0.00610 ± 0.00614 ± 0.00611 ± 0.00608

20 (F) 59.81083 58.79000 58.98167 59.31833 59.68300 59.75517 59.07900 59.34543

(M) 5.25000 3.47000 3.29000 4.08000 4.78000 5.76000 4.37000 4.42857

± 0.00606 ± 0.00611 ± 0.00610 ± 0.00609 ± 0.00610 ± 0.00610 ± 0.00612 ± 0.00610

25 (F) 57.48367 61.41567 60.69467 57.46650 59.13300 59.85467 59.97933 59.43250

(M) 0.72000 9.22000 6.51000 1.13000 4.46000 5.10000 5.76000 4.70000

± 0.00606 ± 0.00605 ± 0.00608 ± 0.00615 ± 0.00611 ± 0.00609 ± 0.00611 ± 0.00609

30 (F) 59.41883 61.29533 60.33167 60.56767 59.32100 59.70600 59.16700 59.97250

(M) 4.92000 10.58000 6.29000 7.83000 4.27000 6.02000 3.05000 6.13714

± 0.00607 ± 0.00603 ± 0.00607 ± 0.00607 ± 0.00612 ± 0.00609 ± 0.00614 ± 0.00609

35 (F) 58.02050 59.50083 58.15983 58.63717 60.60000 59.45383 58.84500 59.03102

(M) 0.86000 7.21000 1.96000 3.14000 7.62000 5.22000 2.41000 4.06000

± 0.00614 ± 0.00606 ± 0.00614 ± 0.00612 ± 0.00608 ± 0.00612 ± 0.00615 ± 0.00611

40 (F) 62.58433 61.11300 60.71917 60.05300 58.35017 59.02583 59.08950 60.13357

(M) 11.01000 9.20000 8.73000 5.85000 3.26000 3.88000 3.38000 6.47286

± 0.00597 ± 0.00600 ± 0.00606 ± 0.00608 ± 0.00614 ± 0.00613 ± 0.00614 ± 0.00607

45 (F) 61.27900 59.19617 57.98300 58.77150 59.62917 60.66350 61.09583 59.80260

(M) 8.55000 4.67000 2.52000 3.56000 4.21000 7.63000 7.86000 5.57143

± 0.00603 ± 0.00609 ± 0.00613 ± 0.00612 ± 0.00611 ± 0.00608 ± 0.00608 ± 0.00609

50 (F) 60.57100 60.38683 62.63817 60.87517 61.31550 60.37950 61.63100 61.11388

(M) 9.01000 6.75000 10.78000 9.03000 8.27000 7.06000 9.14000 8.57714

± 0.00603 ± 0.00607 ± 0.00605 ± 0.00600 ± 0.00607 ± 0.00609 ± 0.00607 ± 0.00605

Average F 59.91262 60.44068 59.84060 59.28105 59.76762 59.58030 59.62883

Average M 5.95600 7.69400 5.57800 4.77800 5.48200 5.12500 4.65100

± 0.00605 ± 0.00605 ± 0.00609 ± 0.00610 ± 0.00610 ± 0.00611 ± 0.00612

5.6.2 Surface plots

In order to ease an overall performance comparison of the various neighbourhood structures,

each performance matrix is visualised as a heightmap, with each configuration’s F-value rep-

resenting a height on a three dimensional surface. Each structure’s surface is plotted with

a unique identifying colour, and the Von Neumann surface’s opacity is decreased to give an

insight into lower-lying surfaces. Higher lying areas on the surfaces indicate increased play-

ing performance, with the overall superior structure for a specific configuration showing its

dominance by visually overlapping the other two structures’ surfaces.

From visual inspection, the Von Neumann architecture seems to completely dominate the

various configurations, with LBest being able to convincingly outperform Von Neumann in

a selected few mid-range configuration sets. GBest is once again the worst performer, only

making slight attempts to improve on LBest’s performance – and outperforming both Von

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 80

Table 5.3: Architecture performance matrix - Von Neumann. Larger M and F-values preferred.

Hidden Units

Particles 3 5 7 10 15 25 45 Averages

15 (F) 60.42533 60.92733 59.16450 61.97550 60.75067 58.46417 59.26983 60.13962

(M) 6.63000 9.43000 4.39000 9.56000 7.77000 3.53000 3.71000 6.43143

± 0.00605 ± 0.00602 ± 0.00610 ± 0.00604 ± 0.00608 ± 0.00614 ± 0.00613 ± 0.00608

20 (F) 60.47567 60.19417 59.14200 59.24383 60.84083 60.41567 58.68867 59.85726

(M) 5.89000 6.43000 5.22000 5.02000 7.15000 6.46000 3.43000 5.65714

± 0.00608 ± 0.00608 ± 0.00611 ± 0.00611 ± 0.00609 ± 0.00609 ± 0.00614 ± 0.00610

25 (F) 58.84867 61.85950 60.51217 59.28617 59.24067 60.19317 58.46250 59.77183

(M) 5.42000 9.84000 6.26000 5.10000 5.37000 6.00000 2.03000 5.71714

± 0.00606 ± 0.00602 ± 0.00608 ± 0.00610 ± 0.00609 ± 0.00610 ± 0.00615 ± 0.00609

30 (F) 58.77800 61.99633 61.50067 58.42017 58.04900 59.76217 61.44633 59.99324

(M) 3.28000 11.04000 8.21000 2.12000 2.25000 5.50000 9.01000 5.91571

± 0.00608 ± 0.00602 ± 0.00606 ± 0.00614 ± 0.00616 ± 0.00612 ± 0.00607 ± 0.00609

35 (F) 59.77617 61.78300 60.81017 61.19450 60.78717 59.28067 58.97683 60.37264

(M) 5.93000 9.02000 8.67000 10.66000 8.19000 4.68000 4.18000 7.33286

± 0.00609 ± 0.00604 ± 0.00607 ± 0.00604 ± 0.00608 ± 0.00612 ± 0.00613 ± 0.00608

40 (F) 61.66283 62.61367 60.72750 59.45333 61.01300 59.71400 61.82367 61.00114

(M) 9.52000 12.26000 8.39000 4.37000 9.29000 5.57000 10.30000 8.52857

± 0.00600 ± 0.00600 ± 0.00601 ± 0.00612 ± 0.00606 ± 0.00611 ± 0.00605 ± 0.00605

45 (F) 61.21800 60.26700 59.97000 60.01933 60.80200 59.88700 59.59433 60.25110

(M) 8.61000 7.47000 5.30000 5.95000 7.24000 6.42000 5.91000 6.70000

± 0.00602 ± 0.00607 ± 0.00606 ± 0.00611 ± 0.00608 ± 0.00609 ± 0.00611 ± 0.00608

50 (F) 60.06550 60.09033 62.79350 58.56183 61.82400 62.23167 61.63100 61.02826

(M) 6.39000 5.45000 11.34000 2.92000 10.48000 11.06000 9.14000 8.11143

± 0.00610 ± 0.00609 ± 0.00602 ± 0.00614 ± 0.00605 ± 0.00604 ± 0.00607 ± 0.00607

Average F 60.15627 61.21642 60.57756 59.76933 60.41342 59.99356 59.98665

Average M 6.45875 8.86750 7.22250 5.71250 7.21750 6.15250 5.96375

± 0.00606 ± 0.00604 ± 0.00606 ± 0.00610 ± 0.00609 ± 0.00610 ± 0.00611

Neumann and LBest in a small region of the map only.

The Von Neumann structure seems to take advantage of larger swarms and smaller hidden

layer sizes, performing weaker in smaller swarms with mid-range hidden layer sizes. A visual

bulge on the surfaces towards the edge of the map (swarm size of 50 particles, 7 hidden nodes)

indicate the location of the best performers for Von Neumann and LBest, with GBest’s best

performer located close by (40 particles, 5 hidden nodes).

The relatively weak overall performance values is clearly indicated by the performance

scale on the left not exceeding 65.0. The following sections will look more closely at the overall

impact on performance caused by an increase in swarm size, and an increase in hidden nodes.

5.6.3 Increase in hidden nodes

Figure 5.4 depicts the plot of an average for each column in the respective performance matrices,

indicating the change in performance over an increase in hidden nodes. The Von Neumann

structure clearly outperforms the LBest and GBest structures – as expected – showing the

already mentioned preference for smaller hidden layer sizes (the average peak performance

occurring quite quickly). Performance seems to stabilise on larger hidden layer sizes, with the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 81

Figure 5.3: Surface plot for PSO structure comparison in Checkers.

Figure 5.4: Increase in hidden nodes during Checkers simulations.

graph showing little deviation after 15 hidden nodes.

The LBest structure almost mimics the Von Neumann performance behaviour, albeit on a

slightly weaker level. This reinforces previous observations on the close relationship between

LBest and Von Neumann. The same trend of an affinity for smaller hidden layer sizes is

repeated, with performance once again stabilising on larger hidden layer sizes indicated by the

little deviation present on the graph after 15 hidden nodes.

The overall inferiority of the GBest structure is clear from the graph, with a slight possibility

of an increase in performance with significantly larger hidden layer sizes. The possibility of an

increased performance beyond 45 hidden nodes was not investigated further, due to the already

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 82

Figure 5.5: Increase in swarm size during Checkers simulations.

bad track-record of the GBest structure, as well as the significant computational time required

by any larger experimental configurations.

It is worthwhile to note that at least positive learning occurred, and the players were able

to attain F-values above 50.0 – indicative of intelligent playing behaviour.

5.6.4 Increase in swarm size

The impact of an increase in swarm size is depicted in figure 5.5, plotting the average Franken

performance values for each row in the individual information sharing structure’s performance

matrix. The Von Neumann architecture dominates yet again, with the LBest architecture

eventually equalling its rival structure’s performance. The GBest structure remains inferior

throughout.

The Von Neumann and LBest neighbourhood structures seem to show an overall gain in

performance from an increase in swarm size (also indicated by the faint trend-line plotted

over the LBest performance graph). There does however exist a definite sign of oscillatory

behaviour, perhaps indicating the sensitivity by each neighbourhood structure to a slight change

in neighbourhood size.

As promising as the sudden surge at the end of the plot seems, an increase beyond 50

particles was once again not investigated for computational reasons. The following chapter will

try to isolate the specific PSO-related parameter influences on performance, without adding

an additional computational overhead to the simulations.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 5. CHECKERS 83

5.7 Conclusion

This chapter continued the experimental analysis from the previous chapter on Tic-Tac-Toe, by

exposing the coevolutionary PSO-based learning algorithm to a much more complex problem

– the game of Checkers. An overview of the specific game rules that were implemented for the

experimental work were followed by a specification of PSO parameter selection, and various

ways of representing a board state before feeding it to the neural network.

Experimental work compared the performance of the various PSO information sharing

neighbourhood structures to evolve an intelligent Checkers playing agent. The performance

matrices, surface plots and graphs which illustrates the effect of an increase in hidden nodes

and swarm sizes all confirm that the Von Neumann structure still dominates with superior

performance.

The LBest neighbourhood structure has narrowed the performance gap between it and

the Von Neumann structure considerably. GBest remains an inferior neighbourhood structure

throughout.

The overall results remain disappointing, and more in-depth analysis of specific PSO pa-

rameters in the following chapter leads to a clearer understanding of the inner workings of the

training algorithm in the game learning domain.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6

Investigating performance factors

“Never discourage anyone... who continually makes

progress, no matter how slow”.

- Plato (427 BC - 347 BC)

This chapter aims to conduct a detailed investigation into the possible causes for the weak playing

performance of the PSO-evolved Checkers players up to date. The influence of all known PSO

parameters are experimentally examined, followed by a look at neural network related performance

issues, and various coevolutionary algorithm extensions. In the process, a particle dispersement

operator and a coevolutionary performance measure, based on a scoring system inspired by Formula

One Grand Prix, are introduced. The chapter concludes with an analysis of stricter training criteria.

6.1 Introduction

The previous chapter’s results for evolved Checkers players indicated a slight increase in intel-

ligent playing behaviour as compared to a true random player. However, the results did not

sufficiently show that the players were able to completely dominate the random player, as a

highly developed Checkers player should be able to do. Instead of focusing on the expansion of

the swarm sizes or neural network hidden layer sizes beyond the original test ranges, a study

of the core PSO parameters, neural network settings and coevolutionary training techniques is

instead conducted.

Unless stated otherwise, all the experimental work described in this chapter makes use of

84

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 85

a base configuration of 15 particles and 3 hidden nodes, utilising the Von Neumann infor-

mation sharing structure, and evolution over 500 epochs is assumed. The reason for these

specific choices are predominantly due to the speed impact associated with a large number

of simulations, which implies that small experimental configurations are preferred. The Von

Neumann information sharing structure proved to outperform both the standard GBest and

LBest structures in the previous two chapters, and is therefore the structure of choice. Based

on the initial Checkers performance matrices given in section 5.3, the selection of 15 particles

and 3 hidden nodes is justified due to the above average performance levels and overall space

for improvement that exists. The overall best performing particle is benchmarked against a

random-moving player for 150000 games as player one, and 150000 games as player two.

Section 6.2 covers the experimental analysis of the core PSO parameters, including the

influence of the maximum velocity (VMax), the cognitive (c1) and social (c2) acceleration

constants, the inertia weight, the LBest neighbourhood size, an increase in swarm size and an

increase in hidden layer size.

A series of variations to presenting the board as input to the neural network is analysed

in section 6.3, including different approaches to piece-value calculation and the use of different

‘windowing’ techniques to provide more spatial information to the network.

The standard coevolutionary approach to learning that has been followed up to now is

extended to include a novel set of new methods, loosely based on Formula One Grand Prix

[48] in section 6.4. The methods include a ‘race’ performance evaluator and particle disperse-

ment operator. The new methods are compared to well-established coevolutionary constructs,

including ‘Hall-of-Fame’ and random sampling.

The chapter concludes with a look at the behaviour of the PSO-training process under

stricter conditions in section 6.5, including examining the influence of the drawing measure

(100 moves), extending the training time and restricting the maximum move count.

Section 6.6 summarises some of the major experimental findings of this chapter.

6.2 Particle Swarm Parameters

The PSO algorithm and associated parameters were introduced in section 2.4 of the background

chapter on computational intelligence techniques. A small example of the impact on playing

performance due to ‘tweaking’ these parameter settings were given in section 4.6.6, as applied

to Tic-Tac-Toe. The various parameter settings are thoroughly investigated in the following

subsections to establish the impact each parameter may have on the playing performance of

PSO-evolved Checkers players. The performance values listed throughout the chapter corre-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 86

Figure 6.1: Influence of maximum velocity with trend-line.

spond to the computed Franken performance measure (F), as originally described in section

3.3.4.

6.2.1 Influence of maximum velocity (VMax)

During the initial experiments discussed in the previous chapter, no restriction was placed on

the maximum allowed velocity. Closer analysis of the weight values contained by each particle

showed an explosion in weight size roughly half-way through training. These very large weight

values had an undesired effect on the neural network and saturated the sigmoid activation

functions in use – ultimately resulting in weak playing performance.

A new set of experiments were conducted to test the impact of restricting the maximum

velocity for all the particles in the swarm. The maximum velocity was non-linearly adjusted

from 0.01 (strict velocity restriction) to 6553.6 (no effect). Figure 6.1 clearly shows a decline in

performance as the restriction is relaxed (trend-line added to ease the observation of average

performance). Small VMax values result in better performing agents, with scores increasing

from the previous best of 61.842 to a much more respectable 78.44 using a VMax of 0.2.

The different methods of restricting the maximum velocity also have a significant impact

on the performance, as illustrated in table 6.1. The constriction coefficient introduced by Clerc

Table 6.1: Performance of various methods to restrict the maximum velocity.

Method No VMax Strict Clamping Scaling Constriction

Performance (F-value) 61.84167 73.84900 70.70033 63.98267

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 87

Figure 6.2: Influence of c1 and c2 parameters.

[31] [32] and mentioned in section 2.4.2 results in the weakest performance. Proportionally

scaling the velocity vector to the new provided bounds – thereby still maintaining the velocity

direction – achieves significantly better performance. However, strictly clamping the maximum

velocity in all directions provides the best performance, even though conservation of the search

direction is not guaranteed.

6.2.2 Influence of c1 and c2

The cognitive (c1) and social (c2) acceleration constants influence how much the particle’s

velocity update is affected by the personal best position found in the search space thus far, and

the overall best position as defined by the PSO information sharing structure.

A set of experiments were conducted to test the effect of c1 and c2 on the performance

of the game playing agent. Using the improvement of a small VMax as a new benchmark

configuration, the default values for c1 (1.0) and c2 (1.0) resulted in a performance rating

above 70.0.

The first set of experiments kept the c1 value constant at 1.0, but adjusted the c2 value

between 0.1 and 2.9, at intervals of 0.2. The second set of experiments inverted this process, by

keeping c2 constant at 1.0, and adjusting c1 within the same boundaries. As can be seen from

figure 6.2, no significant improvement is made on the default score (represented by a straight

line – for visual reference).

The c1 and c2 values were subsequently not adjusted.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 88

Figure 6.3: Influence of inertia.

6.2.3 Influence of inertia weight

The use of an inertia weight, as described in section 2.4.2, balances out the influence of local

and global search capabilities of the swarm. Large inertia values facilitate global searches,

while smaller inertia values facilitate local searches. For the experimental work in this study, a

linearly decreasing inertia [123] was not used, but a static inertia experimentally determined.

It is important to remember the underlying relationship between the inertia weight and the c1
and c2 acceleration constants to result in convergent behaviour, as defined by equation 2.7 in

section 2.4.2. The following experimental test values were chosen correspondingly.

In order to locate the optimal inertia setting, experiments were conducted that statically

reduce the inertia term from 1.0 to 0.1. The resultant performance graph is depicted in figure

6.3, clearly showing a decreasing performance as smaller inertia values restrict the swarm to

only conduct a local search. An inertia value of 0.9 proved to work best for this particular

swarm size and hidden node configuration.

6.2.4 Influence of LBest neighbourhood size

Up to now, an inclusive LBest neighbourhood size of 5 particles has been used to conduct the

relevant experimental work for this study. The validity of this assumption was experimentally

Table 6.2: Performance of various LBest neighbourhood sizes.

Neighbourhood size 3 5 7 9 11 13

Performance (F-value) 76.833 76.842 73.643 70.330 71.505 65.632

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 89

Table 6.3: Architecture performance matrix - Updated standard GBest. Larger M and F-values

are preferred.

Hidden Units

Particles 3 5 7 10 15 25 45 Averages

5 (F) 66.10633 69.56650 65.14367 65.94967 66.52750 63.12750 66.96350 66.19781

(M) 19.08800 28.47600 15.93000 19.57333 19.49800 12.10267 21.26333 19.41876

± 0.00593 ± 0.00575 ± 0.00598 ± 0.00592 ± 0.00592 ± 0.00603 ± 0.00589 ± 0.00592

10 (F) 72.46783 67.52800 67.89250 69.05750 68.15083 68.67917 68.62900 68.91498

(M) 32.96067 23.07800 21.11733 24.42267 24.48400 24.73200 25.98267 25.25390

± 0.00566 ± 0.00586 ± 0.00589 ± 0.00583 ± 0.00583 ± 0.00582 ± 0.00580 ± 0.00581

15 (F) 68.68933 68.75617 72.02100 72.22083 69.93017 69.85800 67.66433 69.87712

(M) 24.84667 26.49333 32.83200 33.82400 27.27933 27.30533 23.77067 28.05019

± 0.00582 ± 0.00579 ± 0.00566 ± 0.00564 ± 0.00578 ± 0.00578 ± 0.00584 ± 0.00576

20 (F) 73.51700 70.38650 71.85467 70.09017 68.35667 71.33300 71.51667 71.00781

(M) 36.89333 28.91400 33.15133 26.85533 23.73267 30.23533 31.59467 30.19667

± 0.00557 ± 0.00574 ± 0.00565 ± 0.00578 ± 0.00584 ± 0.00572 ± 0.00569 ± 0.00571

25 (F) 70.18050 77.03050 69.61833 68.36950 72.86900 67.01367 75.18517 71.46667

(M) 28.92400 46.32067 27.41000 23.56933 35.23467 20.66667 40.15400 31.75419

± 0.00574 ± 0.00533 ± 0.00577 ± 0.00585 ± 0.00561 ± 0.00590 ± 0.00549 ± 0.00567

30 (F) 74.27133 74.74700 72.04833 67.35350 71.90417 70.07183 78.00850 72.62924

(M) 38.68533 38.53867 32.55267 21.40533 32.78000 29.69533 49.38533 34.72038

± 0.00552 ± 0.00553 ± 0.00567 ± 0.00589 ± 0.00566 ± 0.00573 ± 0.00524 ± 0.00560

35 (F) 75.11533 74.84517 73.51400 74.27633 75.02833 71.03483 76.39067 74.31495

(M) 39.55733 41.83267 37.45667 39.36400 40.81200 29.29800 43.87600 38.88524

± 0.00550 ± 0.00545 ± 0.00555 ± 0.00551 ± 0.00547 ± 0.00573 ± 0.00539 ± 0.00552

40 (F) 71.89133 67.05517 73.46500 69.66483 78.68883 74.03117 70.69083 72.21245

(M) 30.82467 21.16733 35.24267 26.33733 47.66933 36.05133 30.91467 32.60105

± 0.00570 ± 0.00589 ± 0.00561 ± 0.00579 ± 0.00529 ± 0.00559 ± 0.00570 ± 0.00565

45 (F) 74.90067 75.88683 74.86533 72.02700 76.68700 71.58050 73.73800 74.24076

(M) 41.02400 42.61467 40.33733 32.34600 42.64600 32.90400 37.31400 38.45514

± 0.00547 ± 0.00543 ± 0.00548 ± 0.00567 ± 0.00542 ± 0.00566 ± 0.00556 ± 0.00553

50 (F) 72.54500 75.76850 73.53067 74.83467 70.60967 74.67733 71.99017 73.42229

(M) 34.56467 41.60400 35.65600 40.83667 29.49000 38.39933 32.87467 36.20362

± 0.00562 ± 0.00545 ± 0.00560 ± 0.00547 ± 0.00573 ± 0.00553 ± 0.00566 ± 0.00558

Average F 71.96847 72.15703 71.39535 70.38440 71.87522 70.14070 72.07768

Average M 32.73687 33.90393 31.16860 28.85340 32.36260 28.13900 33.71300

± 0.005653 ± 0.005621 ± 0.005686 ± 0.005735 ± 0.005655 ± 0.005749 ± 0.005626

tested, by increasing neighbourhood sizes from 3 particles to 13 particles in step sizes of 2. The

results are depicted in table 6.2. A definite drop in performance is seen for neighbourhood sizes

larger than 5 particles, immediately confirming the accepted theory that large LBest neigh-

bourhoods approximate the performance of the GBest neighbourhood structure. The standard

GBest structure has consistently shown to be the weakest of the three neighbourhood struc-

tures, and large neighbourhood sizes are subsequently avoided. The inclusive neighbourhood

size remains set at 5 particles.

6.2.5 Updated neighbourhood structure comparison matrices

Taking the aforementioned parameter results into consideration, a new set of experiments were

conducted to investigate the influence of an increased swarm size versus an increase in hidden

layer size, for all three neighbourhood information sharing structures. VMax was restricted to

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 90

Table 6.4: Architecture performance matrix - Updated standard LBest. Larger M and F-values

are preferred.

Hidden Units

Particles 3 5 7 10 15 25 45 Averages

5 (F) 65.91450 66.75150 63.48433 64.75767 62.61183 61.94600 66.91483 64.62581

(M) 18.04067 23.28867 12.41267 17.23667 10.74067 9.56667 17.07133 15.47962

± 0.00594 ± 0.00585 ± 0.00603 ± 0.00596 ± 0.00605 ± 0.00607 ± 0.00596 ± 0.00598

10 (F) 69.32417 69.56550 66.78167 70.60667 68.93500 66.36750 72.36100 69.13450

(M) 28.15000 26.69733 20.82200 30.35067 25.39267 20.90933 34.63533 26.70819

± 0.00576 ± 0.00579 ± 0.00590 ± 0.00571 ± 0.00581 ± 0.00589 ± 0.00562 ± 0.00578

15 (F) 73.97433 76.86050 75.00300 76.23917 76.38517 79.21417 77.93750 76.51626

(M) 36.17067 44.20133 39.03533 42.62733 40.39733 48.99200 47.38000 42.68629

± 0.00558 ± 0.00538 ± 0.00552 ± 0.00543 ± 0.00548 ± 0.00525 ± 0.00530 ± 0.00542

20 (F) 79.11733 76.35300 76.68300 78.98633 76.36883 78.81500 79.17867 77.92888

(M) 47.20400 42.97733 43.31800 48.45067 44.10600 47.05800 49.08600 46.02857

± 0.00530 ± 0.00542 ± 0.00541 ± 0.00526 ± 0.00539 ± 0.00530 ± 0.00525 ± 0.00533

25 (F) 78.68533 81.43967 77.00550 79.14917 75.93550 80.64050 77.14900 78.57210

(M) 47.52200 55.74867 44.25933 49.61067 41.16067 53.49667 43.40733 47.88648

± 0.00529 ± 0.00504 ± 0.00538 ± 0.00523 ± 0.00546 ± 0.00511 ± 0.00540 ± 0.00527

30 (F) 79.04300 82.66250 78.86217 81.07483 79.21200 81.13083 78.18250 80.02398

(M) 48.74200 57.77267 46.88600 54.05667 48.00333 53.33800 45.54733 50.62086

± 0.00526 ± 0.00497 ± 0.00531 ± 0.00509 ± 0.00528 ± 0.00512 ± 0.00535 ± 0.00520

35 (F) 80.89917 83.43150 81.61367 80.11333 81.08517 75.31450 82.44183 80.69988

(M) 53.77133 60.62067 54.97000 51.43000 55.26933 41.27867 57.43667 53.53952

± 0.00510 ± 0.00487 ± 0.00507 ± 0.00518 ± 0.00506 ± 0.00546 ± 0.00498 ± 0.00510

40 (F) 82.49650 80.15100 80.37150 79.43567 82.23800 81.85217 80.16600 80.95869

(M) 57.80933 51.46133 53.18133 48.99533 56.42467 55.64733 50.69133 53.45867

± 0.00497 ± 0.00518 ± 0.00512 ± 0.00525 ± 0.00502 ± 0.00504 ± 0.00520 ± 0.00511

45 (F) 79.64350 83.26300 79.74383 81.68783 80.61200 79.97117 78.60233 80.50338

(M) 50.81333 59.64200 50.64800 54.71400 51.31600 50.14200 47.07933 52.05067

± 0.00520 ± 0.00491 ± 0.00520 ± 0.00507 ± 0.00518 ± 0.00522 ± 0.00530 ± 0.00515

50 (F) 79.46400 81.33483 83.63583 81.07350 80.50183 81.21583 81.12033 81.19231

(M) 48.65667 53.79933 61.69933 53.85133 52.43467 53.12333 52.68667 53.75019

± 0.00526 ± 0.00510 ± 0.00483 ± 0.00510 ± 0.00515 ± 0.00512 ± 0.00514 ± 0.00510

Average F 76.85618 78.18130 76.31845 77.31242 76.38853 76.64677 77.40540

Average M 43.68800 47.62093 42.72320 45.13233 42.52453 43.35520 44.50213

± 0.00537 ± 0.00525 ± 0.00538 ± 0.00533 ± 0.00539 ± 0.00536 ± 0.00535

0.2, c1 and c2 set to 1.0 each, inertia equalled 0.9 and in the case of the LBest experiments an

inclusive neighbourhood structure of 5 particles was used. The results are tabulated as Franken

(F) and Messerschmidt et al. (M) performance values, with a corresponding confidence interval.

Table 6.3 depicts the improved performance matrix for the GBest structure, followed by an

improved matrix for LBest in table 6.4 as well as for Von Neumann in table 6.5.

Examining the best performing individual configurations only, it seems as if the LBest

structure has surpassed the Von Neumann structure’s dominance illustrated in previous chap-

ters. The best LBest player scored 83.63583 with a swarm size of 50 particles and a neural

network containing a hidden layer size of 7 nodes. This performance value constitutes a dra-

matic increase over the best performance achieved before optimisation, as mentioned in section

5.6.1. The previous overall best performance score was 62.7935, achieved by the Von Neumann

structure using 50 particles and 7 hidden nodes.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 91

Table 6.5: Architecture performance matrix - Updated Von Neumann. Larger M and F-values

are preferred.

Hidden Units

Particles 3 5 7 10 15 25 45 Averages

15 (F) 75.95300 72.52350 73.59017 71.45667 72.86750 74.22300 69.68333 72.89960

(M) 40.91400 33.35933 35.13533 31.03000 32.80067 36.33533 28.30600 33.98295

± 0.00547 ± 0.00565 ± 0.00561 ± 0.00570 ± 0.00566 ± 0.00558 ± 0.00576 ± 0.00563

20 (F) 75.55967 77.35300 77.90983 75.52117 79.37950 78.03467 71.58267 76.47721

(M) 40.12333 45.29200 47.26800 40.71800 50.79867 47.10533 32.22267 43.36114

± 0.00549 ± 0.00535 ± 0.00530 ± 0.00547 ± 0.00520 ± 0.00530 ± 0.00567 ± 0.00540

25 (F) 78.49100 77.43033 76.62333 78.93833 76.52833 75.61333 76.21133 77.11943

(M) 48.29533 43.20333 41.83000 48.33467 44.52800 38.95400 41.19467 43.76286

± 0.00527 ± 0.00541 ± 0.00545 ± 0.00527 ± 0.00537 ± 0.00552 ± 0.00546 ± 0.00539

30 (F) 80.75833 78.20650 76.58350 76.15117 79.75383 78.01050 75.68633 77.87860

(M) 53.67467 46.41733 42.91067 42.68400 50.06600 47.18333 41.73200 46.38114

± 0.00511 ± 0.00532 ± 0.00542 ± 0.00542 ± 0.00522 ± 0.00530 ± 0.00545 ± 0.00532

35 (F) 79.40183 79.20450 78.70950 77.66483 75.65967 82.54383 80.39733 79.08307

(M) 48.39467 50.14800 47.75600 43.72400 41.51333 58.78333 52.95000 49.03848

± 0.00527 ± 0.00521 ± 0.00528 ± 0.00540 ± 0.00545 ± 0.00494 ± 0.00513 ± 0.00524

40 (F) 79.47700 81.67550 79.14467 79.32900 81.52617 82.88750 78.59083 80.37581

(M) 49.57733 55.73733 48.20867 48.15933 55.52667 58.53133 45.68867 51.63276

± 0.00523 ± 0.00504 ± 0.00527 ± 0.00527 ± 0.00505 ± 0.00495 ± 0.00534 ± 0.00516

45 (F) 77.14233 80.12483 80.60900 81.08250 79.23583 80.26700 81.81617 80.03967

(M) 42.25333 50.60400 52.86733 54.29133 47.64267 51.90333 55.19067 50.67895

± 0.00543 ± 0.00520 ± 0.00513 ± 0.00509 ± 0.00529 ± 0.00516 ± 0.00506 ± 0.00519

50 (F) 80.26183 80.83600 82.09100 77.57900 79.60783 79.03350 81.44800 80.12245

(M) 50.95600 51.91333 56.14667 46.69067 49.93733 47.71933 55.13667 51.21429

± 0.00519 ± 0.00516 ± 0.00503 ± 0.00531 ± 0.00522 ± 0.00529 ± 0.00506 ± 0.00518

Average F 78.38063 78.41927 78.15763 77.21533 78.06983 78.82667 76.92700

Average M 46.77358 47.08433 46.51533 44.45400 46.60167 48.31442 44.05267

± 0.00531 ± 0.00529 ± 0.00531 ± 0.00537 ± 0.00531 ± 0.00525 ± 0.00537

The optimised Von Neumann performance improves on its previous best score, but fails

to maintain its dominance as overall best neighbourhood structure. The optimised best Von

Neumann score of 82.88750, achieved using 40 particles and 25 hidden nodes, is however still

within reach of the aforementioned overall optimised best score of LBest.

The GBest structure also manages to improve its previous performance levels, yet remains

the worst performer among the three structures – only scoring 78.68883 with a swarm size of

40 particles and a neural network with 15 hidden nodes.

When computing overall averages for similar regions of the different performance matrices,

the newly established performance trend continues. The LBest structure still outperforms

both the Von Neumann and GBest structures, with an average performance of 79.5494. Von

Neumann trails LBest with a performance of 77.9995, and GBest fails once more with 72.3964.

Before making use of a visual representation (such as a surface plot) of the performance

matrices to analyse global trends, it is clear from quick inspection of the performance values that

the use of the optimised PSO parameters have resulted in a significant performance increase

for all three neighbourhood structures.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 92

Figure 6.4: Increase in swarm size.

6.2.6 Increase in swarm size

In the previous chapter, an increase in swarm size was shown to benefit the Von Neumann

and LBest information sharing structures. After applying the new PSO parameter values and

calculating the performance matrices, the effect of an increase in swarm size can once again be

studied. Figure 6.4 graphically depicts the average performance F-values, computed for each

row of the relevant performance matrices and plotted in order of increasing swarm size.

The first observation involves the clear performance ranking of the various neighbourhood

structures. LBest, on average outperforms Von Neumann in all instances. GBest remains

inferior throughout. An increase in swarm size also shows a definite increase in performance

for all structures. Large swarm sizes cause slight oscillatory behaviour for the GBest structure,

whereas both the LBest and Von Neumann structures show signs of converging on a stable

solution.

On average, the performance values are significantly larger than their unoptimised prede-

cessors, showing more controlled gains in performance that are less sensitive to the increase in

swarm size – contrary to previous findings.

6.2.7 Increase in hidden layer size

Figure 6.5 graphically depicts the average performance F-values for each column in the different

performance matrices, representing an increase in hidden layer size. The performance ranking

of the three neighbourhood structures are once again clearly visible, with LBest outperforming

Von Neumann, and GBest performing the worst.

Slight oscillatory behaviour is still present in all three structures’ average performance

plots, and the close relationship between LBest and Von Neumann as described in the previous

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 93

Figure 6.5: Increase in hidden layer size.

chapter is no longer visible. No definite performance trend due to the increase in hidden

nodes can be established. Even though certain hidden layer sizes result in slightly improved

performance values, the overall deviation between the F-values are not significant.

The optimised performance values outperform the previously computed average perfor-

mance values yet again, resulting in a larger distinction between the worst (GBest) performer

and the other two structures’ performance.

Figure 6.6: Improved performance surface plot.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 94

Figure 6.7: Individual gain by each neighbourhood structure.

6.2.8 Updated surface plots

Continuing with the visual analysis scheme applied to Tic-Tac-Toe and Checkers in the pre-

vious chapters, figure 6.6 depicts the various interleaved surface plots for the specific neigh-

bourhood structure performance matrices. Each point on the surface corresponds to a height

in a heightmap, represented by the performance (F-value) of a specific configuration for each

neighbourhood structure.

A number of immediate observations can be made, starting with the absolute dominance

of the LBest structure across large portions of the various configurations. The Von Neumann

structure is able to outperform the LBest structure in a selection of very small and very large

configurations, but the overall superior mid-range configuration performance is attributed to

LBest. GBest does even worse than expected, without a single point of dominance across the

complete configuration set.

It can also be valuable to examine the individual gains made by the various neighbourhood

structures, when compared to the performance matrices provided in section 5.6.1 of the previous

chapter. A series of comparison surface plots are illustrated in figure 6.7, starting with the

performance increase of the GBest structure, followed by LBest and finally Von Neumann.

The GBest structure’s improvement seems to be erratic at various configuration points of

the performance matrix, with a slight indication of possible amplification of previously existing

‘hot-spots’ of good performance. The LBest structure shows a much more constant increase

in performance across all configurations, whereas the Von Neumann structure shows more

pronounced improvement in larger configurations.

Once again, all structures showed definite improvement over previously calculated surfaces,

with a much more acceptable intelligent playing performance and F-values reaching into the

mid 80’s against a random-moving player.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 95

Figure 6.8: Overall PSO neighbourhood structure comparison.

6.2.9 Overall PSO comparison

Before departing from any PSO-specific investigation, it is perhaps necessary to examine the

application of neighbourhood specific improvements developed in recent years – specifically

the introduction of GCPSO introduced by Van den Bergh [137] and described in section 2.4.3.

GCPSO was originally intended as an improvement on the standard GBest neighbourhood

structure, allowing for an improved local search of the search space by the global best particle

that reduced the probability of stagnating on suboptimal solutions. The GCPSO optimisation

is extended to the LBest and Von Neumann neighbourhood structures, hereafter referred to as

LBGCPSO and VNGCPSO respectively.

Some experimental work was conducted to determine the adequate GCPSO search term

that should be used for the remainder of the simulations in this section. Search terms were

tested from 0.1 to 2.1, at intervals of size 0.2 in each case. The experimental results are listed

in table 6.6 for the GCPSO algorithm as applied to the standard GBest structure. Search

terms with values larger than 0.3 showed serious oscillatory behaviour, resulting in definite

decreasing performance as the search term was increased. A GCPSO search term value of 0.3

was selected to complete the remainder of the experiments, due to its superior performance.

Figure 6.8 graphically depicts the specific performance differences for the designated base

experimental configuration of 15 particles and 3 hidden nodes. The expected improvement

Table 6.6: Performance of various GCPSO search term sizes.

Search term size 0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10

Performance (F-value) 71.84 74.01 68.58 70.50 66.90 70.00 66.31 70.43 67.75 67.85 68.02

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 96

for GBest is evident, and repeated for the Von Neumann (VN) structure’s GCPSO variant as

well. Somewhat surprisingly, the LBest structure does not seem to benefit from the GCPSO

enhancements for this small configuration setting, but is expected to benefit on larger config-

urations.

It is encouraging to see that the VNGCPSO structure is able to outperform the LBest

structure, with the VNGCPSO algorithm’s F-value of 77.063 starting to approach the very

good intelligent playing performance achieved by larger configurations. It should be noted that

the GCPSO enhancement is selectively chosen for this small configuration size, and more in-

depth analysis of more recent PSO algorithm enhancements, as well as the GCPSO performance

on larger configurations are left as future work resulting from this research.

6.3 Neural network input representation

A previous discussion in section 5.5.3 on specific board state representation as input to the

neural network highlighted the values assigned to different Checkers pieces, and the subse-

quent ‘my piece versus opponent piece’ value system. The following subsections investigate

possible variations to the standard representation, with section 6.3.1 covering different piece

value schemes, and section 6.3.2 investigating possible windowing methods that will allow for

more spatial information about the board to be captured.

It should be noted that apart from the insights gained during the previous section on the

effect of the maximum velocity and inertia terms to the PSO performance, the base exper-

imental configuration has not changed to reflect any superior swarm size, hidden layer size

or information sharing structure. The configuration used for the experimental work for the

remainder of this chapter still relies on the Von Neumann structure, 15 particles and 3 hidden

nodes. The c1 and c2 values remain fixed at 1.0, while the inertia and maximum velocity terms

are set to 0.9 and 0.1 respectively.

The aim of the experimental work is not to evolve the most successful game playing agent,

but instead analyse the impact that various other factors have on the game playing performance.

The experimental results should be compared in this light.

6.3.1 Numeric input variations

Up to now, the different values assigned to the various Checkers pieces were evenly sampled

in the range (0, 1). A player’s personal kings were each represented by 1.0, and personal men

represented as 0.75. Open spaces were represented by 0.5, while opponent men and kings were

represented by 0.25 and 0.0 respectively. This can also be referred to as a ‘centred’ approach

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 97

to piece valuation, with the open space representing the pivot to the scoring structure.

Upon examination of a third-party evaluation function (used in chapter 7 for benchmarking,

and hereafter referred to as SmartEval), a different organisation to piece valuation became

apparent. The author of SmartEval [51] assigned 64 points for a personal king, 16 points to

an opponent king, 4 points for a personal man, 1 point for an opponent man, and 0 for an

open space. The piece values were no longer pivoted around the open space, and a definite

exponential decrease to the different piece values were shown.

A set of experimental tests were conducted to test the influence of the different piece

value representations on the playing performance of the PSO-evolved players. A variation

on the aforementioned non-centred (or linear organisation) approach to piece valuation were

additionally examined. This variation scaled the large piece values originally assigned by the

SmartEval author to smaller values within the range (0, 1).

The experimental results concluded that the original linear organisation of piece values as

used by SmartEval performed the worst when applied to neural network input, with an F-value

of 70.319. This can mainly be attributed to the saturation of the sigmoid activation function

due to the use of the large numeric piece values. The scaled variant of the SmartEval piece value

scheme performed better, with an F-value of 74.196, thereby confirming the possible cause of

function saturation in the previous case. The original ‘centred’ approach to piece valuation

proved to be the most successful piece representation scheme, with an F-value of 75.953.

Chellapilla and Fogel [53] [27] [26] evolved the piece values for personal and opponent kings.

Their observations include a change of playing strategy that would be focused on crowning a

piece above possibly capturing an opponent piece in the near future, or vice versa. Manual

adjustment of the ratios between king and man piece value sizes did not yield a definite increase

or decrease in performance, but a similar change in playing strategy is expected. Detailed

analysis of playing behaviour is however listed as future work resulting from this study, and

the evolution of king values are not further experimentally examined.

The original piece value representation scheme subsequently remains unchanged.

6.3.2 Windowed input

As defined by the rules of the game, only 32 squares of the board are valid playing areas. These

32 squares represented the inputs to the neural network, with each square’s value corresponding

to the current value of the piece residing on it, or the value assigned to an empty space.

Chellapilla and Fogel [53] [27] [26] made use of a ‘sliding window’ in an effort to provide

more detailed information regarding the spatial aspects of the board to the neural network.

The first window size has equal sides of 8 blocks, encompassing the whole board, and totalling

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 98

Figure 6.9: Various window formation schemes.

32 inputs. The window is then reduced by 1 square along the length and width to form a 7-by-7

input window, capable of ‘shifting’ three times to cover the complete board (one row down, or

one column right, or a combination of the two). The smaller window results in an additional

98 inputs. The authors continue to minimise and shift the window until they reach a window

size of 3, resulting in a grand total of 854 inputs. The neural network architecture in their

work includes an additional hidden layer referred to as the ‘spatial processing layer’, consisting

out of 91 neurons to ‘process’ the additional inputs, and hopefully extract some knowledge

regarding the mobility of pieces.

A scaled down implementation of the aforementioned ‘sliding window’ approach is followed

in this section’s experimental work. The sliding window is computed for sizes 8-by-8 to 2-by-2,

decreasing by a single block in both dimensions for each subsequent calculation. However, the

windows are not concatenated to form a combination of various ‘resolutions’ of the information.

Instead, the window sizes are examined individually for performance, and the best performing

window size is compared to a custom created window. Both approaches are illustrated in figure

6.9. The custom window scheme consists of five 4-by-4 sub-windows, four of which are located

in the corners of the board, and the fifth centrally placed to overlap the neighbouring windows

and hopefully emphasise the importance of centre square control.

The first experiments aim to evaluate the effectiveness of the individual ‘sliding-window’

techniques. The experiments were conducted with swarm sizes of 15 particles and 5 hidden

nodes. The results are depicted in table 6.7, with the 7-by-7 window size outperforming the

other listed sizes by scoring an F-value of 76.879.

The 7-by-7 sliding window is compared to the custom created window by competing against

three different opponents: a random-moving player, a piece-count based player and the afore-

mentioned SmartEval player. More detailed information on the latter two opponents are

presented in the following chapter, and the results are only listed to compare the relevant

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 99

Figure 6.10: Influence of window formation.

windowing techniques.

Figure 6.10 graphically depicts the performance of the two approaches. The sliding win-

dow is able to outperform the custom window when competing against the random-moving

and piece-count based players, but fails with a small margin against the SmartEval opponent.

Overall, the best performance against the random player is set by the sliding-window tech-

nique, with an F-value of 76.879 – a significant improvement over the previous ‘standard’ input

performance of 72.524.

An investigation into the use of the concatenated sliding window inputs as demonstrated

by Chellapilla and Fogel [53] [27] [26] is left for future work resulting from this study.

Table 6.7: Performance of sliding-window formation techniques.

Window dimensions Total inputs Performance (F-value)

8-by-8 32 72.524

7-by-7 98 76.879

6-by-6 162 73.331

5-by-5 200 75.093

4-by-4 200 73.408

3-by-3 162 74.925

2-by-2 98 76.092

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 100

6.4 Coevolutionary techniques

After reviewing the influence of specific parameters relating to PSO along with variations of

possible board state representations earlier in this chapter, it is now necessary to investigate the

coevolutionary nature of the training algorithm to identify possible performance enhancements.

The experimental work to date have only relied on a primitive tournament scheme, based on

random sampling of five opponents, to quantify individual playing performance during each

generation. This section will expand on this basic coevolutionary scheme by introducing a

number of novel approaches to coevolution, based on Formula One Grand Prix [48].

6.4.1 Introducing Grand Prix methods

Formula One Grand Prix is a well-known international motor-sport, governed by the rules set

forth by the Fédération Internationale de l’Automobile (FIA) [48]. The game of Checkers in

itself has very little in common with Grand Prix (GPX), apart from the elements of compe-

tition and skill, as well as the emergence of a victorious competitor at the end. Due to the

points scoring system associated with GPX racing, it also shares similarities with non-zero

sum games. Drivers (players) finishing within a certain range of positions behind the victor is

assigned a fraction of the winning points. In a number of cases the racing teams require their

drivers to cooperate to achieve a greater goal, be it the increase of possible vehicle constructor

championship points or increasing the aspiring world champion’s lead on the overall points

leader board. This may even sometimes require a driver to give up a winning position.

The major elements borrowed from current Grand Prix motor-sport are the concepts of

‘racing seasons’ in which a number of players (drivers) participate, as well as a variation of

the corresponding scoring system for individual drivers. The first application of the borrowed

elements is a coevolutionary racing system, more clearly described in section 6.4.2. A particle

dispersement operator that makes use of the GPX scoring system is introduced in section 6.4.3,

which resembles some characteristics from particle repelling – previously discussed in section

2.4.5.

6.4.2 Race performance

Blair and Pollock mention the occurrence of the so-called ‘Buster Douglas effect’ in their paper

on coevolutionary environments and TD-Gammon [18]. Buster Douglas was world heavyweight

boxing champion for nine months in 1990. The similarity between the short-lived boxing

champion and co-evolving game players is simply the occurrence of a seemingly strong player

created by chance through random mutation, that is able to perform very well initially, yet

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 101

fail soon thereafter. The quick success and subsequent failure of the individual can simply

be attributed to its exploitation of a common genetic weakness in the population, while still

lacking robustness due to its ‘lucky’ genetic structure.

Grand Prix has similarly experienced so-called ‘once-shot wonders’, with certain drivers

securing a win against all odds. The GPX points system does however favour consistency, and

it is this consistency of playing performance in the coevolutionary environment that will be

rewarded through the GPX racing scheme.

A predefined period of evolution bordering the maximum number of allowed epochs is

selected to constitute the racing season between the different players. For example, the last

10% of generations may be allocated to the racing season. As soon as the season starts,

each subsequent generation can be seen as a specific race that needs to be completed. After

each generation, all the individuals (including personal best particles) are temporarily sorted

according to their generation-specific coevolutionary scores, and in decreasing number of total

moves if necessary. The reasoning behind this ordering is simply that a strong player will be

able to defeat its opponent in as few moves as possible, whereas a weak player may struggle

and need more moves. Due to the random sampling selection scheme in use, a strong and

weak player may end up with identical coevolution scores depending on the level of randomly

selected opponents they encountered.

The top five best performing players are assigned GPX points, after which the original

population ordering is restored. Each player’s GPX points total is maintained separately from

its coevolution points. The GPX points accumulate over the racing season, in contrast to the

coevolution points that are recalculated for each new generation. At the end of the training

process (end of the racing season), the population is sorted according to their final GPX scores,

and the top player is benchmarked accordingly.

It should be noted that the GPX scores do not influence the training process, and only

serves as a method to identify more consistent performing players for benchmarking, hopefully

eliminating any ‘one-shot wonders’ that outperformed their peers in the very last generation.

Change to algorithm

Figure 6.11 lists an adapted version of the training algorithm first introduced in section 3.5,

which now includes a GPX racing season. For the sake of brevity, a condensed description is

used where no change has been made to a specific section of the algorithm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 102

1. Instantiate population of agents.

2. Repeat for 500 epochs:

(a) Add each agent’s personal best NN configuration to the population.

(b) For each individual in the population:

i. Randomly select 5 opponents and play a game against each, always

starting as ‘player one’.

ii. Assign +1 point for a win, -2 for a loss, and 0 for a draw after every game.

(c) Compute best performing particle according to PSO algorithm in use.

(d) For each agent (excluding personal best) update position and velocity according

to standard PSO equations.

(e) If GPX racing season has started:

i. Sort population according to coevolutionary points score, and smallest num-

ber of moves if necessary.

ii. Assign separate GPX scores to top 5 players, maintaining the sum of all

previous GPX points.

3. Determine single best performing agent in whole population according to final GPX

race ranking.

4. Perform benchmarking and compute performance values.

Figure 6.11: Adapted training algorithm to include GPX racing.

Influence of percentage of generations assigned to race

The first series of experimental tests aim to determine the influence of the percentage of gener-

ations assigned to the racing season, assuming a linearly decreasing scoring system. Since the

search space in a coevolutionary environment represents a ‘moving target’ for possible optimi-

sation, a balance should be maintained between players that were able to perform well during

the initial stages of evolution, and those that perform well near the end of the evolutionary

process. One possible drawback of assigning a large percentage of generations to the racing

season, is the possibility of an early dominating player being selected for benchmarking based

on previously assumed ‘superior performance’. If a player is able to build up a ‘reserve’ of GPX

points, it may be possible to secure its selection for benchmarking quite early on in the season.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 103

Restricting the duration of the racing season may alleviate this possible problem.

Subsequent experiments were conducted with racing seasons represented by 5%, 10%, 20%

and larger generation percentages until the maximum (100%) was allocated, with the remaining

increased percentages occuring at intervals of 20%. The results do not show a consistent

performance trend associated with an increased racing season duration. On average, a slight

increase in performance is noticed for small (and decreasing) racing seasons, with a pronounced

performance increase occuring at a duration of 40% (with an F-value of 77.301). Its isolated

occurance however does not seem to make it statistically significant, and the results remain

inconclusive for the specific baseline PSO and neural network configuration.

Scoring system

The second series of experimental tests aim to examine the impact of an exponential decreasing

GPX scoring system, similar to the pre-2003 FIA [48] regulations, and compare it to the current

and more linearly decreasing scoring system. Under the exponential decreasing scoring system

implemented for the experimental work in this study, the top five best performing players are

assigned points in the following order (starting with the winning player): 12, 8, 5, 3, 2. In

contrast, the linear decreasing system assigns GPX points in the following order (also starting

with the winning player): 12, 10, 8, 6, 4.

The distinction between linear and exponentially decreasing points systems stem from the

imbalances experienced in the pre-2003 Formula One Grand Prix season, in which a winning

driver was favoured too much and consistency not clearly rewarded. The new scoring regula-

tions have addressed this balancing problem with the introduction of the linearly decreasing

points system. It should be noted that the exact points allocated to the players in these exper-

iments do not correspond 100% with the FIA regulations [48], and should instead be regarded

as being based on the original systems. No attempts have been made to test larger (or smaller)

individual point sizes.

Experimental tests once again involved adjusting the racing season duration in an identical

manner to the aforementioned experiments. The experimental results are depicted in table

6.8. Apart from severe oscillatory behaviour, the exponential decreasing system seems to

favour small durations, showing a definite increase in average performance for decreasing racing

seasons. Apart from the observed trend on average performance, no definite conclusion can

be made regarding the superiority of the exponential decreasing or linearly decreasing scoring

systems. Overall, it is encouraging to notice some performance increases due to the GPX racing

season scheme, and extending the baseline PSO and neural network configuration may yield

more consistent results, but its examination is left for future work resulting from this research.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 104

6.4.3 Particle dispersement

In the traditional evolutionary computing schemes the weak performing individuals are culled

from the population through an elitism operator. After culling has been completed, the pop-

ulation size is restored by reproduction and subsequent addition of new individuals to the

competition pool.

Culling individuals in the PSO context is not completely viable in this coevolutionary

scheme, due to the inclusion of the personal best position as an additional player in the com-

petition pool. An alternative to culling for coevolutionary PSO algorithms is presented here,

utilising the aforementioned GPX scoring system and particle repelling techniques.

As the coevolutionary training process progresses, certain members of the swarm may get

stuck in false local optima, which may negatively affect the overall training of the swarm.

The particle dispersement operator aims to alleviate this problem by re-initialising a certain

percentage of the worst performing particles to random positions in the search space. These

newly dispersed particles’ personal best positions are not re-initialised, but instead serve as a

‘homing beacon’ for the dispersed particles to guide them in the general direction of previously

known suboptimal solutions. The premise is that in the worst case, a particle will return to

its previously inferior position. The possibility does however exist that the particle may find a

better solution en-route to the inferior solution instead. This may cause a shift in the global

search of the swarm, potentially dragging the prematurely converged particles from their false

optima towards the newly found superior solution.

Instead of assigning a contiguous range of generations to a racing season as was done in

the previous coevolutionary extension, the particle dispersement operator is invoked at regular

intervals throughout the duration of the training process. At each invocation, the individuals

(excluding personal best particles) are sorted according to their current coevolutionary points

Table 6.8: Performance of various GPX scoring systems.

Season duration (%) Linear decrease Exponential decrease

100 74.977 73.107

80 73.475 71.264

60 73.889 76.591

40 77.301 70.334

20 72.887 78.412

10 74.816 72.855

5 75.169 78.025

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 105

total, and shortest number of moves made if applicable. The reasoning behind this sorting

scheme has already been discussed in section 6.4.2.

After sorting the population, a section of the worst performing particles are re-dispersed

into the search space. The size of the re-dispersed section is constant throughout the whole

simulation, but the specific size selection is experimentally examined below. Re-dispersing

a particle involves re-initialising its position (weight) vector according to the scheme devel-

oped by Wessels and Barnard [146], described in section 3.2.1. The velocity vector as well

as the personal best position remain unchanged. The best performing particles are assigned

GPX points according to the system described in section 6.4.2. GPX scores are however not

maintained across multiple dispersement invocations. After evolution has completed, the pop-

ulation is sorted according to the final GPX scores, and the best performing particle selected

for benchmarking against a random-moving player.

Change to algorithm

Figure 6.12 lists an adapted version of the training algorithm first introduced in section 3.5,

which now includes a particle dispersement operator based on the GPX scoring system and

particle repelling techniques. For the sake of brevity, a condensed description is used where no

change has been made to a specific section of the algorithm.

Influence of dispersement size

The number of particles selected for dispersement should be experimentally examined. The

baseline PSO and neural network configuration of 15 particles, 3 hidden nodes and utilising

the Von Neumann structure is still applicable. A linear GPX scoring scheme is implemented

across 500 generations, and the number of intervals at which the dispersement operator should

be invoked is arbitrarily set to 50. Further experimental analysis on dispersement intervals are

conducted in the following subsection.

Dispersement sizes were selected in the range [20%, 80%], at intervals of 10%. The results

from the experiments are listed in table 6.9. A definite decline in performance is observed as a

larger percentage of the swarm is re-dispersed into the search space. This would seem logical,

Table 6.9: Performance of various re-dispersement sizes over 50 intervals.

Dispersement size (%) 20 30 40 50 60 70 80

Performance (F-value) 77.812 76.034 73.106 75.696 75.848 69.571 70.114

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 106

1. Instantiate population of agents.

2. Repeat for 500 epochs:

(a) Add each agent’s personal best NN configuration to the population.

(b) For each individual in the population:

i. Randomly select 5 opponents and play a game against each, always

starting as ‘player one’.

ii. Assign +1 point for a win, -2 for a loss, and 0 for a draw after every game.

(c) Compute best performing particle according to PSO algorithm in use.

(d) For each agent (excluding personal best) update position and velocity according

to standard PSO equations.

(e) If current generation requires dispersement:

i. Sort population according to coevolutionary points score, and smallest num-

ber of moves if necessary.

ii. Select a percentage of the worst performing players, and re-initialise position

(weight) vectors according to Wessels and Barnard.

iii. Assign separate GPX scores to top 5 players, not maintaining the sum of all

previous GPX points.

3. Determine single best performing agent in whole population according to final GPX

points ranking.

4. Perform benchmarking and compute performance values.

Figure 6.12: Adapted training algorithm to include particle dispersement.

as a significant number of particles may actually have converged on good solutions, which are

subsequently ‘lost’. A dispersement size of 20% seems to provide the best results, attaining an

F-value of 77.812.

Influence of dispersement interval

As was mentioned in the previous discussion on particle dispersement, the frequency at which

dispersement takes place may also have a significant impact on performance. After particles

have been re-dispersed, they should be allowed to explore the search space for a certain number

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 107

Figure 6.13: Influence of dispersement interval.

of generations before possibly being re-dispersed again. This will allow enough time to re-

converge on possible optimal solutions.

The aforementioned experimental setup is repeated, with the addition of an arbitrarily

chosen dispersement size of 50%. The experimental results are graphically depicted in figure

6.13, along with a faint trend-line aiding visual analysis. A clear increase in performance is

observed when using smaller intervals. The best performance is achieved with 25 intervals per

500 generations (or 5%), scoring an F-value of 76.534.

It is once again encouraging to see that the implementation of the particle dispersement

operator is able to increase the performance of the baseline PSO and neural network configu-

ration of 73.849. Extending the investigation of dispersement performance into larger swarm

and hidden layer sizes is left as future work resulting from this research.

6.4.4 Implementing ‘Hall of Fame’

The concept of a ‘Hall of Fame’ (HOF) was covered in section 2.5.2. To quickly recap, the HOF

maintains a list of previous best performing players, which gets updated at selected intervals

to include the newly evolved players. Before the new players are inserted into the HOF, a

mini-tournament is held among the existing HOF inductees. The results of this ‘all versus all’

tournament decide which of the previous best solutions should be permanently discarded from

the HOF, in order to make room for the new players. The ‘all versus all’ tournament scheme

relates to how the players compete against each other, which in this case means each player

plays against each other player in a round-robin fashion – no random selection takes place.

The HOF has a fixed size for the duration of the simulation.

Due to the constantly changing search landscape native to coevolutionary techniques, it

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 108

may be possible for previously found ‘good’ solutions to be lost due to the current playing

focus of the swarm. The HOF’s main purpose is to make sure that newly evolved players are

still able to compete against previously found solutions, increasing the robustness of the final

solutions.

This section implements the HOF technique for co-evolving Checkers players, introducing

the GPX scoring scheme as a simple ordering technique for the ‘all versus all’ tournaments.

After each tournament is completed, the players are ranked according to their coevolution

points and minimum number of moves where applicable. This ordering is used to select the

number of players that must be replaced by the newly evolved players. It should be noted that

the players inducted into the HOF do not continue training while they compete against each

other, but instead serve as ‘snapshots’ of previous optimal players.

Three different aspects regarding any HOF implementation is experimentally studied below,

including the influence of the HOF size, the number of inductees replaced at a time, and the

number of intervals at which the HOF is invoked.

Influence of ‘Hall of Fame’ size

A set of experiments were conducted to determine the influence that the size of the HOF may

have on playing performance. A larger HOF should be able to contain a more concise collection

of previous performers, but may cause a strain on computing performance, due to the internal

round-robin tournament scheme. Since a swarm size of only 15 particles is used, the HOF sizes

ranged from 2 to 14 particles, at increasing intervals of 2 particles in each instance. The HOF

was invoked at every 10 generations, at which point 50% of the original HOF players were

replaced.

The experimental results are listed in table 6.10, and do not show a severe fluctuation of

performance among the different HOF sizes. The results do show a slight advantage to using

mid-range HOF sizes, with 8 particles scoring an F-value of 76.982, and 10 particles scoring

an F-value of 76.768. Overall, no definite conclusion can be made regarding the HOF size for

such a small PSO and neural network configuration. As mentioned previously, any extension

to the scheme can be considered as future work resulting from this research.

Table 6.10: Performance values for various ‘Hall of Fame’ sizes.

Hall of Fame size 2 4 6 8 10 12 14

Performance (F-value) 76.116 76.245 73.940 76.982 76.768 76.614 74.956

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 109

Figure 6.14: Influence of ‘Hall-of-Fame’ survival rate.

Influence of survival rate

The following experiments aimed to investigate the influence of the number of HOF-inducted

players that are replaced for each invocation of the HOF. Replacing a large number of historical

players at a time may defeat the purpose of the HOF in its entirety, as the resultant HOF will

degenerate into a smaller copy of the existing swarm. Replacing a too small number of particles

may lead to insufficient exposure to the newly evolved players, thereby restricting the influence

newly developed playing strategies may have on future HOF inductees.

The experiments were conducted with a HOF size of 10 players, consistently invoked at

every 10 intervals across 500 generations. The results from the experiments are graphically

depicted in figure 6.14, along with a faint trend-line to ease average performance comparison.

The graph does show some initial oscillatory behaviour, but the average performance indi-

cates a clear advantage to retaining a large percentage of players. The best performing reten-

tion rate (80%) scored an F-value of 78.334, clearly showing an increase beyond the benchmark

configuration performance of 73.849.

Influence of ‘Hall of Fame’ intervals

A final experimental analysis of the HOF implementation addresses the rate at which the

HOF is invoked. Invoking the HOF too often may lead to a quicker replacement of previous

historically best players, which may not always be desirable.

A HOF with space for 10 players were used for every specific interval test. At each interval,

50% of the particles were replaced. The results from this experiment is listed in tabel 6.11.

Although no consistent performance trend is visible, there does seem to be an increase in

performance for small interval sizes. The best performing test made use of 10 intervals across

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 110

Table 6.11: Performance of various invocation intervals for the HOF.

Intervals per 500 generations 500 300 150 100 50 25 10

Performance (F-value) 76.003 75.284 78.116 76.407 72.735 76.568 80.813

500 generations, and scored an F-value of 80.813.

Overall, the HOF coevolutionary technique seem to improve on the benchmark performance

for a configuration of 15 particles and 3 hidden nodes. The next section provides an overall

performance comparison of the various coevolutionary techniques listed in this chapter.

6.4.5 Summary of coevolutionary methods performance

In order to ease comparison between the standard PSO-training algorithm’s performance and

the coevolutionary training optimisations introduced in this chapter, a graphical side-by-side

comparison is made of a select set of test cases. Figure 6.15 depicts the results as a bar graph for

an experimental configuration of 15 particles, 3 hidden nodes and utilising the Von Neumann

neighbourhood information sharing structure.

The original PSO-based algorithm relied solely on random selection to quantify the specific

individual’s performance. Figure 6.15 shows that an increase in the number of opponents

chosen during random selection may improve the overall performance of the specific individual.

The ‘all versus all’ tournament scheme employed by the HOF technique can be extended

to include the complete swarm. This does however place a tremendous burden on computation

time due to the sheer number of simulations that need to be completed in order to accurately

quantify performance.

Figure 6.15: Performance of various scoring structures.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 111

For each encounter, 6 games are played:

1. Player A (PA) playing as player 1 (P1), against Player B (PB) playing as player 2 (P2).

2. PA as P2, against PB as P1.

3. PA’s Personal Best (PBest) as P1, against PB as P2.

4. PA’s PBest as P2, against PB as P1.

5. PA as P1, against PB’s PBest as P2.

6. PA as P2, against PB’s PBest as P1.

Since such a thorough set of games are played to accurately quantify playing strength, the

‘all versus all’ technique does outperform the other coevolutionary methods – albeit with a

significant computational overhead.

The Grand Prix racing season techniques perform reasonably well, with certain configura-

tions on both the exponential and linearly decreasing scoring structures rivalling the superior

‘all versus all’ performance. The particle dispersement operator relying on the GPX scoring

structure also performs adequately well. It should be noted that the overhead associated with

the GPX racing and dispersement operators only incur a fraction of the computation penalties

associated with the ‘all versus all’ technique, while still resulting in closely matched Franken

performance values.

The HOF technique performs suitably well, but is also restricted by the overhead induced by

the ‘all versus all’ tournament scheme associated with its inner workings. Limiting the HOF’s

size and/or the intervals at which the HOF is invoked may reduce the associated overhead.

6.5 Stricter training conditions

Up to now, the implemented rules of Checkers stated that a game may not last longer than

100 moves. This scheme has also been implemented by Chellapilla and Fogel [53] [27] [26] in

their work on evolving intelligent Checkers game playing agents. Furthermore, the duration of

evolution has been consistently set to 500 generations. This section investigates the impact on

performance by adjusting these two parameters, and investigates whether or not it is possible to

force a population to exhibit strong playing behaviour quicker than normal, or if the maximum

allowed number of moves may actually favour certain playing styles.

Section 6.5.1 investigates the influence of the training duration on playing performance.

Section 6.5.2 investigates the possibility of training a player to win within a certain restriction

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 112

Figure 6.16: Influence of training duration.

on the maximum allowed number of moves (smaller than 100). Finally, section 6.5.3 investi-

gates the upper-bound of the move count, and how virtually removing it may impact playing

performance.

6.5.1 Influence of training duration

The assumption of using 500 epochs to train a population of players to play Checkers have been

made on past experience of PSO algorithms and coevolutionary training. That assumption is

experimentally examined in this section, by performing benchmarks from players that did not

participate in a single evolution step (i.e. the original randomly initialised particles), to players

that have evolved for 1500 generations.

Two different player configurations are used. Both make use of swarm sizes of 15 particles,

but the first relies on a neural network with 3 hidden nodes, while the second relies on a neural

network with 5 hidden nodes. The reason for an increase in hidden nodes is to examine the

possible effect of overfitting on the different configurations over time.

Figure 6.16 graphically depicts the playing performance (using F-values) for the different

evolved players over time, along with faint trend-lines to aid in average performance analysis.

Both graphs show a sharp rise in performance as training (evolution) progresses, reaching a peak

at 200 generations. The performance of both configurations seem to steadily decline thereafter,

with the player utilising the increased hidden layer outperforming the baseline configuration

consistently. After 500 generations the graphs degenerate into a mutual pattern of oscillatory

behaviour, almost converging at 1500 generations.

A number of interesting observations can be made from the two graphs. The most obvious

observation is that learning does indeed occur quite rapidly! The second observation is the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 113

Figure 6.17: Winning in less than 50 moves.

performance difference caused by an increase in hidden layer size, with larger hidden layer sizes

outperforming smaller hidden layer sizes. It would seem that neural network specialisation

might be the cause for the decline in performance. As described in section 2.2.2, training

a neural network for too long may cause it to over-specialise and thereby lose its ability to

correctly predict the correct move to make from the options provided by the game tree. In

this specific case over-specialisation is enforced due to the convergence of the swarm on a

possible suboptimal solution, resulting in a decreased level of diversity and only allowing for a

certain playing style. The best individuals are not exposed to a diverse range of players during

training (due to the convergence), and thereby over-specialise their neural networks to only

cope with the current population’s playing style. When faced with the random playing style

of the benchmark opponent, it is unable to generalise on the previously unseen board states,

resulting in incorrect evaluation of key board states, and degraded performance.

Increasing the duration of evolution beyond 500 epochs does not seem to be a worthwhile

option for the baseline configuration. Larger configurations may require more generations to

converge, but a degradation in performance is expected thereafter.

6.5.2 Winning under pressure

The next set of experiments with the baseline configuration involves restricting the players

to compete for only 50 moves, instead of the usual 100. Hopefully this will force agents to

discover quicker methods of winning against their opponents, naturally increasing their playing

strength due to the enforced pressure to win. The evolution will be extended to continue for

up to 1500 generations, thereby providing enough time for the players to evolve their expert

playing strategies.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 114

Figure 6.18: Influence of a restricted move count.

The results from these experiments are depicted in figure 6.17. The peak performance

first observed in the previous section is once again repeated at 200 epochs. The exact F-value

however, shows a definite decreased performance (66.28 versus 76.35). This can be attributed

to the increased difficulty involved in winning in less than 50 moves, with most games having

a higher probability to result in a draw.

A drop in performance is experienced after 200 epochs, after which a steady gain in perfor-

mance is noted until 1500 epochs. The highest performance value attained at 200 epochs is not

regained within the 1500 epoch limit. From the results it is clear that players can be evolved

to win at Checkers in less than 50 moves. An analysis of playing behaviour indicates a large

number of draws and wins for the evolved player, with less than 15% of the games being won

by the random-moving player. It would seem as if the reduced move count has handicapped

the random-moving player’s ability to adequately perform as a benchmark opponent, rather

than the evolved players outperforming the random-player on merit. It is encouraging to see

that it is possible to win in less than 50 moves, but exactly how that is accomplished is not

clear. Increasing the configuration size to include more particles and/or hidden nodes may

yield better performing agents.

The hypothesis of winning in less than 50 moves is however hereby proved with the baseline

configuration, and the possible evolution of more optimal performing agents in the future are

not disregarded.

6.5.3 Varying the maximum number of moves

Expanding on the previous experiments with a restricted maximum move count, the inverse

approach may also prove interesting to examine. A series of experiments were conducted to

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 115

Figure 6.19: Win/Draw/Lose relationship.

determine the influence of an increased maximum move count on the ability of the evolved

players to increase their performance, while maintaining evolution for 500 epochs. All the

experiments made use of the baseline configuration of 15 particles and 3 hidden nodes, utilising

the Von Neumann neighbourhood structure and restricted maximum velocity.

The F-value performance results for experiments ranging from a maximum of 25 moves

to a maximum of 1000 moves are graphically depicted in figure 6.18. Games restricted to 25

moves consistently result in a draw between the evolved and random-moving players, showing

the definite improbability to win in 25 moves or less. A sharp increase in performance is

experienced after 40 moves, with performance levels converging for a short period after 80

moves. Extending the maximum move count beyond 150 moves results in visible oscillatory

behaviour, with selective performance increases being achieved above the 150 move score of

76.19. It is disappointing to see that even with a maximum move count of 1000 moves, the

evolved player is not able to deprive the random-moving player of any wins.

More insight into the percentage of games won, drawn or lost for each maximum move

setting is provided in figure 6.19.

The high number of draws alluded to earlier is evident in the small maximum move settings,

with draws making place for wins as the move restriction is relaxed. After 400 moves the

number of draws are virtually zero, with the evolved player still able to beat the random-

moving player consistently in all the cases, even managing wins in over 80% of the games

played. As mentioned earlier, the increase in the number of wins does not guarantee that the

evolved player will be victorious in all the games it competes in. Even though the percentage of

games won does increase slightly, the number of draws diminish completely and instead make

way for the random-moving player to win a portion of the games.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 116

It is expected that larger configurations of swarm or hidden layers sizes may perform pro-

portionally better, but the average trend in win/lose/draw behaviour is expected to remain the

same for at least the front half of the graph.

6.6 Conclusion

This chapter aimed to investigate the various reasons for the poor playing performance of

Checkers agents described in the previous chapter. The first set of experiments investigated

PSO-specific parameter choices. A major increase in playing performance was achieved by

restricting the maximum velocity to 0.2 – contrary to the previous experiments conducted with

Tic-Tac-Toe and Checkers. Adjusting the c1 and c2 values did not yield an overall performance

increase, but a static inertia value of 0.9 proved to have a beneficial effect. The inclusive

LBest neighbourhood size of 5 particles were experimentally shown to be superior to larger

neighbourhood sizes. The analysis of overall performance matrices indicated that the LBest

structure has surpassed the dominance of the Von Neumann structure. An increase in swarm

size benefited all the neighbourhood structures’ performance, while an increase in hidden layer

size was inconclusive. Finally, the selected use of an improved PSO structure, GCPSO, allowed

for even larger gains in performance. The adapted Von Neumann structure (VNGCPSO) was

able to regain the best performance during an overall neighbourhood performance comparison

with the baseline configuration.

The second set of experiments aimed to investigate the effect that different approaches

to board state representations for neural network evaluation may have on the overall playing

performance. Different piece valuation schemes and ‘sliding-window’ approaches were experi-

mentally examined. The standard ‘centred’ approach to piece valuation remained dominant,

while there proved to be an advantage to using a windowing scheme. The sliding window of size

7-by-7 squares selectively outperformed the custom window organisation of five 4-by-4 squares.

The third set of experiments extended the basic coevolutionary training algorithm to in-

clude concepts borrowed from Formula One Grand Prix. The introduction of the Grand Prix

racing season paradigm during training aimed to benefit players that play consistently well,

while eliminating any potential ‘one-shot wonders’. Both linearly and exponentially decreasing

scoring systems were examined, with a marginal improvement gained by the linearly decreasing

scheme due to its focus on rewarding consistency. A particle dispersement operator was intro-

duced that relied on the GPX scoring scheme to overcome convergence on suboptimal solutions.

Finally, the implementation of the ‘Hall of fame’ coevolutionary structure was examined, and

experimentally compared to the aforementioned Grand Prix methods. The Grand Prix meth-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 6. INVESTIGATING PERFORMANCE FACTORS 117

ods perform adequately well, without the extensive overhead required by any ‘all-versus-all’

methods.

Lastly, an analysis on the maximum move count and training duration showed some insight

into possible neural network over-specialisation, stagnation on suboptimal solutions, and the

overall win/lose/draw ratios for extended play. The majority of the experiments in this chapter

were conducted with the baseline configuration of 15 particles and 3 hidden nodes, and results

may vary for more complex configurations. Extending the baseline configuration is left as

future work resulting from this study.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7

Assessing intelligence

“The ability to focus attention on important things

is a defining characteristic of intelligence”.

- Robert J. Shiller

After resolving the reasons for the initial poor playing performance, this chapter takes the bench-

marking of the evolved Checkers players one step further, by analysing playing performance against

two ‘intelligent’ evaluation functions. The impact of training and playing on deeper tree depths

are also investigated, ending with a discussion on the possibility of improving the coevolutionary

training partner.

7.1 Introduction

Up to now the standard method of benchmarking an evolved player has relied on measuring

its performance while playing 300 000 games against a random-moving player. The random-

moving player was chosen for its consistency, varying playing style and lack of human intelli-

gence. Even a novice observer to these experiments would ponder: “How intelligent are these

agents really?” That question is answered in this chapter, by pitting the best evolved agents

against more intelligent adversaries.

Section 7.2 introduces the two ‘intelligent’ evaluation functions used for this goal, namely

a piece-count based evaluation, and SmartEval – a handcrafted evaluation function from the

author of Cake++ [51]. Section 7.3 benchmarks the new evaluation functions, and compares

118

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 119

their performance against a random-moving player, evolved players, and themselves.

The consequences for increasing the tree depth during training and playback are experi-

mentally covered in section 7.4, followed by a short series of observations on typical playing

behaviour of the intelligent agents, as made by the author.

The final discussion revolves around the possibility of improving the coevolutionary training

partner, thereby causing an additional improvement in playing performance, in section 7.6.

Section 7.7 summarises some of the important points relating to the chapter.

It should be clearly stated from the start of this chapter that the experimental work con-

ducted hereafter was aimed at briefly exploring avenues for future research, by highlighting the

shortcomings of the current neural network training approach and hypothesising about possible

solutions to the problem. Unless otherwise stated, the experimental configuration remained

15 particles and 3 hidden nodes utilising the Von Neumann PSO structure, with c1 and c2

remaining at 1.0, and the inertia and maximum velocity terms set at 0.9 and 0.1 respectively.

No definite conclusions are made based on the limited experimental configuration, and the re-

sults should at most be interpreted as interesting precursors to more in-depth study following

from this research. As previously mentioned, the aim of the study is not to create the most

intelligent game playing agent, but instead investigate the different factors that impact playing

performance. The reader is urged to review the experimental results in this light.

7.2 Intelligent evaluation functions

In order to examine the intelligent playing behaviour on a broader scale, this study makes

use of two different types of intelligent evaluation functions. The intuitive piece-count based

evaluation function is discussed in more detail in section 7.2.1, followed by a closer look at a

sample hand-crafted evaluation function, codenamed SmartEval and based on ‘simple checkers’

by Martin Fierz [51], in section 7.2.2.

7.2.1 Piece-count based evaluation

The piece-count evaluation function is not terribly complex, and can be considered to not

include any human intelligence at all. It does however rely on the basic understanding of arith-

metic, something most humans are intuitively capable of. As already mentioned in section 5.5.3

on the neural network configuration for Checkers game agents, previous work by Chellapilla

and Fogel [53] [27] [26] added a piece-count evaluation result as additional input directly into

the output layer, thereby aiding the neural network to make more ‘informed’ decisions about

the board state.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 120

Fogel and Chellapilla reasoned that even the most novice player would have an understand-

ing of the number of pieces on the board, where having more pieces than your opponent would

place you in a positive position. It was for this reason that they included the additional ‘hard-

coded’ term into their neural network configuration. For the experimental work in this study,

a pure neural network approach was followed, using no external information apart from the

immediate board state.

The piece-count evaluation function used as the first intelligent benchmarking opponent for

this chapter’s experimental work, is defined as follows:

ε = (µ× pieceCountAdvantage) + pieceCount+ ω (7.1)

where ε is the resultant evaluation and µ represents a bias factor to the calculation of the piece-

count advantage. The pieceCountAdvantage term is calculated as the difference between the

number of pieces held by each player, while pieceCount represents the total number of available

personal pieces on the board. Finally, ω acts as a random tie-breaker term to resolve decisions

between equal board state evaluations.

7.2.2 SmartEval – hand-crafted evaluation

The next intelligent benchmarking opponent is provided by publicly available source code from

the author of Cake++, Martin Fierz [51]. Originally called ‘simple checkers’, the code formed

part of a basic Checkers engine that could be extended into a much larger game playing system.

To avoid any possible engine-related performance mismatches during the benchmarking process,

only the evaluation function was used and converted into the local code-base – resultantly

known as SmartEval thereafter.

SmartEval consists of more than 100 lines of readable C code, and as far as can be deter-

mined considers the following well-known hand-picked features of a Checkers game to form a

final evaluation:

• Determines whether a back rank guard is available.

• Determines if an intact double corner exists.

• Evaluates control of the central area of the board.

• Brings the number of pieces on the edges of the board into consideration.

• Calculates material advantage.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 121

Figure 7.1: Benchmark results for the intelligent evaluation functions.

All of the above features are appropriately weighted and combined into a final evaluation

function to quantify the value of the current board state. A tie-breaking term is also added to

resolve decisions on identical board state evaluations.

7.3 Benchmarking Intelligence

Two approaches to benchmarking was followed in this chapter. The first continued to use self-

play to evaluate the strength of the individual players, as was done with the random-moving

player in section 3.3.1. The second form of benchmarking involves comparing the performance

of the evolved players making use of the neural network-based evaluator against the intelligent

evaluation functions. The performance in all of the cases are quantified through the use of the

Franken performance measure.

7.3.1 Self-play

In order to accurately compare the performance of these intelligent evaluation functions, the

same process of benchmarking through self-play – as employed for the random-moving player

– is repeated here. Each evaluation function played 150000 games as player one, and 150000

games as player two, against an identical version of itself.

As an added interest, the ply-depth was increased by one level to observe the advantage

gained from evaluating board states deeper into the game tree. Figure 7.1 graphically depicts

the results from the initial benchmarking process using the Franken performance measure (F-

values). The performance values are listed from the perspective of the first-named evaluation

function, for example, ‘Smart vs Piece Count’ would list Smart’s performance value when

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 122

competing against a piece-count based player.

The first interesting observation is once again the balanced nature of the players using the

respective intelligent evaluation functions. In both the ‘Smart vs Smart’ and ‘Piece Count vs

Piece Count’ cases, the play strength is equally matched in the region of 49.9.

Looking at the win/draw/lose ratio’s for the different benchmarks, the piece-count based

evaluation has a large number of draws, and balanced number of wins when playing as either

the first or second player. The SmartEval, however, has a very large number of balanced wins

and losses as either player, with less than 2% of the games resulting in a draw.

Extending the ply-depth on self-play benchmarking does not have any significant impact on

the performance value computed for each evaluation function. The piece-count based player’s

playing behaviour remains the same, with a large number of draws and balanced number of

wins as either player. The SmartEval based player shows a significant increase in the number

of drawn games (almost half), and a sudden shift in advantage to the player playing first.

Allowing the intelligent evaluation functions to compete against other opponents, including

the random-moving player, yields interesting results. The SmartEval based player is able to

outperform the piece-count based player on single-ply, but is faced with stronger opposition

as soon as the ply-depth is increased. Play analysis shows an increase in drawn games as the

ply-depth is increased, with balanced wins on either side playing as player one or two.

SmartEval clearly outperforms the random-moving player on both ply-depths, but this was

expected. The piece-count based player also outperforms the random-moving player on an

extended ply-depth – trailing only slightly behind the performance achieved by SmartEval –

yet curiously struggles on single-ply. Play analysis show equal levels of winning as player one

and player two on single-ply, but a significant decrease in draws as compared to the piece-count

self-play benchmark.

Judging by the extremely high performance values of the SmartEval and piece-count based

evaluation functions against a random-moving player on two-ply, it would seem that any advan-

tage that the random-moving player had when competing on a single-ply depth has completely

disappeared.

7.3.2 Evolved players

The true potential of the evolved Checkers players are now tested by benchmarking them

against the three custom evaluation functions, namely the random-moving player, the piece-

count based player and SmartEval. The F-value results are graphically depicted in figure 7.2,

once again with interesting results. All the benchmarks were completed on single-ply, with

a configuration of 15 particles, 3 hidden nodes and utilising the Von Neumann information

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 123

Figure 7.2: Performance of evolved players against intelligent evaluation functions.

sharing structure. These parameters were selected in order to remain comparable to results

from the previous chapter, and for increased simulation speed. The performance values are

computed using the Franken performance measure.

Starting with the random player as the first opponent, the performance of the neural net-

work as computed in the previous chapter is listed again, alongside the performance of the

piece-count and SmartEval evaluation functions. The neural network immediately shows its

strength against the random player, scoring higher than both SmartEval and the piece-count

evaluations. Referring back to table 3.2 in chapter 3 regarding the initial random-moving player

self-play benchmark, and its subsequent conversion into the Franken performance measure, it is

interesting to note how small an improvement the piece-count player is able to make in this re-

gard (53.061 vs 50.0). The SmartEval player plays slightly better, yet barely reaches the lower

fringes of performance observed by the weakest configurations in the improved performance

matrices from chapter 6.

The piece-count player is now considered as benchmarking opponent, and the various per-

formance values from the competing evaluation functions are listed once again. As was intended

by its inclusion, the piece-count evaluation function provides a more difficult opponent for all

the competing players. The neural network is once again the best performing player against

the piece-count opponent, but does so with a slightly decreased performance rating of 74.658

(as compared to the random-moving player benchmark of 75.953). This enforces the presence

of stiffer competition. The SmartEval function is outperformed by the neural network perfor-

mance yet again, while also showing a slight drop in performance. The self-play piece-count

value was already computed and discussed in section 7.3.1 of this chapter, and is included for

completeness only.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 124

Lastly, the performance against the SmartEval player is also listed in figure 7.2. The

SmartEval evaluation function was chosen to provide the stiffest competition to the other

benchmark problems, and this can clearly be seen in the low performance values. It is encour-

aging to see that the neural network player is able to outperform even the SmartEval player –

albeit by the smallest of margins (0.25 F-value points). Looking at the win/draw/lose ratio’s

of the benchmark matches, it seems overall to be evenly spread between winning as player one,

winning as player two, or drawing in either case. It seems that during some simulations the

best evolved individual would ‘specialise’ in a certain playing style, by generally performing

better as player one, or better as player two, or even drawing more games. There are also

players that perform equally well irrespective of starting position, which could be considered

to be ‘well-rounded’ players.

The piece-count based player fails to make an impression on the SmartEval performance

(as already noted in the previous benchmark). The performance value listed is simply the

compliment of the Franken performance measure first calculated for the SmartEval player, and

now reported from the perspective of the piece-count player (originally 66.160, now reported

as 33.840). The self-play SmartEval performance value has already been discussed, and is once

again included for completeness.

Even though the results are not groundbreaking in terms of performance, they are encour-

aging for this minimal configuration – proving that the neural network player is indeed at the

very least as ‘intelligent’ as the SmartEval player at single ply-depth. An increase in ply-depth

is discussed below, and benchmarking against more advanced players are left as future work

resulting from this research.

7.4 Increasing tree depth

The main reasons for keeping to a single ply-depth in the experimental testing for this research,

was attributed to two factors. Firstly, the focus of the study was on PSO and its applicability

to game learning, and not to create an efficient game engine capable of beating the world’s

best game players. Therefore a large number of simulations required the restriction of the tree

depth to single-ply due to time-constraints and processor availability. Secondly, competing

at single-ply in itself is a form of ‘worst-case’ reasoning about the evaluation function, as it

cannot rely on accurate ‘guessing’ about any opponent responses, and instead is strictly limited

to its representation of the board state. The random-moving player itself also has no use of

an increased ply-depth. As the previous section illustrated, this training and playing scheme

proved to work well in benchmarking different evaluation functions.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 125

The benefits of an increased ply-depth have been discussed at various sections earlier in

this study. While conducting the single-ply experiments, a number of questions were raised,

namely:

1. How would a player trained on single-ply perform against an opponent playing on two-

ply? (similar to Hitech vs Lotech as discussed in section 3.4.1)

2. Would it be possible to construct a single-ply configuration that outperforms an intelligent

player playing at two-ply?

3. Would an evaluation function evolved through training on single-ply be scalable for use

in two-ply evaluation?

4. Would an increase in the training ply-depth require an increase in the complexity of the

PSO simulation configuration in order to cope with the additional game information?

5. Would it be possible to train a player on a large ply-depth, and use the resultant evalua-

tion function contained by the neural network to play on smaller ply-depths? This should

require a fraction of the processing time while playing, and can be seen as ‘compressing’

the game tree knowledge into the inherent black-box structure of the neural network.

The majority of these questions are addressed below, by referring to figures 7.3 and 7.4

that illustrate the potential impact of increasing the PSO configuration size as a substitute

to using an increased tree-depth, and training and playing on deeper tree depths respectively.

The symbols used in these figures to represent experimental configurations have the following

meaning:

• p [preceded by the swarm size]

• h [preceded by the hidden layer size]

• T [followed by the training ply-depth and a colon separator]

• P [followed by the playing ply-depth for the evolved player and a colon separator]

• O [followed by the playing ply-depth for the opponent]

The experiments were conducted according to the training algorithm described in chapter

3, and only serve as a single example that addresses, proves or disproves the appropriate hy-

pothetical question. No attempt has been made to optimise the performance of the evolved

player, in order to maintain comparability with previously listed configuration results. Opti-

misation of the player performance is regarded as future work resulting from this very brief

experimental exploration.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 126

Figure 7.3: Increasing configuration as a substitute for tree depth.

7.4.1 Q1: Performance against a dominating ply-depth

Previous research on the impact of an increased ply-depth on performance were discussed in

section 3.4.1. The discussion mentioned the dominance of Lotech – a ‘dumber’ version of

a more complex Checkers program codenamed Hitech – that was able to judge moves one

ply-depth deeper than its predecessor. Lotech consistently outperformed the more intelligent

Hitech.

The experiments conducted for this section aim to duplicate the findings on a smaller scale,

by pitting an evolved player (initially playing at singly ply-depth) against the two intelligent

evaluation functions introduced earlier in this chapter (both playing at a ply-depth of two).

The first entry in figure 7.3 lists the results for the benchmark configuration with 15 particles, a

hidden layer size of 3 nodes and utilising the Von Neumann neighbourhood information sharing

structure.

In each case the best evolved player occurring over 15 simulations played against the piece-

count and SmartEval evaluation functions, competing in an overall total of 150 000 games as

player one, and 150 000 games as player two. The Franken performance measure was used to

quantify the exact playing performance.

Referring back to figure 7.2, the evolved neural network player managed to outperform both

the piece-count and SmartEval players on single ply. Pitting the neural network against the

same players, but allowing the opponents to have an advanced look into the future by means

of an extended ply-depth, does not provide the same results.

The results show a significant drop in performance, from 74.658 to 21.008 against the piece-

count player, and from 50.159 to 14.003 against SmartEval. The only consistency in the results

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 127

can be seen from the performance ranking of the two opponents, with the evolved player still

performing ‘better’ against the piece-count based player than against SmartEval.

The trends established by the original Hitech versus Lotech experiments were repeated

once again, with the conclusion that a player trained and playing on a single ply-depth, when

pitted against a two-ply depth opponent, stands a great chance of losing the match.

7.4.2 Q2: Does increased complexity outperform increased ply-depth?

The poor preceding experimental results – although not completely unexpected when taking

into account the small swarm and hidden layer size – lead to the following question: Would

a more complex configuration be able to improve on the previous setback if the experiment

was repeated? The second entry in figure 7.3 lists the results of a more complex configuration,

consisting of 40 particles, 25 hidden nodes and still relying on the Von Neumann neighbourhood

information sharing structure.

The new experimental results have improved over the performance values calculated for

the initial configuration, but only by a small margin. The performance ranking of the two

intelligent evaluation functions remain the same, with SmartEval still proving more difficult to

beat than the piece-count based player. Analysis of the win/draw/lose ratios indicate a very

sporadic winning ability by the evolved player, with the majority of the performance points

being derived from drawn games. The fact that the reported F-values from figure 7.3 are still

below 50.0 (the baseline for improved intelligent playing behaviour in the Franken performance

measure), is an indication that the evolved player still does not outperform its opponents that

have access to increased ply-depths.

The final experiment traded complexity with ply-depth, as illustrated by the third entry

in figure 7.3. A configuration of 20 particles, 25 hidden nodes and utilising the Von Neumann

neighbourhood information sharing structure was able to comfortably surpass the previous

results – mainly due to the aid of the extended ply-depth. The results on their own are not

very impressive, but the question has been answered: Increased complexity is not guaranteed to

compensate in performance for a lack of training and/or playing ply-depth – its only guarantee

being an increase in processing time.

7.4.3 Q3: Scalability of trained evaluation function

The time restriction usually associated with experimental work, specifically processing time

during training, is something most researchers are familiar with. The inability to leave a

computer to train for six months (as was done by Chellapilla and Fogel [53]) in addition to the

aforementioned weak performance of the evolved players trained on single-ply and competing

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 128

Figure 7.4: Training and playing on deeper ply depths.

against two-ply opponents, lead to the formation of the next question. Would it be possible to

take advantage of the processing benefits of a single-ply training scheme (as has been followed

for the majority of the computations in this study), evolve an intelligent game playing agent,

and successfully apply its evaluation function in a larger game tree data structure? This ideally

will provide the best of both worlds – fast training time on small ply-depths, and increased

performance due to the extended ply-depth available during actual benchmarking/play.

The experimental results using the minimum configuration (15 particles, 3 hidden nodes,

Von Neumann neighbourhood information sharing structure) is graphically depicted in figure

7.4. The first entry is a repeat from the previous results originally listed in figure 7.3, once

again showing the weak performance of a player trained and playing on single-ply against a

two-ply opponent. The second entry in this figure, however, answers the question quite easily.

By extending the use of the evaluation function beyond its ‘intended’ application area (from

single-ply to two-ply), the performance actually decreases against both the piece-count and

SmartEval opponents.

It would seem that the evolved evaluation function is somehow tied to the original training

depth, and that extended exposure to more board states provides an information overload to

the originally focused single-ply version. This suspicion is confirmed with the final experiment

conducted to address this question, with the results listed as the third entry in figure 7.4.

Training a player on the correct ply-depth, ensures improved performance on that ply-depth,

as is visible in the increased performance values for the small configuration trained on two-ply.

From these very restricted initial experiments, it is clear that the evaluation function evolved

under the specific experimental conditions as set out in the beginning of the section, does not

scale well for use in deeper ply-depths.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 129

7.4.4 Q4: Do deeper training ply-depths require increased complexity?

The findings of the previous question sparked some hope that perhaps the poor performance

of the evolved player was attributed to the wrongful handling of the evaluation function, and

perhaps by training on deeper ply-depths a higher performance level can be achieved. Does an

increase in ply-depth, and subsequent exposure to more board states, perhaps require a more

complex configuration to properly assimilate the information while training?

This question is addressed by referring to the last entry in both figures 7.3 and 7.4. In each

case the player was trained on a ply-depth of two, and subsequently benchmarked against the

intelligent evaluation functions. The smaller configuration in figure 7.4 (15 particles, 4 hidden

nodes, Von Neumann) scored an average of 21.760 against the piece-count based evaluation

function, and 14.122 against SmartEval. In contrast to this – and simultaneously answering

the question – the more complex configuration (20 particles, 25 hidden nodes, Von Neumann),

also trained on two-ply depth and listed in figure 7.3, is able to improve on the performance

quite substantially. The complex configuration scored 30.120 against the piece-count evaluation

function, and 21.808 against SmartEval, illustrating the improvement.

Based on this and previous observations regarding ply-depth, an initial hypothesis would

be to blame the specific combination of architecture complexity to ply-depth (both training

and playing) for the poor performance results. Any definite conclusions in this regard will have

to be more clearly investigated, and is left as future work resulting from this study.

7.4.5 Q5: Compressing game tree knowledge into a neural network

This last question can be seen as an inverse to question 3, and is not experimentally addressed

in this study. The question revolves around the possibility of training a neural network as

an evaluator on a much larger game tree structure and applying its ‘expertise’ using a smaller

ply-depth – resulting in a compression of the knowledge into the black-box structure of a neural

network. Assuming a best-case scenario (which for the moment seems highly unlikely), a neural

network that approximates the principal variation of the game tree, should be able to provide

the next move down this ‘best pathway’ without having to recompute and re-evaluate the other

surrounding nodes.

This will allow the neural network to spend the minimum allocated time on node evaluation,

improving performance under specific playing-time constraints. Even though the concept of

‘compressing game tree knowledge’ may seem far-fetched, it would be interesting to see if the

observed unscalability of the evolved evaluation function repeats itself in this scenario, but only

in reverse. In a way, this question ties up with the way humans play the game, only making

use of shallow ply-depth calculations, but relying on an ‘intuitive feel’ of what a good move or

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 130

strategy is composed of – based on vast exposure to previous games and training information,

forming our own ‘principal variation’ of the game in our brain’s biological network structures.

Naturally, the investigation into answering this daunting question is left for future work

resulting from this study.

7.5 Observations

During play-testing of the custom implemented Checkers engine, and the subsequent ‘bird’s-

eye view’ of actual gameplay between evolved players at irregular intervals, a series of layman

observations were made by the author.

The first observation comes from the final stages during most games – the so-called ‘end-

game’. It does happen at regular intervals that one player may achieve a significant piece-count

advantage – outnumbering the opponent by for example five pieces to one. The dominant player

will move on to crown all the regular ‘men’ in its possession, thereby indicating that it has

learnt the importance of kings in the game.

The second observation continues in this scenario. The opponent player (vastly outnum-

bered) tries its best to avoid capture by the overwhelming force, making evasive moves and

usually ending up in one of the opposite corners of the board.

After the dominant player has crowned most of its remaining pieces, it retreats to the ‘safe’

portion of the game board, and does not make any full-fledged commitments to find stray

opponent pieces and capture them. One or two ‘scout’ pieces might be sent out from time to

time, but a quasi ‘cold war’ scenario develops, ultimately resulting in a draw for both players

as the allocated move-count expires.

During the middle game, it was interesting to note that the evolved players tried to keep the

back rank in tact for as long as possible – corresponding to the feature identified in SmartEval.

It is interesting to see that the players identified these playing strategies through coevolution

alone, since playing against SmartEval does not allow the neural network-based agents to train

any further.

The evolved players do however exhibit odd behaviour as well, sometimes unnecessarily

sacrificing pieces for no visible reason (at least to the author). The general low performance

scores exhibited towards the latter half of this chapter suggest that there is still some way to

go before a robust and ‘expert’-level player is evolved. As it does not form part of the main

aims of this study, it is listed as future work resulting from this research.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 131

7.6 Improving the training partner

Before closing the chapter on evolving Checkers playing agents, it is perhaps appropriate to

discuss possible improvements that can be made in terms of the coevolutionary training ap-

proach. Up to now, this study has followed a purist’s view on machine learning, whereby

the experimental environment is completely void of any human intervention and any injected

human intelligence apart from the game rules themselves.

The impact of the type and strength of the training partner has been studied before [47],

with the search for the ‘ideal trainer’ instead pointing toward a perfect player, or highly ad-

vanced player – usually constructed through the application of human intelligence, and in direct

conflict with the aforementioned purist’s view of machine learning as applied in this study.

However, recent studies in coevolution has shown the tendency of populations to saturate

on less-optimal solutions when only exposed to the peers they train against. Blair and Pollack

[18] mentions one way of addressing this inherent drawback of the coevolutionary technique, is

to provide a series of ‘stepping options’ for the agents to train against. As an agent attains a

certain level of expertise, it is removed from the current training environment and exposed to

more advanced playing partners – thereby allowing it to train and improve its performance once

more. The construction of these ‘stepping options’, or improved intelligent opponents in these

alternate training environments, more often than not closely involves human intervention. A

series of hand-crafted evaluation functions can be used to construct these ‘stepping options’, by

simply enabling and disabling certain advanced features of the evaluation functions in question.

The specific features identified by the evaluation function do however remain the result of

human intelligence, and the subsequent disabling of certain sections even more so.

Angeline and Pollack [6] made use of a variety of training partners, ranging from random

players to expert players to evolve Tic-Tac-Toe playing agents. Training against a random

player does not provide a too difficult challenge, and is quickly overcome – resulting on a

stagnation of overall inferior players. Playing performance and game intelligence are increased

when the evolving players are exposed to more capable opponents that require a more intelligent

playing style in order to be beaten.

The experimental work conducted in this chapter involved training the evolving player

against the piece-count based player when playing as player one, and training against the fellow

members of the population when playing as player two. The results showed a definite biased

increase in performance when playing as player one, but a decrease in performance when playing

as player two. No in-depth research was conducted to find the cause of the lack of performance

when playing as player two, but a ‘too strong’ opponent introduced in early training may be to

blame. This shows the one advantage to pure population-based coevolution: a gradual increase

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 7. ASSESSING INTELLIGENCE 132

in intelligent playing behaviour, allowing players to ‘keep up’ with the improved players, and

not fail miserably by trying to beat an expert opponent from the start. Another reason for the

imbalance in playing strength may lie in the scoring system, with a player relying on its strong

‘player one’ abilities to attain a good enough overall fitness, and never managing to improve

its ‘player two’ playing strength due to the aforementioned lack of incentive.

This ‘manual’ approach to improving game playing behaviour has been studied in other

games, such as Go, as well. For the moment, hand-made evaluation functions and game

engines do not rival the human world champion Go players. Lubberts and Miikkulainen [91]

evolved Go-playing agents by allowing the agents to compete against a respectable open-source

Go engine. The agents were able to train and eventually outperform the hand-crafted engine,

which resulted in no incentive to improve their playing performance thereafter. The drawback

associated with coevolution is clearly displayed in this case, with stagnation occurring after the

evolving population manages to reach a satisfactory playing level. The only problem in this

case was the absence of any improved opponents (apart from human opponents) available to

train against – a scenario that makes Go one of the most difficult game learning problems to

solve, thereby representing the ‘holy grail’ for future research.

7.7 Conclusion

This chapter looked beyond the confines of the random-moving player benchmark, and pre-

sented two hand-crafted evaluation functions in order to properly quantify the playing strength

of the evolved players. The neural network managed to outperform both the piece-count based

and SmartEval evaluation functions on single-ply.

Extending the tree depth to two-ply resulted in poorer playing performance. A series of

questions were posited in order to try and analyse the reasons behind the drop in performance,

with very brief initial experimental results indicating the need for more in-depth research into

the interaction of PSO configurations on deeper ply-depths.

A few layman observations on the playing style of the PSO-trained neural network players

aimed to highlight some interesting playing behaviour, after which it was proposed that the

coevolutionary training partner be changed.

This chapter concludes the experiments on two-player, perfect information games. The next

chapter investigates the application of the PSO-based game learning approach to evolve intel-

ligent players for use in the Iterated Prisoner’s Dilemma – a two player, imperfect information,

non-zero sum game.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8

Iterated Prisoner’s Dilemma

“Everyone complains of his memory; nobody of his judgement”.

- La Rochefoucauld (1613 - 1680)

Building on the knowledge gained from experiments with zero sum games in the previous chapters,

this chapter applies the PSO training technique to the interesting non-zero sum problem of the

Iterated Prisoner’s Dilemma (IPD). An overview of the problem and historic work is followed by

an investigation of three different strategy generation approaches – all applying PSO in a different

context. Experimental results indicate definite distinguishing characteristics of each method.

8.1 Introduction

Up to now this thesis focused on the applicability of PSO-based machine learning techniques

on perfect information zero sum games. The notion of ‘zero sum’ games refers to their char-

acteristically ‘all-vs-nothing’ scoring structure, where the winner has the highest payoff and

the loser goes home empty handed. Non-zero sum games therefore represent the opposite

standpoint[144], where both the winner and the loser can achieve some form of payoff. The

prisoner’s dilemma is an example of an imperfect information, non-zero sum game, in which

the joint payoff is achieved by mutually cooperative behaviour.

In the previous experiments with Tic-Tac-Toe and Checkers it was crucial to evolve intelli-

gent playing strategies that were able to beat the competition pool. For this specific application

it is necessary to evolve competitive strategies that elicit mutually cooperative behaviour. Three

133

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 134

different approaches to evolving strategies through the use of PSO are investigated. The first

continues the method applied to Checkers and Tic-Tac-Toe – evolving neural network weights

to enable an intelligent network to produce a strategy, given a set of historic decisions as input

to the network. The second approach makes use of the lesser known Binary PSO (BinPSO)

algorithm to directly evolve the strategy as discrete binary values (either cooperate or defect).

The last method takes a novel approach to strategy generation by exploiting the symmetrical

properties of well-known man-made strategies. In all of these cases, it is the first application

of PSO to the IPD domain.

The rest of the chapter is organised as follows: An overview of the core IPD problem and

relevant historic computer science-related work is presented in section 8.2. The well-known

man-made strategies typically found in IPD competitions are described in section 8.3. The

listed man-made strategies are subsequently compiled into a benchmark suite of strategies

used to experimentally measure the performance of evolved strategies. The three different

evolutionary processes to strategy generation are covered in section 8.5. Section 8.6 explains

the experimental procedure followed for this study, and the exact results are analysed by various

techniques in section 8.7. Section 8.8 concludes the chapter by summarising some of the major

experimental findings.

8.2 Historic overview

8.2.1 The prisoner’s dilemma

The mathematical foundations of perfect and imperfect information games were formalised in

the definitive work on game theory by Von Neumann and Morgenstern [144] in 1944. The

original example of a two-player perfect information game involves the fictional characters of

Sherlock Holmes and his arch rival Moriarty - created by the author Sir Arthur Conan Doyle

[33]. Holmes is trying to escape from Moriarty and boards a train to the coast. As his train

pulls out of the station, he sees Moriarty boarding a second (and faster) train. On the railway

track there is only a single halfway-house stop point, after which the coast (i.e. the final

destination) is reached. Holmes has to decide whether to disembark half-way, or continue until

the end of the line, keeping in mind that Moriarty also has these two options and will be able

to make up for lost time with the faster train. The aim of the game for Holmes is to evade

capture by Moriarty, and the objective for Moriarty is to close in on Holmes.

Von Neumann represents the possible payoffs for evasion and capture in a payoff ma-

trix. The payoff matrix and its associated governing rules form the heart of the prisoner’s

dilemma. The prisoner’s dilemma was originally invented around 1950 by Merril Flood and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 135

Table 8.1: General form of the IPD payoff matrix.

Cooperate Defect

Cooperate (ρ1, ρ1) (ρ2, ρ3)

Defect (ρ3, ρ2) (ρ4, ρ4)

Melvin Drescher, and formalised by A. W. Tucker shortly thereafter [8]. As an example of

an imperfect information game, the core concept behind the prisoner’s dilemma is illustrated

through the capture of two suspected felons by the police for committing the same crime. The

felons are interrogated separately, and are each faced with one of two possible choices: either

cooperate with the other felon (keep to their pre-planned story), or defect by reaching an agree-

ment with the police. The felons have no prior knowledge of possible historic cooperative or

defecting behaviour/trends, and are only informed of the other felon’s decision after making

their own. They are not allowed to change their decision, neither are they allowed to not make

a decision at all.

Mutual cooperation by the felons is the most beneficial, and is ‘rewarded’ by assigning

payoff ρ1 to both felons. Defecting while the other felon expects cooperation, assigns the

‘temptation’ payoff ρ3 to the defecting felon, and the ‘sucker’ payoff ρ2 to the cooperating

felon. Mutual defection is ‘punished’ by assigning a low payoff ρ4 to both players. Table 8.1

depicts this general form of the payoff matrix.

A payoff matrix for the IPD is subject to two restrictions [8]:

i) ρ3 > ρ1 > ρ4 > ρ2

The first restriction lists a preference ranking for the payoffs, ensuring that mutual co-

operation is more beneficial than mutual defection.

ii) 2ρ1 > ρ2+ ρ3

The second restriction dictates that mutual cooperation should be more beneficial than

mutual exploitation (defecting when the other player cooperates and vice versa).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 136

Table 8.2: Payoff matrix for the IPD as used by Axelrod.

Cooperate Defect

Cooperate (3, 3) (0, 5)

Defect (5, 0) (1, 1)

These two restrictions define the IPD. The final payoff used for either choice in the experi-

mental work for this study is depicted in table 8.2, which is identical to the payoff matrix used

by Axelrod [8].

The above description complies with the so-called one-shot prisoner’s dilemma, in which

each felon only makes a single decision before the matter is resolved by the police. In such a

scenario, the best strategy would be to always defect, since the felon will either be awarded

the biggest (temptation) payoff, or receive the equal punishment for mutual defection. The

felon will never receive the lowest (sucker) payoff for foolishly expecting cooperation, and does

not have to take into consideration any negative repercussions (retaliating behaviour from the

other felon) for defecting.

It does however become a lot more interesting if the dilemma is extended beyond a single

encounter (resulting in an iterated prisoner’s dilemma), thereby causing the felons to not rely

on the current encounter to be their last. If it is assumed that the felons know that they will

meet a fixed number of times (for example 100 successive encounters), then the best strategy

would be to defect on the very last move – as the last move can once again be regarded as a

one-shot prisoner’s dilemma. However, the players will anticipate defection on the last move

for this exact reason, and thereby respond by defecting on the second-last move. Ultimately

this reasoning will cause a chain-reaction of defection all the way back to the first move. This

strategy is also referred to as the ‘always defect’ strategy in literature [8] and is the most stable

strategy under the aforementioned conditions, resulting in a Nash equilibrium (i.e. it is the

only outcome from which each player could only do worse by unilaterally changing its move

[86]).

By looking at the restrictions defining the IPD payoff matrix, it is clear that mutual cooper-

ation is the sought-after solution. An ‘always cooperate’ strategy however is always dominated

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 137

by an ‘always defect’ strategy. In order to be successful in the IPD, the strategy should max-

imise the player’s average personal payoff (through cooperation or exploitation) as well as

maximising the average combined payoff (the sum of both players’ payoff should approach the

value for mutual cooperation). Section 8.5 deals with different ways to intelligently construct a

strategy, and the aforementioned performance measures are discussed in more detail in section

8.6.1. It is perhaps now fitting to look at previous work in the field of the iterated prisoner’s

dilemma from a computer science perspective.

8.2.2 Related work

The IPD has been used to model cooperative behaviour (or lack thereof) in a variety of fields,

including economics, politics, sociology, game theory and computer science. Due to its multi-

disciplinary application, an enormous volume of work has been produced [11] by researchers

in these different fields. From a computer science perspective the definitive work is widely

recognised to be the experiments conducted by Axelrod [8] in 1979 and the early 1980’s.

Axelrod invited researchers from the wide range of application areas of the IPD to submit

their strategies for a computer-based tournament. Various strategies were submitted, ranging

in complexity from simple single history-based heuristics, to complex Bayesian network solu-

tions. Much to the surprise of Axelrod and all the participants, the simplest strategy in the

competition pool – tit-for-tat [10] (submitted by Anatol Rapoport) – managed to outplay the

remainder of the submitted strategies. The same result was achieved when the experiment

was repeated a couple of years later, even with a much larger variety of submitted strategies.

Tit-for-tat (TFT) is based on reciprocity. It starts by cooperating on the first encounter, after

which it repeats the decision the opponent made on the previous encounter. TFT’s strength

lies in its ability to facilitate mutual cooperative behaviour, in addition to its quick retaliatory

response to defection. This strategy resembles the same behaviour followed by international

superpowers during conflict and negotiations – once again illustrating the IPD’s wide applica-

tion base. In its traditional form however, TFT is not very successful in noisy environments.

Other man-made strategies are discussed in section 8.3.

Recent computer science research has built on Axelrod’s initial experiments to intelligently

evolve effective IPD strategies [8] [9]. Darwen and Yao have focused on numerous aspects of

the IPD problem, using coevolution to drive the evolution of robust strategies through genetic

algorithms [35] (similar to Axelrod) and neural networks [37] [38]. Fogel worked with finite

state machines (FSM) to represent IPD strategies [52], after which Harrald and Fogel replaced

the FSMs with neural networks [65]. Fogel and Chellapilla continued to evolve neural networks

to compete in the IPD [25], in addition to their aforementioned work on Checkers and Tic-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 138

Tac-Toe. Some of Darwen and Yao’s initial studies show that coevolutionary methods do

mostly result in evolved populations that exhibit cooperative behaviour, but that by adapting

to the ‘moving target’ introduced by this particular evolutionary scheme the robustness of the

dominant strategy is not guaranteed [35]. Robustness is improved by forcing the population

to play against a superior (but static) external strategy, while still competing against each

other in the traditional round-robin fashion. Strategies evolved by this technique do not only

perform well against the individuals in the population, but also perform much better against

external (previously unseen) strategies.

Axelrod lists a variety of possible avenues of further research in his article [9] on the evolution

of IPD strategies. One area involves the use of speciation in the evolutionary process. A

thorough treatment of speciation (also referred to as ‘niching’ in popular literature) is once again

beyond the scope of this thesis, but its applicability to the IPD as implemented by Darwen and

Yao [36] is now briefly mentioned. GAs have been known to exhibit ‘drifting’ behaviour after

prolonged periods of evolution, resulting in convergence on sub-optimal solutions. Speciation

causes individuals in the population to form different ‘clusters’ in search space, converging on

more than one optimum. In the context of the IPD, speciation results in several specialised

strategies. Although each strategy is not immune to invasion, the application of speciation

does increase the population’s ability to successfully compete against a wider range of external

strategies. Darwen and Yao applied the ‘implicit fitness sharing’ technique to construct niches

for their GA-based population. By evaluating the external strategy’s structure against the

evolved individuals’ structures, it is possible to categorise evolved strategies as either ‘imitators’

or ‘imitator-answers’ – the former closely resembling the external strategy, and the latter

referring to strategies that can effectively compete against the external strategy. A gating

algorithm is employed to categorise the strategies, after which a voting scheme is used among

the ‘imitator-answers’ strategies to decide whether or not to cooperate or defect, based on the

current interaction with the external strategy.

The basic two-player IPD can be extended in various ways. The first adaptation involves the

introduction of noise to the interactions. Noise can be applied in two ways: Misinterpretation of

the correct response (semantic error or noise), or correct interpretation of a distorted response

(communication channel noise). For the experimental work conducted in this study, noise was

added to the communication channel with varying probabilities, and its effects are examined in

closer detail in section 8.6.2. The application of noise does not affect the size of the standard

payoff for the actions taken by the players, as was done in earlier research by Bendor [86].

The second adaptation to the IPD involves a change to the payoff structure for each player.

Firstly, the payoff values can be adjusted, while still adhering to the rules for the IPD as stated

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 139

in section 8.2.1. This may result in a proportionally larger reward for mutual cooperation,

and/or a proportionally smaller punishment for mutual defection, among other things. In order

to ease comparison of work conducted in this study to work conducted by other researchers,

the commonly referenced payoff matrix used by Axelrod [8] (depicted in figure 8.2) is used

throughout this study.

The second adjustment to the IPD payoff structure allows for an increase in the size of

the payoff matrix, thereby providing the players with more fine-grained levels of cooperation.

Darwen and Yao have once again done extensive research in this area with, among other things,

its specific application to missile defence [38]. They have also investigated the popular claims

that genetic diversity (or the lack thereof) is responsible for convergence on cooperative (or

non-cooperative) areas of the search space [37]. Their findings in this regard indicate that

genetic diversity can in fact have an adverse effect on multi-choice IPD games. Highly diverse

populations revert to participating in the traditional two-choice IPD (still represented by the

outside corners of the multi-choice IPD), and avoid making more fine-grained choices – the

very characteristic that makes multi-choice IPD so attractive, yet also difficult to ‘solve’.

The last variation of the standard IPD discussed in this section involves the increase of the

number of players in the immediate competition pool, commonly referred to as the n-player

IPD [86]. It can be illustrated through the ‘tragedy of the commons’ as popularised by Hardin

[64]. Neighbouring farmers all have access to the same public grazing land – referred to as a

‘commons’. The limited resources of the commons allow each farmer to have a single cow graze

on the land. In order to allow more of their own cows onto the commons, the farmers each

have to pay a fee. Cooperation comes down to paying the fee and getting the benefit, while

defecting implies sneaking an extra cow onto the commons without paying, but still getting

the benefit. The temptation payoff is awarded if the player is not ‘caught’ sneaking an extra

cow onto the commons, and the sucker payoff is rewarded to all the paying farmers for letting

this happen. The reward for mutual cooperation is awarded when all the farmers pay their fee,

and complete defection is punished when all the farmers sneak an extra cow onto the commons

– thereby depleting the limited resource. The n-player IPD is still a very active research area,

with a lot of potential application areas.

The standard two-player IPD is used in the experimental work for this study, with the

single adaptation being the addition of noise in later experiments. Coevolutionary training

similar to that of Chellapilla and Fogel [25], and Darwen and Yao [37][38][36][35] is employed

to drive the evaluation of different strategies. The investigation of the application of PSO to

some of the other adapted IPD paradigms is left for future work. An initial examination on the

first two strategy generation approaches culminated in a conference paper, available in [57]. A

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 140

more detailed treatment of the work presented in the paper is provided below.

8.3 Choosing an opponent

Experiments with human opponents participating in an IPD against each other have yielded

interesting results in both psychology and political science [8] [11]. A detailed discussion on this

interesting topic is beyond the scope (or even domain) of this thesis, but a very short description

may prove to be useful. Humans are inherently selfish creatures, yet altruistic behaviour is

frequently exhibited – especially among kin. Researchers have conducted studies among more

than 500 pairs of identical and fraternal twins [150], measuring traits such as altruism, empathy

and nurturance. Interestingly enough their findings show that on all three traits women score

higher than men, and older individuals score higher than younger individuals. Furthermore,

identical twins tend to be similar on the three traits, but fraternal twins tend to be different.

The researchers attribute the findings on altruism to be approximately 50% due to genetic

influence, 50% due to individual environmental effects, and only close to 2% due to the twins’

home environment [150].

Humans are also emotional creatures, more often than not relying on moral judgement

rather than rational thought. Rapoport makes mention of a couple of key concepts in a book

review on this topic [107]. In a prisoner’s dilemma, the difference in payoff for exploitation

and mutual cooperation may lead a human to either make a decision of moral importance

(mutual cooperation for the advantage of the group) or for personal benefit (exploitation of

other players to increase personal payoff). Researchers have noted that individuals may often

cooperate even in a one-shot prisoner’s dilemma, contradicting the obvious rational choice

of defection. Rapoport continues by stating that by using game theory to evaluate typical

rational decisions in two-player non-cooperative games (such as the IPD) is similar to making

assumptions about ‘perfect conditions’ in physics. The irony lies in the fact the physicists may

be able to closely duplicate a perfect environment for a given experiment or state, but it is

highly unlikely that the majority of IPD players will act ‘perfectly’ – i.e. completely rational.

Therein rests the essence of the research problem for the various application areas of the IPD: to

understand human behaviour and why certain actions are taken in contradiction to established

scientific knowledge.

In order to ease experimental work in this study, humans are not used as primary opponents

during training. Instead, some of the man-made strategies that participated in Axelrod’s

experiments [8] – most of which form part of the common IPD research base available to

scientists today – were chosen to form part of a ‘benchmark suite’ of strategies. Continuing with

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 141

the reasoning of section 3.3 on consistent players, a random player is also included – incidentally

in accordance with Axelrod’s own experimental procedure. The benchmark suite is used to

evaluate the performance of the best strategy from the competition pool after competitive

coevolutionary training has completed. The man-made strategies that make up the benchmark

suite are described below:

• Always Cooperate (ALLC): This is the most näıve strategy in the collection, and

cooperates on every move.

• Random (RAND): This player makes use of a randomly generated strategy, which

generally is quite competitive.

• Pavlov (PVLV): Designed to improve performance in noisy environments, Pavlov re-

peats its previous decision if it was profitable (ρ1 or ρ3), but changes its decision if it

wasn’t (ρ2 or ρ4).

• Tit-for-tat (TFT): The very famous strategy submitted by Anatol Rapoport, starts

with a move to cooperate, but thereafter repeats the last move made by its opponent.

• Suspicious Tit-for-tat (STFT): The same as TFT, but starts with a defection.

• Tit-for-two-tats (TFTT): Also invented to improve performance under noisy condi-

tions, it has the same strategy as TFT, but only defects after two successive opposition

defections.

8.4 Training algorithm

In order to train the population of individuals to participate in the IPD, the coevolutionary

training scheme developed in chapter 3 for use with Tic-Tac-Toe and Checkers is marginally

adapted. The complete algorithm is listed in figure 8.1. The most significant changes are due

to the non-zero sum game environment and the intricacies of the IPD itself. This includes

the absence of a ‘board state’, which is replaced by the historical position, the inclusion of

a random initial state (historic position), and a fixed encounter time of 151 moves. The

performance measures (discussed in more detail in section 8.6.1) differ quite substantially as

well.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 142

1) Instantiate population of agents.

2) Repeat for 500 epochs:

A) Add each agent’s personal best particle structure to the population.

B) For each individual in the population:

i) Play against every other player in the population.

a) Determine a random historical starting position.

b) Exchange cooperate/defect decisions for 151 iterations.

c) Determine payoff using payoff matrix.

ii) Keep track of total personal payoff.

C) Compute best performing particle according to PSO algorithm in use.

D) For each agent (excluding personal best) in the population do:

i) Compare performance against personal best configuration.

ii) Compare performance against neighbourhood’s best particle.

iii) Update velocity for each particle according to PSO algorithm.

iv) Update position according to PSO algorithm.

3) Determine single best performing agent in whole population.

4) Best agent plays 10000 games against each of the 6 benchmark strategies.

6) Return to step 1 until 20 simulations have been completed.

7) Compute performance value over the 20 completed simulations.

Figure 8.1: Complete IPD training algorithm.

8.5 Strategy generation

As was mentioned in section 8.2.2, various techniques have been used to generate strategies for

the IPD, ranging from man-made strategies [8] to genetic algorithms [35] and evolved neural

networks [37] [38] [25] [65]. Axelrod identified four different key features to successful IPD

strategies in his book [8], namely:

i) Do not be envious.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 143

ii) Do not be the first to defect.

iii) Reciprocate both cooperation and defection.

iv) Do not be too clever.

In order to address these features, a player must have access to some historical informa-

tion about previous encounters against a particular opponent. Axelrod and other prominent

researchers have allowed a player to keep track of its last three personal decisions, as well as

the last three decisions made by its opponent. This accounts for 26 possible historical states,

resulting in a standard strategy containing 64 possible cooperate/defect actions. It is the aim

of the evolutionary process to generate a 64-bit string that will represent a competitive strategy

in the constantly changing coevolutionary training environment.

The following sections each approach the process of strategy generation using PSO from

a different perspective. Evolving neural networks to evaluate historical positions and thereby

generate a successful playing strategy is discussed in section 8.5.1. The direct evolution of

the 64-bit string is achieved by the lesser known Binary PSO algorithm, and is discussed in

more detail in section 8.5.2. The last approach makes use of the PSO as function optimiser to

generate one half of a strategy, after which it is mirrored using one of four techniques to form

a complete strategy. This exploitation of symmetry is covered in section 8.5.3.

8.5.1 Evolving neural networks

Section 1.4.3 provided some background information on the use of neural networks in zero-sum

games, with specific reference to its applicability as a game state evaluator. Earlier experimental

work in this thesis also showed its applicability to Tic-Tac-Toe and Checkers. The same neural

network technique is now applied to the IPD.

Fogel and Chellapilla’s [25] neural network consisted of six input units, a hidden layer with

between two and twenty hidden units and a single output unit. The first three inputs to the

network represented the last three moves made by the opponent, and the final three inputs

represented the last three outputs by the network itself. The hidden and output nodes made

use of the hyperbolic tangent activation function. The single output represented a decision

to either cooperate or defect. The network was trained through the evolution of the network

weights, and performance measured through a coevolutionary tournament scheme.

Darwen and Yao [37] [38] constructed a slightly different neural network, consisting of four

input nodes, ten hidden nodes and once again a single output node. The first two inputs

correlated with the player’s last move as well as its opponent’s last move. The last two inputs

indicated whether the player exploited the opponent in the last move, or if the player was

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 144

exploited by the opponent instead. Ten hidden units proved to work well for the authors, and

the hidden and output layers also made use of the hyperbolic tangent as activation function.

Coevolutionary training was once again successfully employed.

This thesis’ experimental approach is similar to the method employed by Fogel and Chel-

lapilla. A standard three-layer artificial neural network is constructed, with six input units, a

selection of between five and thirty hidden units, and closing with a single output unit. The

first three input units receive the last three decisions output by the network itself, while the

last three input units accept the last three decisions made by the opponent. Sigmoid activa-

tion functions are used in all the hidden and output units. A final output value less than 0.5

represents cooperation, while a value larger than or equal to 0.5 represents defection.

Each particle represents the complete weight vector (input-to-hidden augmented by hidden-

to-output weights) of the neural network, and training is accomplished by ‘flying’ the particles

through the problem space towards the neighbourhood’s best position. The LBest neighbour-

hood structure is used, due to its good performance record for training neural networks – as

established in the previous chapters. A coevolutionary training approach is followed once again,

and described in more detail in section 8.4.

After training has been completed, the best individual in the competition pool is selected

and ‘queried’ for its response to all 64 possible historic interactions. The output is recorded as

a 64-bit string and benchmarked against the suite of existing man-made strategies.

Parameter selection

Taking into account the valuable insight gained from the performance analysis of using ANNs

to play Checkers, the following decisions were made regarding parameter selection. The rela-

tionship between an increase in swarm size and an increase in hidden-layer size will once again

be investigated. The most prominent swarm sizes from the earlier work on Checkers – 20 and

40 particles respectively – are similarly applied to this problem. Due to the success of the

LBest PSO neighbourhood structure in chapter 6, it is applied to train ANNs here using an

inclusive neighbourhood size of 5 particles.

It is also worth re-stating that the PSO algorithm requires a personal best score comparison.

The only accurate way of measuring any previous best playing behaviour is by including each

particle’s best position as an extra player in the competition pool. This results in the doubling

of the swarm size in order to accommodate the new players. The swarm sizes listed for the

experimental work exclude the personal best particles.

The influence of the maximum velocity on particle behaviour is expected to be even greater

in the IPD domain, due to its limited search space. Experimental testing has shown a maximum

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 145

velocity of 4.0 proved to elicit continued runs of cooperative behaviour. A proper inertia value

was also experimentally determined to be 0.7. The cognitive (c1) and social (c2) acceleration

constants are set to 1.4 each, while still adhering to the convergence equation by Van den Bergh

[137] as given in section 2.4.2. The particles are initialised according to the ranges established by

Wessels and Barnard [146] as described in section 2.2.1 on neural network weight initialisation,

and defined by equation 2.1.

The results of the experimental tests for the remainder of the parameter selections are

discussed alongside other experimental results in section 8.7.

8.5.2 Evolving strategies through Binary PSO

The second approach is more closely tied to the original work conducted by Axelrod [8], and

subsequent implementations by Darwen and Yao [35] [36]. Axelrod made use of a history-

bound of three decisions, allowing for 64 possible cooperate/defect interactions – represented

as a binary strategy. The 64-bit string was augmented with 6 additional bits to indicate

the three first decisions, bringing the final bit length for the chromosome representation to 70.

Axelrod applied standard evolutionary computation constructs, such as selection, reproduction

and mutation to a population of strategies in order to evolve more competent individuals. Each

strategy’s fitness was computed by playing an instance of the IPD for 151 interactions against

each of the fellow strategies in the population.

As was mentioned in the background chapter on computational intelligence techniques (in

section 2.4.4), Kennedy and Eberhart [77] developed a variant of the PSO algorithm to work in

a discretized search space – called Binary PSO (BinPSO). This method allows for a particle to

consist out of a string of binary values that are evolved by ‘flying’ the particle through search

space. Each particle represents a complete strategy of 64 cooperate/defect values (represented

in binary as 0 and 1 respectively). No additional bits are augmented to the strategy, as training

requires the players to start from random historic positions – thereby forcing the strategies to

cope with any historic position. This makes the IPD a slightly more difficult problem to train

on initially, but results in more robust strategies being evolved over 500 epochs. Coevolutionary

training is once again employed, with a more detailed description presented in section 8.4.

Parameter selection

In comparison to the PSO approach to train neural networks, the BinPSO approach requires

a little bit more investigation to adequately determine its parameters – since no previous work

has been done to this effect. The three different information sharing neighbourhood structures

introduced in chapter 2 are once again compared to determine their individual efficiency in

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 146

eliciting cooperative behaviour. The influence of applying an inertia weight to the standard

PSO velocity update equation is experimentally determined between the ranges (0.5, 1.0).

Similar testing correctly identifies the proper maximum velocity to be used for the BinPSO

simulations, with values compared between the ranges (0.001, 10.0).

Further experimental analysis investigates the influence of an increase in swarm size for all

the different neighbourhood structures. The cognitive (c1) and social (c2) acceleration values

are each set to 1.0, while still adhering to the equations for convergence as specified by Van den

Bergh [137]. In order to continue to make proper use of the coevolutionary training scheme,

the competition pool is doubled to facilitate the use of the personal best player.

The results of the experimental tests for the remainder of the parameter selections are

discussed alongside other experimental results in section 8.7.

8.5.3 Evolving strategies by exploiting symmetry

While experimenting with the previous two applications of PSO to the IPD domain, an inter-

esting observation regarding the physical structure of the IPD strategies triggered the creation

of yet another approach to evolve new IPD strategies through PSO. Table 8.3 lists the various

man-made strategies in tabular form, given the 64 possible historic states. To ease the expla-

nation, each strategy is depicted in two adjacent tables with its ‘top half’ (first 32 bits) on the

left and ‘bottom half’ (last 32 bits) on the right. By looking at the TFT and TFTT strategies,

it is possible to see that the bottom halves are exact copies of the top halves. The PVLV

strategy presents a mirror image, pivoted around the 32nd bit. This ‘symmetrical property’ of

the two successful man-made strategies seemed worthwhile investigating.

By only considering the first 32 bits, it is possible to represent the TFT strategy as a

sinusoidal wave (depicted in figure 8.2), with the positive areas of the graph representing

defection (1), and the negative areas of the graph representing cooperation (0). By slightly

shifting the sinusoidal graph in the horizontal and vertical directions, it is possible to represent

the TFTT strategy as well (depicted in figure 8.3).

Up to now, the most prominent application of PSO techniques has been in the area of

function optimisation. Figures 8.2 and 8.3 already illustrate how easy it is to create a strategy

by adapting a simple sinusoidal function. Would it be possible to construct a ‘higher resolution’

mathematical function that will allow for more intricate arrangements of 0’s and 1’s, and

adapting this function through the use of PSO?

The need for simplicity steered the creation of a combined sin/cos function. The function

can be mathematically described as:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 147

Table 8.3: Binary representation of strategies, illustrating symmetrical properties. (‘Op’ refers

to the opponent, and ‘My’ to the local player)

Top half of strategy Bottom half of strategy

Bit My history Op history TFT TFTT PVLV Bit My history Op history TFT TFTT PVLV

1 C C C C C C 0 0 0 33 D C C C C C 0 0 1

2 C C C C C D 0 0 0 34 D C C C C D 0 0 1

3 C C C C D C 0 0 0 35 D C C C D C 0 0 1

4 C C C C D D 0 0 0 36 D C C C D D 0 0 1

5 C C C D C C 1 0 1 37 D C C D C C 1 0 0

6 C C C D C D 1 0 1 38 D C C D C D 1 0 0

7 C C C D D C 1 1 1 39 D C C D D C 1 1 0

8 C C C D D D 1 1 1 40 D C C D D D 1 1 0

9 C C D C C C 0 0 0 41 D C D C C C 0 0 1

10 C C D C C D 0 0 0 42 D C D C C D 0 0 1

11 C C D C D C 0 0 0 43 D C D C D C 0 0 1

12 C C D C D D 0 0 0 44 D C D C D D 0 0 1

13 C C D D C C 1 0 1 45 D C D D C C 1 0 0

14 C C D D C D 1 0 1 46 D C D D C D 1 0 0

15 C C D D D C 1 1 1 47 D C D D D C 1 1 0

16 C C D D D D 1 1 1 48 D C D D D D 1 1 0

17 C D C C C C 0 0 0 49 D D C C C C 0 0 1

18 C D C C C D 0 0 0 50 D D C C C D 0 0 1

19 C D C C D C 0 0 0 51 D D C C D C 0 0 1

20 C D C C D D 0 0 0 52 D D C C D D 0 0 1

21 C D C D C C 1 0 1 53 D D C D C C 1 0 0

22 C D C D C D 1 0 1 54 D D C D C D 1 0 0

23 C D C D D C 1 1 1 55 D D C D D C 1 1 0

24 C D C D D D 1 1 1 56 D D C D D D 1 1 0

25 C D D C C C 0 0 0 57 D D D C C C 0 0 1

26 C D D C C D 0 0 0 58 D D D C C D 0 0 1

27 C D D C D C 0 0 0 59 D D D C D C 0 0 1

28 C D D C D D 0 0 0 60 D D D C D D 0 0 1

29 C D D D C C 1 0 1 61 D D D D C C 1 0 0

30 C D D D C D 1 0 1 62 D D D D C D 1 0 0

31 C D D D D C 1 1 1 63 D D D D D C 1 1 0

32 C D D D D D 1 1 1 64 D D D D D D 1 1 0

f(x) = sin(2π(x− a)× b× cos(2π × c(x− a))) + d (8.1)

where the variable a represents the horizontal shift of the function, b represents the maximum

frequency of the sin function, c represents the frequency of the cos function (in effect the rate

of change for the sin frequency), and lastly d represents the vertical shift of the function. The

resultant function with default coefficients is depicted in figure 8.4.

The power of the PSO as function optimiser can be put to the test by allowing it to adjust

the aforementioned function parameters (a,b,c,d). The resultant function is evenly sampled

at 32 positions and evaluated to either represent a cooperate or defect decision. In order to

fully exploit the symmetrical properties of the new IPD strategies, a 5th parameter is added to

the set of PSO evolvable terms. The new parameter, ψ, dictates the exact method by which

symmetry should be created, and its use is described in more detail below.

The 32 sampled bits represent the ‘top half’ of the IPD strategy. These bits can be ma-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 148

Figure 8.2: First 32 bits of the TFT strategy represented as a sinusoidal wave.

Figure 8.3: First 32 bits of the TFTT strategy represented as an adjusted sinusoidal wave.

nipulated in a variety of ways to construct a full 64-bit strategy, as depicted in figure 8.5. The

original 32 bits can be copied onto the previously empty ‘bottom half’ of the strategy, thereby

creating symmetry by repetition as applied by the TFT and TFTT strategies. Secondly, the

original bits can be mirrored around the 32nd bit, as illustrated by the PVLV strategy. The

last two symmetry operations repeat these methods, but instead make use of the compliment

of the original 32-bit string.

The evolved symmetry parameter, ψ, is first fed through a sigmoid function to scale it into

the (0, 1) range. The resultant value is compared to fall within one of four evenly spaced

intervals between 0 and 1, each representing a specific symmetry construction method. The

final 64-bit strategy is compiled thereafter, and used in a coevolutionary training scheme to

measure the individual’s performance.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 149

Figure 8.4: Combination of sin and cos function to be optimised.

Figure 8.5: Constructing symmetry in four different ways.

Parameter selection

Since this approach to IPD strategy generation is quite unique, an array of experimental tests

similar to those required for the BinPSO approach are necessary to determine the influence of

various PSO parameter settings. The three different information sharing neighbourhood struc-

tures are once again compared to determine their individual efficiency in eliciting cooperative

behaviour. The value of the inertia weight is experimentally examined within the range (0.5,

1.0). The influence of the maximum velocity value is tested within the range (0.001, 10.0). The

effect of different swarm sizes is once again be examined for all the different neighbourhood

structures. The cognitive (c1) and social (c2) acceleration values are set to 1.0 each. In order

to continue to make proper use of the coevolutionary training scheme, the competition pool is

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 150

doubled to facilitate the use of the personal best player.

The results of the experimental tests for the remainder of the parameter selections are

discussed alongside other experimental results in section 8.7.

8.6 Experimental procedure

Before critically examining the experimental results, it is first necessary to discuss the various

methods of determining a strategy’s performance in relation to other individuals in the pop-

ulation. Section 8.6.1 describes the performance measures introduced for experimental work

on the IPD for this thesis. The population training scheme is clearly outlined in the training

algorithm presented in section 8.4. Finally, the introduction of noise into the experimental

environment is covered in section 8.6.2.

8.6.1 Measuring performance

As was mentioned in the historic overview of the IPD (section 8.2.1), each player participating

in the IPD aims to maximise two separate strategy performance measures, namely the player’s

average personal payoff and average total payoff. It is also necessary to evaluate the population

behaviour in order to measure the population’s ability to cooperate for a finite length of time.

The following subsections discuss these separate performance measures in more detail.

Population behaviour

The IPD payoff matrix restrictions clearly indicate that mutual cooperation is more beneficial

than mutual defection or exploitation. The logical next step in terms of performance measure-

ment would be to quantify the population’s cooperative behaviour. From experimental analysis,

the following relation seems to be a good indication that a cooperative state is approaching:

(β ∧ τ) > (10× populationSize) (8.2)

where β represents the total number of cooperations for the individual with the largest total

payoff, and τ represents the average total number of cooperations for the population – both

for a single epoch.

Thus, the first measure of performance totals the number of simulations that satisfied the

above relation, indicating the total number of epochs during which population cooperation

was achieved. Secondly, it is important to determine the longest uninterrupted session of

cooperation during which the above relation held (longest stretch of cooperative behaviour

across all simulations).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 151

Table 8.4: ‘Man-made’ strategy benchmark – no noise.

Strategy Personal Payoff Opponent Payoff Total Payoff

RAND 2.68756 2.06250 4.75007

PVLV 2.76425 2.21621 4.98046

ALLC 2.49580 3.33613 5.83193

TFT 2.45963 2.45480 4.91443

STFT 2.46007 2.45524 4.91531

TFTT 2.54840 2.89081 5.43921

Strategy performance

It is also important to measure the performance of an individual strategy in relation to the whole

population. This is accomplished by competing an evolved strategy against the benchmark suite

of strategies listed in section 8.3, and allows each of the strategies in the population to be tested

independently.

The first performance measure inferred from the benchmarking process is the need to max-

imise the individual’s average personal payoff. A high average personal payoff indicates that

the player is cooperating and maybe even briefly exploiting some of its opponents. The second

performance measure links up with the population performance measure, whereby the average

total payoff is calculated. A high average total payoff indicates that not only the current strat-

egy, but also its opponents are achieving high payoffs – hopefully due to mutual cooperation.

Table 8.4 lists the various performance measures as calculated for each of the benchmark

strategies, by playing 1 million games against each of the various benchmark opponents in a

round-robin fashion. Each encounter consisted of 151 mutual interactions (corresponding to

the average number of interactions used by Axelrod [8]), and started by assuming a random

historical position. The Rand3 pseudo-random number generator developed by Knuth [105]

was used for consistency.

Experimental analysis will examine how the numbers in table 8.4 change as more com-

petitively evolved strategies are introduced, as well as how the competitive strategies’ payoffs

compare to the benchmark results. The benchmark strategies work well in mutually cooper-

ative environments, so the aim of evolved strategies would be to improve on the benchmark

average personal payoff, while still maintaining a reasonable level of cooperation – measured

through the average total payoff.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 152

Table 8.5: ‘Man-made’ strategy benchmark – 5% noise.

Strategy Personal Payoff Opponent Payoff Total Payoff

RAND 2.64382 2.08117 4.72499

PVLV 2.82916 2.10013 4.92928

ALLC 2.43957 3.27225 5.71183

TFT 2.53880 2.46150 5.00030

STFT 2.53900 2.46180 5.00080

TFTT 2.49307 3.10632 5.59939

8.6.2 Noisy environments

Real-world situations all have a certain degree of noise, be it from faulty sensory equipment

or just a simple misunderstanding. Noise can also be added to the IPD to determine whether

or not a population of individuals can still arrive at a mutual cooperative agreement. Certain

strategies such as Pavlov, Generous Tit-for-tat and Tit-for-two-tats have been hailed to be more

effective in noisy environments. Wu and Axelrod [148] summarise three options to adequately

deal with noise:

i) Add generosity to a reciprocating strategy.

ii) Add contrition to a reciprocating strategy.

iii) Make use of a new strategy (Pavlov).

Work by Foster and Young [149] has shown that the behaviour of a population consisting

only out of ALLC, TFT and Always Defect strategies tend to change as soon as noise is added

to the system. Randomness is applied according to the central limit theorem, which states that

an increase in population size diminishes the effects of individual random behaviour – noise

is therefore applied inversely proportional to the population size. Foster and Young observe

that in large population sizes (and small noise), individuals tend to play Always Defect, and

conclude that cooperative strategies should be constantly tested by non-cooperative strategies

in order to maintain cooperation in the long run.

The performance of the various evolutionary processes are experimentally evaluated under

conditions with 5% noise added to the communication channel, irrespective of the population

size. The benchmark strategy performance under 5% noise is listed in table 8.5, computed

by playing each benchmark strategy against all its neighbours in a round-robin fashion for 1

million games, 151 interactions per encounter.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 153

8.7 Experimental results

This section systematically presents a wide range of experimental results as alluded to in earlier

sections of this chapter. In summary, the following experiments were conducted:

1. Influence of parameter choices

• Neural Network approach

– Increase in hidden nodes

– Increase in swarm size

• Binary PSO and Symmetry Approaches

– Influence of VMax

– Influence of Inertia

– Influence of Neighbourhood structure

– Increase in swarm size

2. Population performance (All approaches)

• Benchmark results

• Benchmark results with noisy environment

3. Strategy performance (All approaches)

• Benchmark results

• Benchmark results with noisy environment

8.7.1 Parameter choices

The following subsections list results for the experiments conducted to determine the appro-

priate parameter settings, before any population performance or strategy benchmarking are

done. The Neural Network approach is examined first, after which the BinPSO and Symmetry

approaches are examined in unison.

Neural Network approach

The first task is to determine the influence of an increase in hidden nodes, versus an increase

in swarm size on the performance of the ANN to generate successful strategies. To recap, the

following parameter settings were previously experimentally determined to result in optimal

performance: VMax = 4.0, c1 and c2 = 1.4, and inertia = 0.7. Figure 8.6 graphically depicts the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 154

Figure 8.6: Increase in hidden nodes versus swarm size for Neural Network approach.

Figure 8.7: Influence of inertia term for BinPSO and symmetry approaches.

results using the aforementioned parameters, clearly indicating that an increase in swarm size

has a significant improvement on the average personal payoff. Smaller swarms’ performance

generally improves with an increase in hidden nodes, whereas the potential gain to be made by

larger swarm sizes in increasing their hidden layer size is marginally smaller. These numbers

represent the strategies’ average personal payoff against the benchmark strategies listed in

section 8.3.

Binary PSO and Symmetry Approaches

The Binary PSO and Symmetry approaches require slightly more experimental analysis in order

to determine the exact impact of specific parameter choices on playing performance. Previous

experimental testing showed that setting c1 and c2 to 1.0 each resulted in adequate converging

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 155

Figure 8.8: Influence of the maximum velocity for BinPSO and symmetry approaches.

behaviour. Specific neighbourhood structure performance will be analysed in section 8.7.3,

along with an increase in swarm size. For the experiments conducted in this section, the LBest

neighbourhood structure was used. Experimental work was conducted to examine the influence

of a static inertia term and maximum velocity for both approaches. No noise was applied in

any of the parameter-specific experiments.

Figure 8.7 graphically depicts the results for experiments that tested inertia terms ranging

from 1.0 to 0.5, in decrements of 0.1. For this experiment, an arbitrarily chosen maximum

velocity of 0.01 was used. The results for both the Symmetry and BinPSO approaches show an

increasing trend in average personal payoff as the inertia decreases, with the best performance

being achieved with an inertia value of 0.5 in both cases. The best performing Symmetry

approach managed to score 2.73721, while the overall best BinPSO approach scored 2.77274.

The influence of the use of a strictly capped maximum velocity term was also examined.

For these experiments, an inertia term of 1.0 was chosen in order to balance the local and global

searching capabilities of the swarm. A varying degree of maximum velocities were experimen-

tally tested, including 0.001, 0.01, 0.1, 1.0, and 10.0. The results for these experiments are

graphically depicted in figure 8.8. In this case, the two strategy generation approaches do not

follow the same trend. The Symmetry approach experiences a decline in performance as the

maximum velocity restriction is relaxed – a trend previously noticed with neural network train-

ing of Checkers agents. The BinPSO approach however doesn’t seem to clearly benefit from

a certain range of maximum velocities, showing some signs of oscillatory behaviour. Overall,

the best Symmetry approach scored an average personal payoff of 2.638071 with a maximum

velocity of 0.001, while the best BinPSO approach scored 2.783858 with a maximum velocity

of 0.1.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 156

Figure 8.9: Catastrophic collapses occurring in neural network-based population.

8.7.2 Population performance

As was mentioned in section 8.6.1, the first primary measure of performance involved investi-

gating the performance and behaviour of the population of IPD players. Ideally, a population

should be able to enter into continuous mutual cooperative exchanges, hereafter referred to as

‘cooperative runs’. The following subsections measure a certain strategy generation approach’s

ability to initiate a cooperative for each of its 20 simulations, as well as the longest cooperative

run that emerged across all the simulations. The average personal payoff for the best individual

in the population is plotted for the duration of the 500 epochs to indicate possible switches in

strategy and subsequent shifts in performance.

The first subsection investigates a selected observation using the Neural Network approach

– the so-called ‘catastrophic collapses’ occurring in noiseless environments. Thereafter, normal

analysis continues in sections dedicated to noiseless and noisy environments respectively.

Neural Network approach - catastrophic collapses

In a noiseless environment using the Neural Network approach, it frequently occurred that the

swarm did not maintain cooperation when the 500th epoch approached, but instead showed

signs of ‘burst cooperative runs’. A population may be improving its overall score by continually

cooperating with fellow particles, until the end result is a genetically weak population that is

easily invaded by an ‘always defect’ strategy. This leads to so-called catastrophic collapses,

first formally observed by Lindgren [87], it also appeared in similar neural network-based work

by Chellapilla and Fogel [25]. The reasons behind these collapses were critically examined by

Darwen and Yao [35], and are briefly mentioned below.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 157

Figure 8.9 illustrates this exact phenomenon from a population with a configuration of 40

particles and 10 hidden nodes. As soon as the average personal payoff approaches a value

of 3.0, followed by a similar average population payoff (indicating mutual cooperation among

the majority of individuals), the average payoff significantly drops as it is invaded by ‘always

defect’ strategies. This is due to its genetically weak structure that closely resembles the ‘always

cooperate’ strategy, which is easily invaded by the ‘always defect’ strategy. The relevant areas

on the graph in figure 8.9 that indicate these collapses have been appropriately highlighted.

The population continually tries to get rid of the invading strategy (indicated by the rise

of the average payoff), but is unable to do so permanently. Other example simulations never

survive such a catastrophic collapse, and the mutual cooperation run returns to a mutual

negative state of ‘always defect’ until the end of training. This results in potential ‘always

defect’ strategies being benchmarked, subsequently resulting in poorer average performance.

As it is a characteristic of the type of environment containing ‘moving objectives’, it is also

reflected in the results and previous potentially ‘better’ strategies were not retained.

Noiseless environment

Continuing with the analysis of the Neural Network approach, table 8.6 lists the performance

for evolved networks to play the IPD. As mentioned earlier, the LBest neighbourhood structure

is applied, and swarm sizes of 20 and 40 particles are compared along with hidden layer sizes

ranging from 5 to 30 nodes.

From the table, it is clear that an increase in swarm size results in an increased ability

of the swarm to continue with cooperative behaviour. The configurations making use of 40

particles are able to maintain cooperative runs for almost four times their smaller predecessor’s

durations. The total number of simulations that were able to elicit cooperative runs varies

inconsistently between the two swarm size configurations.

An inspection of hidden layer sizes indicates an increased average personal performance for

mid-range sized hidden layers, with a decline in performance experienced for both smaller and

larger selections. Overall, the best performer were able to achieve cooperative runs for 262

consecutive generations, with most of the configurations able to elicit cooperative behaviour in

more 75% of the simulations.

Table 8.7 depicts the performance for the BinPSO and Symmetry approaches. A more

diverse set of neighbourhood structures were used, and swarm sizes of 20, 30 and 40 particles

were experimentally examined. The first observation can be made across both techniques.

Both the Symmetry and BinPSO approaches are able to elicit cooperative behaviour in all 20

simulations, for each PSO neighbourhood scheme in use.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 158

Table 8.6: Neural network cooperation results for 20 simulations – noiseless environment.

Size Hidden nodes Nr of cooperative runs Longest run

20 5 11 31

20 10 20 76

20 20 18 62

20 30 17 37

40 5 17 257

40 10 15 262

40 20 19 143

40 30 17 135

Table 8.7: Binary PSO and Symmetry Approaches’ cooperation results for 20 simulations –

noiseless environment.

Structure Size Nr of cooperative runs Longest run

BinPSO GBest 20 20 264

BinPSO Von Neumann 20 20 286

BinPSO LBest 20 20 445

BinPSO GBest 30 20 314

BinPSO Von Neumann 30 20 370

BinPSO LBest 30 20 500

BinPSO GBest 40 20 224

BinPSO Von Neumann 40 20 223

BinPSO LBest 40 20 414

Symmetry GBest 20 20 162

Symmetry Von Neumann 20 20 249

Symmetry LBest 20 20 178

Symmetry GBest 30 20 152

Symmetry Von Neumann 30 20 243

Symmetry LBest 30 20 191

Symmetry GBest 40 20 154

Symmetry Von Neumann 40 20 108

Symmetry LBest 40 20 254

The BinPSO approach favours a mid-range swarm size of 30 particles, with the LBest

neighbourhood structure outperforming the other two competitors. The Symmetry approach

also favours the LBest neighbourhood structure, but does not yield a consistent trend due to

the increase in swarm size. Overall the BinPSO approach is able to elicit longer consecutive

runs of cooperation when compared to the Symmetry approach, with the best performing

configuration able to cooperate for all 500 epochs of evolution.

The collapsing behaviour for the Neural Network approach was previously discussed. It

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 159

Figure 8.10: Average personal performance of best agent using the BinPSO approach over 500

epochs.

Figure 8.11: Average personal performance of best agent using the Symmetry approach over

500 epochs.

is possible to plot the individual behaviour for the best particle using the remaining two ap-

proaches as well. Figure 8.10 and figure 8.11 depict the average personal payoff across 500

epochs for the BinPSO and Symmetry approaches respectively. In comparison with the Neu-

ral Network graph in figure 8.9, it is clear that neither the BinPSO or Symmetry approaches

suffer from catastrophic collapses, as both the graphs retain a positive average personal payoff

without the evidence of mutual defection. Each graph separately depicts the average personal

payoff for the best individual and the population as a whole.

The Symmetry approach’s graph shows a larger deviation in average performance, but in

the process manages to reach higher payoffs with peaks extending close to 3.4. The best indi-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 160

vidual’s graph is roughly centred around a payoff of 3.0, indicating a high probability of mutual

cooperation among the members of the population. In comparison, the BinPSO graph shows

less deviation in average performance, with the best individual roughly achieving an average

payoff of 2.75. Both approaches’ populations’ average personal payoffs are centred around 2.2,

contrasting to the Neural Network population average that closely matched the best individ-

ual’s behaviour. This may be the key to the success of the BinPSO and Symmetry approaches’

performance, since it shows that the populations are less susceptible to high fluctuations in best

performing behaviour. The best performing agents’ strategies may contain a large number of

defecting exchanges, but the exploitation by the individual over the group is accepted since the

population as whole is in an equilibrium of mutually beneficial behaviour. The defecting strate-

gies do not dominate the cooperating strategies in the Symmetry and BinPSO approaches. The

same reasoning does not hold for the Neural Network approach, which is extremely vulnerable

to exploitation.

Noisy environment

The application of noise to the IPD was previously discussed in section 8.6.2. Analysis of

population behaviour shows a very interesting change in the various approaches’ abilities to

continue eliciting cooperative behaviour. Starting with the Neural Network approach, the

results for an increase in swarm size and hidden nodes is depicted in table 8.8. It is clear that

the Neural Network approach is completely unable to cope with even a slight noise margin of

only 5%. An increase in swarm size results in even poorer performance – in contrast with the

noiseless environment’s experimental results. Small swarm sizes are able to elicit cooperation

in only less than 25% of the simulations, with the longest uninterrupted run only consisting of

126 generations. Larger swarm sizes fail miserably, with only a single cooperative simulation

Table 8.8: Neural Network approach’s cooperation results for 20 simulations – 5% noise applied.

Size Hidden nodes Nr of cooperative runs Longest run

20 5 4 32

20 10 2 34

20 20 5 29

20 30 3 126

40 5 1 1

40 10 1 1

40 20 1 3

40 30 0 0

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 161

Figure 8.12: Average personal performance of best agent using the Neural Network approach

over 500 epochs in a noisy environment.

and generation per configuration.

Plotting the average personal performance graph in figure 8.12, reveals that the Neural

Network approach stagnates on an ‘always defect’ strategy. The consistent jumps in average

personal performance is due to the use of the particle dispersement operator (as described in

section 6.4.3) that is able to briefly influence the convergence of the swarm on the inferior

local solution. Unfortunately, the swarm is not able to permanently recover from its poor

performance, and the ‘always defect’ strategy prevails, along with the associated poor payoff.

It is interesting to note that an increase of the noise level beyond 50% results in a sudden shift

of strategy from a complete ‘allways defect’ position to an ‘allways cooperate’ position. The

logical reasoning behind this is that such a high error rate would convert the ‘cooperate’ signal

into a ‘defect’ signal, which is what the neural networks were aiming for all along.

The impact of the application of noise to the communication channel for the Symmetry and

BinPSO approaches differ quite substantially from the Neural Network approach. Repeating

the experiments conducted in the previous section, each approach was tested with swarm sizes

of 20, 30 and 40 particles respectively. All three PSO neighbourhood information sharing

structures were also applied for each approach in turn. In almost every single experiment,

both the Symmetry and BinPSO approaches were able to elicit cooperative runs spanning the

maximum of 500 epochs, for all 20 simulations. Table 8.9 lists the few exceptions to this case,

but still illustrates a very good performance as compared to the Neural Network approach.

Plotting the average personal performance graphs for the BinPSO and Symmetry ap-

proaches also indicate slightly different playing behaviour when compared to the noiseless

equivalents. The BinPSO approach performance in an environment with 5% noise is illus-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 162

Table 8.9: Exceptions to superb performing Binary PSO and Symmetry Approaches’ cooper-

ation results for 20 simulations – 5% noise applied.

Structure Size Nr of cooperative runs Longest run

Symmetry GBest 20 20 497

Symmetry LBest 20 20 473

Symmetry GBest 30 20 324

Figure 8.13: Average personal performance of best agent using the BinPSO approach over 500

epochs in a noisy environment.

trated in figure 8.13. As already alluded to in the aforementioned performance tables, the

BinPSO approach is able to elicit cooperative behaviour from the other particles in the swarm.

This fact is clearly indicated by the best individual’s average personal payoff consistently cen-

tered around 2.5, and the average population performance plotted in the region of 2.1. When

compared to the equivalent graph for a noiseless environment (figure 8.10), it seems as if the

population performance is unaffected by the noise. The best individual’s personal performance

dropped slightly, but the deviation across 500 epochs has been minimised.

Figure 8.14 represents the performance plot for the Symmetry approach in a noisy environ-

ment. When compared to the noiseless equivalent in figure 8.11, it is clear that the deviation

has been drastically reduced for both the best individual and the population average. It is also

interesting to note that the Symmetry approach is not able to maintain a consistent average

payoff, but instead shows definite signs of declining performance over 500 epochs. Even though

the performance for the Symmetry approach is relatively good, it does not outperform the

BinPSO approach.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 163

Figure 8.14: Average personal performance of best agent using the Symmetry approach over

500 epochs in a noisy environment.

8.7.3 Strategy performance

Noiseless environment

Table 8.10 depicts the performance of the various evolutionary approaches to IPD strategy

generation, as computed against the benchmark suite of man-made strategies in a noiseless

environment. The two best-performing Neural Network configurations from the experimental

work on Checkers are now again applied to the IPD problem domain. The first constitutes

a swarm size of 20 particles and 20 hidden nodes, and the second 5 hidden nodes and 40

particles. In both cases the LBest neighbourhood structure was applied, using an inclusive

neighbourhood size of 5 particles.

In order to ease the performance comparison between the BinPSO, Symmetry and Neural

Network approaches, the former two methods also only made use of swarms sizes of 20 and 40

particles. The analysis of the various neighbourhood structures were however extended in both

the Symmetry and BinPSO approaches, and the standard GBest, LBest and Von Neumann

architectures were examined.

The average total payoff over 151 interactions are listed beneath each man-made strategy’s

column, while the edge of the table represents the average personal payoff (APP) and average

total payoff (ATP) per move for each strategy generation approach.

Firstly considering the Neural Network approach, the configuration of 5 hidden nodes and

40 particles outperformed 20 hidden nodes and 20 particles on both the APP and ATP. Even

though the Neural Network approach only managed to score the 3rd and 4th lowest APP

scores, it achieved the overall highest ATP scores due to its good level of cooperation with

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 164

Table 8.10: Best performing individuals, averaged over 20 runs and 10000 games per run – no

noise.

Approach Size Arch RAND PVLV ALLC TFT STFT TFTT Avg PP Avg TP

Neural Network (20HN) 20 LB 355.37 355.92 597.52 313.50 313.47 361.07 2.5352 4.4861

Benchmark vs NN (20HN) 20 LB 303.39 296.69 236.22 313.44 313.41 304.38 1.9509 4.4861

Neural Network (5HN) 40 LB 362.43 366.82 587.32 324.88 324.88 401.38 2.6134 4.6009

Benchmark vs NN (5HN) 40 LB 286.91 313.28 251.53 324.81 324.82 299.35 1.9875 4.6009

BinPSO 20 LB 394.76 403.24 691.06 317.32 317.29 432.53 2.8214 4.3596

Benchmark vs BinPSO 20 LB 211.51 185.83 95.91 316.97 316.93 266.45 1.5382 4.3596

BinPSO 40 LB 416.30 421.45 684.79 267.94 267.79 407.98 2.7221 4.0315

Benchmark vs BinPSO 40 LB 161.19 141.17 105.31 266.92 266.77 244.88 1.3093 4.0315

BinPSO 20 GB 405.82 397.52 687.85 282.62 282.93 399.89 2.7115 4.1249

Benchmark vs BinPSO 20 GB 185.47 203.03 100.73 281.88 282.20 227.17 1.4133 4.1249

BinPSO 40 GB 407.52 393.59 670.72 301.58 301.46 423.63 2.7577 4.2696

Benchmark vs BinPSO 40 GB 181.51 208.85 126.43 301.13 301.01 250.81 1.5118 4.2696

BinPSO 20 VN 402.51 405.77 657.10 310.81 310.75 400.52 2.7455 4.3243

Benchmark vs BinPSO 20 VN 193.34 184.39 146.85 310.46 310.42 284.90 1.5787 4.3243

BinPSO 40 VN 419.82 429.00 688.11 283.77 283.67 385.67 2.7484 4.0900

Benchmark vs BinPSO 40 VN 153.06 133.56 100.34 283.07 282.96 262.54 1.3417 4.0900

Symmetry 20 LB 433.12 439.58 731.34 207.14 207.24 254.07 2.5083 3.4446

Benchmark vs Symmetry 20 LB 121.76 101.98 35.48 205.11 205.21 178.81 0.9364 3.4446

Symmetry 40 LB 441.80 449.35 741.97 199.86 199.96 251.07 2.5210 3.3787

Benchmark vs Symmetry 40 LB 101.84 83.96 19.54 197.68 197.79 176.27 0.8577 3.3787

Symmetry 20 GB 422.18 425.69 723.43 242.24 242.23 333.58 2.6373 3.7671

Benchmark vs Symmetry 20 GB 147.41 129.91 47.36 240.66 240.65 217.63 1.1298 3.7671

Symmetry 40 GB 421.78 423.84 731.64 257.88 257.85 339.86 2.6853 3.8449

Benchmark vs Symmetry 40 GB 148.35 145.35 35.04 256.43 256.38 209.06 1.1596 3.8449

Symmetry 20 VN 417.86 421.08 718.39 258.75 258.75 315.51 2.6383 3.8438

Benchmark vs Symmetry 20 VN 157.65 150.64 54.92 257.57 257.56 213.81 1.2055 3.8438

Symmetry 40 VN 421.60 435.48 746.39 264.22 264.23 349.83 2.7392 3.8550

Benchmark vs Symmetry 40 VN 148.87 118.51 12.92 262.92 262.94 204.69 1.1157 3.8550

its opponents. As already mentioned, the openly cooperative nature of the Neural Network

approach also leads to its downfall as evident by the occurrence of catastrophic collapses. The

Neural Network approach managed to outperform all the benchmark strategies, with the largest

margin of more than 360 points against ALLC, and the smallest margin of only 0.06 against

TFT and STFT.

An examination of the various neighbourhood information sharing structures as applied

to the BinPSO approach indicate that the Von Neumann structure outperformed both the

standard GBest and LBest structures. The BinPSO approach was able to outperform most of

the Symmetry and Neural Network APP scores, but still trailed the Neural Network approach

on ATP. The various BinPSO approaches managed to achieve the top four APP scores. BinPSO

outperformed all the benchmark strategies with the largest margin of 596 against ALLC and

the smallest margin of 0.33 against STFT. It managed to outperform the Neural Network

approach’s APP, but could not duplicate the deep level of cooperation achieved by the Neural

Network approach. The benchmark strategies struggled to cooperate with BinPSO as evident

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 165

by the low ATP scores.

Finally considering ATP scores of the various Symmetry approaches reveal that the Von

Neumann structure yet again outperformed the standard GBest and LBest structures. The

Symmetry approach unfortunately recorded the overall worst ATP scores, but managed to

mostly surpass the Neural Network approach on APP. It is interesting to note that the Sym-

metry approach almost completely deprives the benchmark strategies of recording any APP

scores. The Symmetry approach also outperformed all the man-made benchmark strategies,

which struggled to cooperate with it when considering the ATP scores.

Table 8.11 provides a detailed comparison of the individual performance of the various man-

made strategies against the evolved approaches. The APP scores reflect those of the benchmark

strategies, and the average opponent payoff (AOP) scores correspond to the different evolved

approaches.

The RAND strategy struggled most against the Symmetry approach, only scoring 0.674

against a LBest configuration of 40 particles. Not considering its performance against the

other benchmark strategies, RAND managed to cooperate the best with a Neural Network

approach of 20 hidden nodes – scoring an ATP value of 4.362. RAND was unable to exceed

the individual payoff scores of any of its opponents.

PVLV managed to score the 3rd highest ATP score against the man-made benchmark

strategies, but struggled most to cooperate with the Symmetry approach – only managing 0.556

against a configuration of 40 particles utilising the standard LBest neighbourhood structure.

PVLV did manage to score a respectable ATP of 4.502 against a Neural Network opponent

with 5 hidden nodes, but could not exceed any of the evolved strategies’ individual payoffs.

The ALLC man-made strategy managed to score the highest ATP of all the investigated

strategies. It cooperated very well with the other benchmark strategies, recording an APP

close to 3.0. It was able to partially cooperate with the Neural Network approach, scoring

slightly less than 3.0 due to the occurrence of catastrophic collapses. The ALLC strategy was

totally exploited by the BinPSO and Symmetry approaches, only managing a low score of

0.086 against the Symmetry approach with a swarm size of 40 particles and utilising the Von

Neumann structure.

The TFT and STFT strategies had a much more balanced performance, due to the recip-

rocating nature of these strategies. As most of the other man-made strategies, the TFT and

STFT strategies performed best against the benchmark strategies with an ATP above 4.91.

Even though neither strategy was able to outperform the evolved strategies’ AOP, both TFT

and STFT were able to equal the AOP or come within 0.02 in numerous occasions. TFT and

STFT struggled against the Symmetry approach, but were able to cooperate with the Neural

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 166

Network and BinPSO approaches. The overall best ATP against an evolved strategy was 4.303,

achieved in competition with the Neural Network approach utilising 5 hidden nodes.

TFTT performed slightly worse than the TFT and STFT strategies when considering the

APP scores, but was able to elicit deeper cooperation with all the opponent strategies – indi-

cated by the superior ATP scores.

Noisy environment

Table 8.12 depicts the performance of the various evolutionary approaches to IPD strategy

generation, as computed against the benchmark suite of man-made strategies in an environment

with 5% noise applied to the communication channel. The parameter settings that applied to

the experiments in the noiseless environment are once again used in this set of experiments.

The average total payoff over 151 interactions are listed beneath each man-made strategy’s

column, while the edge of the table represents the average personal payoff (APP) and average

total payoff (ATP) per move for each strategy generation approach.

Starting with the Neural Network approach, the experimental configuration of 20 hidden

nodes and swarm size of 20 particles outperformed the configuration of 5 hidden nodes and

a swarm size of 40 particles, on both APP and ATP scores. The ‘superior’ performance is

negligible though, with marginal differences of 0.0001 and 0.0002 in both cases. When com-

pared to the noiseless equivalent the Neural Network’s APP declined slightly. The benchmark

opponents were completely unable to cooperate with either Neural Network, as indicated by

very low AOP scores (0.799). The poor cooperation can be attributed to the ‘always defect’

strategy that emerges due to the presence of noise, as depicted in figure 8.12. The Neural

Network approach achieved the overall worst ATP scores of any of the evolved strategies, only

managing 3.25, but still outperformed all the man-made benchmark strategies.

Analysis of the BinPSO approach’s results once again shows that the Von Neumann struc-

ture is able to outperform both the standard GBest and LBest structures. The BinPSO ap-

proach is able to mostly outperform the Symmetry approach on APP scores, but completely

outperforms the Neural Network approach’s APP score. Overall, the BinPSO approach has the

best ATP score, almost achieving scores reported in the noiseless environment. This indicates

the strategy’s good performance in the noisy environment. None of the benchmark strate-

gies could compete with the BinPSO approach, with a large number of the BinPSO scores

improving on the equivalent noiseless environment scores. The improvement in scores can be

attributed to the benchmark strategies’ inability to cope with noise as well as the BinPSO

approach, resulting in a shift in performance from the AOP to APP scores.

Lastly, the results for the Symmetry approach indicate that both the Von Neumann and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 167

standard GBest structures are able to improve over the APP and ATP scores reported for the

noiseless environment – also outperforming the Neural Network APP scores. The Von Neu-

mann structure results in the largest APP and ATP scores for the Symmetry approach, clearly

illustrating the structure’s dominance yet again. All of the benchmark strategies’ APP scores

were restricted close to 1.0, a limit somewhat higher than the reported noiseless environment

equivalent. Overall the ATP scores serve as an indication of the poor cooperative state between

the benchmark strategies and the Symmetry approach. The Symmetry approach managed to

outperform all the benchmark strategies, with the largest margin of 734.53 against ALLC, and

the smallest margin of 26.49 against STFT.

Table 8.13 provides a detailed comparison of the individual performance of the various

man-made strategies against the evolved approaches in the noisy environment. The APP

scores reflect those of the benchmark strategies, and the average opponent payoff (AOP) scores

correspond to the different evolved approaches.

The first major observation involves noticing the overall drop in APP scores for most of the

man-made benchmark strategies, when compared to the reported noiseless environment scores.

Once again none of the man-made strategies could manage to outperform any of the evolved

strategies. TFTT manages to outperform both the TFT and STFT strategies’ ATP scores

in the noisy environment, supporting the aforementioned claim that TFTT is more suited to

elicit cooperative behaviour in noisy environments. PVLV performs equally well under noisy

conditions, with ATP scores comparatively similar to TFTT. The most interesting observation

however is the performance of the RAND strategy, with ATP scores comparing well with TFTT

and PVLV.

Overall, the man-made benchmark strategies continued to struggle the most against the

Symmetry approach, and remained unable to bring about any form of sustained cooperative

behaviour that benefited both the APP and AOP scores.

8.8 Conclusion

This chapter applied the PSO-based coevolutionary training technique to the non-zero sum

game of the Iterated Prisoner’s Dilemma. It was the first application of particle swarm optimi-

sation in the history of the IPD. Three novel strategy generation methods were presented. The

first continued the original zero-sum approach of evolving neural networks as evaluators, given

three historic personal and opposition states. The second made use of the lesser known Binary

PSO algorithm to directly evolve a 64-bit strategy. The last approach exploited the symmet-

rical nature of man-made strategies, and explored the PSO’s function optimisation abilities to

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 168

evolve the first 32 bits of a 64-bit strategy. Two performance measures were established, with

the first analysing the general ability of a population to bring about mutually cooperative be-

haviour. The second investigated the specific strategy performance when benchmarked against

a selection of six well-known man-made IPD strategies.

The experimental results indicated that the Neural Network approach was able to elicit

deep levels of cooperation, which could lead to so-called catastrophic collapses due to the

development of genetic weaknesses. The Neural Network approach was unable to elicit any

cooperative behaviour in an environment with 5% noise applied to the communication channel.

The results for the BinPSO approach seem to suggest a state of equilibrium in which

cooperative behaviour takes place, but exploitation also exists. The defecting strategies were

neither ‘allowed’ to flourish, nor completely die out. This increased the robustness of the

population of strategies, and the BinPSO approach was able to reach a state of equilibrium in

a noisy environment as well.

Finally, the Symmetry approach showed similar performance traits as the BinPSO approach

in a noiseless environment, but was unable to maintain a consistent payoff in a noisy environ-

ment. The Symmetry approach managed to deprive the benchmark strategies of attaining

any payoffs beyond 1.0 – a characteristic not suited for mutual cooperation against a diverse

collection of opposing strategies.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 169

Table 8.11: Performance of individual man-made strategies - no noise.

RAND PVLV

Opponent Size Arch Avg PP Avg OP Avg TP Opponent Size Arch Avg PP Avg OP Avg TP

Bench Suite N/A N/A 2.688 2.063 4.750 Bench Suite N/A N/A 2.764 2.216 4.980

NN (20HN) 20 LB 2.009 2.353 4.362 NN (20HN) 20 LB 1.965 2.357 4.322

NN (5HN) 40 LB 1.900 2.400 4.300 NN (5HN) 40 LB 2.075 2.429 4.504

BinPSO 20 LB 1.401 2.614 4.015 BinPSO 20 LB 1.231 2.670 3.901

BinPSO 40 LB 1.067 2.757 3.824 BinPSO 40 LB 0.935 2.791 3.726

BinPSO 20 GB 1.228 2.688 3.916 BinPSO 20 GB 1.345 2.633 3.978

BinPSO 40 GB 1.202 2.699 3.901 BinPSO 40 GB 1.383 2.607 3.990

BinPSO 20 VN 1.280 2.666 3.946 BinPSO 20 VN 1.221 2.687 3.908

BinPSO 40 VN 1.014 2.780 3.794 BinPSO 40 VN 0.885 2.841 3.726

Symmetry 20 LB 0.806 2.868 3.674 Symmetry 20 LB 0.675 2.911 3.586

Symmetry 40 LB 0.674 2.926 3.600 Symmetry 40 LB 0.556 2.976 3.532

Symmetry 20 GB 0.976 2.796 3.772 Symmetry 20 GB 0.860 2.819 3.679

Symmetry 40 GB 0.982 2.793 3.775 Symmetry 40 GB 0.963 2.807 3.770

Symmetry 20 VN 1.044 2.767 3.811 Symmetry 20 VN 0.998 2.789 3.787

Symmetry 40 VN 0.986 2.792 3.778 Symmetry 40 VN 0.785 2.884 3.669

ALLC TFT

Opponent Size Arch Avg PP Avg OP Avg TP Opponent Size Arch Avg PP Avg OP Avg TP

Bench Suite N/A N/A 2.496 3.336 5.832 Bench Suite N/A N/A 2.460 2.455 4.914

NN (20HN) 20 LB 1.564 3.957 5.521 NN (20HN) 20 LB 2.076 2.076 4.152

NN (5HN) 40 LB 1.666 3.890 5.556 NN (5HN) 40 LB 2.151 2.152 4.303

BinPSO 20 LB 0.635 4.577 5.212 BinPSO 20 LB 2.099 2.101 4.200

BinPSO 40 LB 0.697 4.535 5.232 BinPSO 40 LB 1.768 1.774 3.542

BinPSO 20 GB 0.667 4.555 5.222 BinPSO 20 GB 1.867 1.872 3.739

BinPSO 40 GB 0.837 4.442 5.279 BinPSO 40 GB 1.994 1.997 3.991

BinPSO 20 VN 0.973 4.352 5.325 BinPSO 20 VN 2.056 2.058 4.114

BinPSO 40 VN 0.665 4.557 5.222 BinPSO 40 VN 1.875 1.879 3.754

Symmetry 20 LB 0.235 4.843 5.078 Symmetry 20 LB 1.358 1.372 2.730

Symmetry 40 LB 0.129 4.914 5.043 Symmetry 40 LB 1.309 1.324 2.633

Symmetry 20 GB 0.314 4.791 5.105 Symmetry 20 GB 1.594 1.604 3.198

Symmetry 40 GB 0.232 4.845 5.077 Symmetry 40 GB 1.698 1.708 3.406

Symmetry 20 VN 0.364 4.758 5.122 Symmetry 20 VN 1.706 1.714 3.420

Symmetry 40 VN 0.086 4.943 5.029 Symmetry 40 VN 1.741 1.750 3.491

STFT TFTT

Opponent Size Arch Avg PP Avg OP Avg TP Opponent Size Arch Avg PP Avg OP Avg TP

Bench Suite N/A N/A 2.460 2.455 4.915 Bench Suite N/A N/A 2.548 2.891 5.439

NN (20HN) 20 LB 2.076 2.076 4.152 NN (20HN) 20 LB 2.016 2.391 4.407

NN (5HN) 40 LB 2.151 2.152 4.303 NN (5HN) 40 LB 1.982 2.658 4.640

BinPSO 20 LB 2.099 2.101 4.200 BinPSO 20 LB 1.765 2.864 4.629

BinPSO 40 LB 1.767 1.773 3.540 BinPSO 40 LB 1.622 2.702 4.324

BinPSO 20 GB 1.869 1.874 3.743 BinPSO 20 GB 1.504 2.648 4.152

BinPSO 40 GB 1.993 1.996 3.989 BinPSO 40 GB 1.661 2.805 4.466

BinPSO 20 VN 2.056 2.058 4.114 BinPSO 20 VN 1.887 2.652 4.539

BinPSO 40 VN 1.874 1.879 3.753 BinPSO 40 VN 1.739 2.554 4.293

Symmetry 20 LB 1.359 1.372 2.731 Symmetry 20 LB 1.184 1.683 2.867

Symmetry 40 LB 1.310 1.324 2.634 Symmetry 40 LB 1.167 1.663 2.830

Symmetry 20 GB 1.594 1.604 3.198 Symmetry 20 GB 1.441 2.209 3.650

Symmetry 40 GB 1.698 1.708 3.406 Symmetry 40 GB 1.385 2.251 3.636

Symmetry 20 VN 1.706 1.714 3.420 Symmetry 20 VN 1.416 2.089 3.505

Symmetry 40 VN 1.741 1.750 3.491 Symmetry 40 VN 1.356 2.317 3.673

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 170

Table 8.12: Best performing individuals, averaged over 20 runs and 10000 games per run – 5%

noise applied.

Approach Size Arch RAND PVLV ALLC TFT STFT TFTT Avg PP Avg TP

Neural Network (20HN) 20 LB 441.71 441.66 710.02 201.72 201.69 229.49 2.4573 3.2569

Benchmark vs NN (20HN) 20 LB 101.93 101.99 30.67 165.75 165.71 158.38 0.7996 3.2569

Neural Network (5HN) 40 LB 441.68 441.66 710.04 201.71 201.74 229.44 2.4572 3.2567

Benchmark vs NN (5HN) 40 LB 101.96 101.96 30.63 165.70 165.72 158.34 0.7995 3.2567

BinPSO 20 LB 411.84 397.18 649.56 268.27 268.19 331.94 2.5684 3.9268

Benchmark vs BinPSO 20 LB 171.56 206.87 125.24 250.40 250.25 226.39 1.3584 3.9268

BinPSO 40 LB 408.65 393.27 654.71 281.78 281.93 356.84 2.6238 4.0165

Benchmark vs BinPSO 40 LB 179.13 210.52 117.13 266.16 266.39 222.46 1.3927 4.0165

BinPSO 20 GB 405.28 402.49 655.04 275.90 275.82 367.63 2.6293 3.9982

Benchmark vs BinPSO 20 GB 186.99 188.00 116.63 258.90 258.90 230.80 1.3689 3.9982

BinPSO 40 GB 415.02 407.32 644.18 264.66 264.76 327.12 2.5641 3.8771

Benchmark vs BinPSO 40 GB 164.34 183.97 133.63 245.26 245.29 217.09 1.3130 3.8771

BinPSO 20 VN 405.49 406.85 649.54 269.93 270.03 357.25 2.6038 3.9609

Benchmark vs BinPSO 20 VN 186.38 187.27 125.33 250.48 250.52 229.48 1.3570 3.9609

BinPSO 40 VN 415.54 401.02 656.24 259.35 259.32 335.26 2.5681 3.8525

Benchmark vs BinPSO 40 VN 163.00 193.36 114.74 237.65 237.71 217.16 1.2843 3.8525

Symmetry 20 LB 428.79 428.75 700.70 237.23 237.16 295.74 2.5700 3.5737

Benchmark vs Symmetry 20 LB 131.91 131.18 45.29 209.19 209.08 182.70 1.0037 3.5737

Symmetry 40 LB 431.14 438.42 699.68 233.34 233.31 290.95 2.5682 3.5353

Benchmark vs Symmetry 40 LB 126.42 108.55 46.87 204.85 204.82 184.65 0.9671 3.5353

Symmetry 20 GB 421.41 424.82 688.65 243.27 243.36 331.76 2.5974 3.6863

Benchmark vs Symmetry 20 GB 149.23 141.80 64.10 216.78 216.79 197.80 1.0888 3.6863

Symmetry 40 GB 428.51 428.79 697.17 242.75 242.75 305.24 2.5885 3.6161

Benchmark vs Symmetry 40 GB 132.71 128.26 50.76 215.80 215.82 187.59 1.0275 3.6161

Symmetry 20 VN 423.22 425.34 692.30 235.40 235.40 302.75 2.5545 3.5985

Benchmark vs Symmetry 20 VN 145.02 137.41 58.40 207.22 207.17 190.59 1.0439 3.5985

Symmetry 40 VN 436.18 433.17 705.04 216.21 216.24 245.61 2.4861 3.3765

Benchmark vs Symmetry 40 VN 114.80 121.19 38.53 183.48 183.56 165.10 0.8903 3.3765

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 8. ITERATED PRISONER’S DILEMMA 171

Table 8.13: Performance of individual man-made strategies - 5% noise.

RAND PVLV

Opponent Size Arch Avg PP Avg OP Avg TP Opponent Size Arch Avg PP Avg OP Avg TP

Bench Suite N/A N/A 2.644 2.081 4.725 Bench Suite N/A N/A 2.829 2.100 4.929

NN (20HN) 20 LB 0.675 2.925 3.600 NN (20HN) 20 LB 0.675 2.925 3.600

NN (5HN) 40 LB 0.675 2.925 3.600 NN (5HN) 40 LB 0.675 2.925 3.600

BinPSO 20 LB 1.136 2.727 3.863 BinPSO 20 LB 1.370 2.630 4.000

BinPSO 40 LB 1.186 2.706 3.892 BinPSO 40 LB 1.394 2.604 3.998

BinPSO 20 GB 1.238 2.684 3.922 BinPSO 20 GB 1.245 2.665 3.910

BinPSO 40 GB 1.088 2.748 3.836 BinPSO 40 GB 1.218 2.697 3.915

BinPSO 20 VN 1.234 2.685 3.919 BinPSO 20 VN 1.240 2.694 3.934

BinPSO 40 VN 1.079 2.752 3.831 BinPSO 40 VN 1.281 2.656 3.937

Symmetry 20 LB 0.874 2.840 3.714 Symmetry 20 LB 0.869 2.839 3.708

Symmetry 40 LB 0.837 2.855 3.692 Symmetry 40 LB 0.719 2.903 3.622

Symmetry 20 GB 0.988 2.791 3.779 Symmetry 20 GB 0.939 2.813 3.752

Symmetry 40 GB 0.879 2.838 3.717 Symmetry 40 GB 0.849 2.840 3.689

Symmetry 20 VN 0.960 2.803 3.763 Symmetry 20 VN 0.910 2.817 3.727

Symmetry 40 VN 0.760 2.889 3.649 Symmetry 40 VN 0.803 2.869 3.672

ALLC TFT

Opponent Size Arch Avg PP Avg OP Avg TP Opponent Size Arch Avg PP Avg OP Avg TP

Bench Suite N/A N/A 2.440 3.272 5.712 Bench Suite N/A N/A 2.539 2.462 5.000

NN (20HN) 20 LB 0.203 4.702 4.905 NN (20HN) 20 LB 1.098 1.336 2.434

NN (5HN) 40 LB 0.203 4.702 4.905 NN (5HN) 40 LB 1.097 1.336 2.433

BinPSO 20 LB 0.829 4.302 5.131 BinPSO 20 LB 1.658 1.777 3.435

BinPSO 40 LB 0.776 4.336 5.112 BinPSO 40 LB 1.763 1.866 3.629

BinPSO 20 GB 0.772 4.338 5.110 BinPSO 20 GB 1.715 1.827 3.542

BinPSO 40 GB 0.885 4.266 5.151 BinPSO 40 GB 1.624 1.753 3.377

BinPSO 20 VN 0.830 4.302 5.132 BinPSO 20 VN 1.659 1.788 3.447

BinPSO 40 VN 0.760 4.346 5.106 BinPSO 40 VN 1.574 1.718 3.292

Symmetry 20 LB 0.300 4.640 4.940 Symmetry 20 LB 1.385 1.571 2.956

Symmetry 40 LB 0.310 4.634 4.944 Symmetry 40 LB 1.357 1.545 2.902

Symmetry 20 GB 0.425 4.561 4.986 Symmetry 20 GB 1.436 1.611 3.047

Symmetry 40 GB 0.336 4.617 4.953 Symmetry 40 GB 1.429 1.608 3.037

Symmetry 20 VN 0.387 4.585 4.972 Symmetry 20 VN 1.372 1.559 2.931

Symmetry 40 VN 0.255 4.669 4.924 Symmetry 40 VN 1.215 1.432 2.647

STFT TFTT

Opponent Size Arch Avg PP Avg OP Avg TP Opponent Size Arch Avg PP Avg OP Avg TP

Bench Suite N/A N/A 2.539 2.462 5.001 Bench Suite N/A N/A 2.493 3.106 5.599

NN (20HN) 20 LB 1.097 1.336 2.433 NN (20HN) 20 LB 1.049 1.520 2.569

NN (5HN) 40 LB 1.097 1.336 2.433 NN (5HN) 40 LB 1.049 1.519 2.568

BinPSO 20 LB 1.657 1.776 3.433 BinPSO 20 LB 1.499 2.198 3.697

BinPSO 40 LB 1.764 1.867 3.631 BinPSO 40 LB 1.473 2.363 3.836

BinPSO 20 GB 1.715 1.827 3.542 BinPSO 20 GB 1.528 2.435 3.963

BinPSO 40 GB 1.624 1.753 3.377 BinPSO 40 GB 1.438 2.166 3.604

BinPSO 20 VN 1.659 1.788 3.447 BinPSO 20 VN 1.520 2.366 3.886

BinPSO 40 VN 1.574 1.717 3.291 BinPSO 40 VN 1.438 2.220 3.658

Symmetry 20 LB 1.385 1.571 2.956 Symmetry 20 LB 1.210 1.959 3.169

Symmetry 40 LB 1.356 1.545 2.901 Symmetry 40 LB 1.223 1.927 3.150

Symmetry 20 GB 1.436 1.612 3.048 Symmetry 20 GB 1.310 2.197 3.507

Symmetry 40 GB 1.429 1.608 3.037 Symmetry 40 GB 1.242 2.021 3.263

Symmetry 20 VN 1.372 1.559 2.931 Symmetry 20 VN 1.262 2.005 3.267

Symmetry 40 VN 1.216 1.432 2.648 Symmetry 40 VN 1.093 1.627 2.720

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 9

Conclusion and future work

“History will be kind to me for I intend to write it”.

- Sir Winston Churchill (1874 - 1965)

This chapter summarises the major findings of the examined work, and provides a set of suggested

future work that can be investigated as a result.

9.1 Conclusion

This study aimed to investigate the use of particle swarm optimisation to train neural networks

as game state evaluators in a coevolutionary environment. Background investigation into exist-

ing game learning techniques and computational intelligence paradigms led to the introduction

of a training algorithm for this specific purpose.

The algorithm was initially applied to the computational modest problem of Tic-Tac-Toe.

An analysis of PSO neighbourhood structures indicated that the Von Neumann structure was

superior in evolving intelligent game playing agents when no maximum velocity was present.

It was also evident that an increase in performance was attainable by adjusting a selection of

the core PSO parameters.

The problem space was increased significantly with the application of the algorithm to

the game of Checkers. Once again, the Von Neumann architecture showed its supremacy as

neighbourhood structure when no maximum velocity was present. Benchmarking the evolved

players against a random-moving player showed that some degree of learning took place during

172

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 9. CONCLUSION AND FUTURE WORK 173

training, but the overall performance was disconcerting.

Due to the poor playing performance in Checkers, a more detailed analysis of the core PSO

parameters, neural network input representation and coevolutionary training techniques was

conducted. Results show a definite increase in performance with selected PSO parameters,

with the most influential change attributed to the use of a small maximum velocity. The

LBest neighbourhood structure exceeded the Von Neumann structure’s performance, and the

application of more recent structure enhancements such as the GCPSO algorithm proved even

more promising. The use of windowing techniques to represent more spatial information about

the board state to the neural network resulted in a slight increase in performance, albeit with

a computational complexity penalty.

Two new coevolutionary techniques based on Formula One Grand Prix racing were intro-

duced. The first involved a racing scheme based on a scoring system inspired by the FIA

regulations [48]. The racing scheme aimed to benefit consistency and eliminate any ‘one-shot

wonders’ among the playing population. A particle dispersement operator, based on particle

repelling techniques, but also making use of the GPX scoring scheme, was additionally in-

troduced. Depending on its configuration, the dispersement operator allowed the swarm to

avoid convergence on suboptimal solutions in the majority of cases. Both new coevolution-

ary techniques resulted in improved performance with small swarm sizes and neural network

configurations.

The superior evolved players were benchmarked against players relying on human intel-

ligence – a piece-count based evaluation function and a slimmed-down commercial strength

evaluation function (SmartEval). An increase in training and playing tree depth were also

investigated. The evolved players were able to outperform the piece-count based player and

evenly match the SmartEval player. Tests were conducted using the smallest configuration size

of 15 particles and 3 hidden nodes. An increase in tree depth resulted in a severe drop in per-

formance, and a set of experimental questions were posited that could address the drawbacks

associated with the PSO approach and large tree depths. It is expected that an increase in

ply-depth will require a much larger experimental PSO and neural network configuration to be

successful.

Finally, the PSO-based coevolutionary training algorithm’s versatility was tested by apply-

ing it to the non-zero sum problem of the Iterated Prisoner’s Dilemma. The PSO was applied

in three distinct ways to generate IPD strategies – the first of its kind in the IPD problem do-

main. The first continued the existing approach of evolving neural network weights, which in

this case implied making predictions on future cooperate/defect decisions given a history bound

of 3 moves. The second approach utilised the Binary PSO algorithm to directly evolve a 64-bit

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 9. CONCLUSION AND FUTURE WORK 174

strategy. The last approach relied on the PSO’s function optimisation ability to generate the

first half of a 64-bit strategy, and exploited the symmetrical structure of man-made strategies.

The second half of the strategy was constructed by mirroring the evolved half using a selection

of four different methods. Results indicated that all three approaches were able to elicit mu-

tually cooperative behaviour in noiseless environments. The neural network approach showed

an inherent genetic weakness, resulting in so-called ‘catastrophic collapses’. The BinPSO and

Symmetry approaches did not suffer from the same weakness, but struggled to consistently

maintain high payoffs, with performance graphs showing highly turbulent best-performing par-

ticles. Testing under environments with 5% noise indicated a complete failure by the neural

network approach, a constant decline in performance for the Symmetry approach, and only a

lowered performance rating for the BinPSO approach. The BinPSO approach maintained an

equilibrium within the population, and defecting strategies were not allowed to flourish, nor

completely die out.

Overall the PSO-based coevolutionary training approach seems to be a successful game

learning technique. A large set of possible extensions and future work can be investigated

based on the results of the selected experiments performed in this study.

9.2 Future work

Evolving specialised strategies through niching

Multi-modal function optimisation involves finding a set of optimal solutions, rather than a

specific global best solution. Solving multi-modal problems through evolutionary computation

has traditionally been done through a technique known as speciation (or niching). Recently,

the first niching techniques were developed for PSO algorithms by Brits [20].

A good game player does not only rely on a single strategy to continuously beat its op-

ponents. Instead, the player is able to adapt to the different playing styles of the various

opponents. Each strategy can be seen as an optimum in a multi-modal search space. Applying

niching to a game learning problem then involves the discovery and use of the various optimal

strategies.

Initial work on applying niching to game learning have been done by Kim et al. [79] in

2002. The work was restricted to a genetic algorithm implementation, making use of a crowding

algorithm for speciation. It should be interesting to extend the niching approach to a PSO-

based game learning context, and a bucket-brigade voting scheme might be employed to handle

the selection of the specific strategy to apply for every move.

Some of the previously mentioned coevolutionary scoring schemes invented by Rosin and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 9. CONCLUSION AND FUTURE WORK 175

Belew [112] also have some inherent niching characteristics, and their application to the game

learning problem could certainly prove valuable.

Using other PSO approaches

Since the introduction of the original PSO algorithm in 1995, a large number of improved

PSO algorithms have been developed. For the experimental work in this study, only the

GCPSO algorithm by Van den Bergh [140] and the Binary PSO by Kennedy and Eberhart

were investigated as possible alternatives.

Van den Bergh has also introduced the notion of cooperative swarms [138] [139], and the

technique has shown to be successful in training product unit neural networks. In the case

of neural network training, the principle of cooperative swarms lie in the assignment of a

specific swarm to optimise a single layer of the neural network in seclusion from the other

layers. It might be interesting to compare the performance of neural networks trained using

the normal PSO approach to networks trained using the cooperative PSO approach, with

specific application to the game learning domain.

Increase the configuration size

A large part of the parameter-specific experiments were conducted using a baseline configura-

tion of 15 particles and 3 hidden nodes due to speed and time limitations. It stands to reason

that using this small configuration will probably not produce the most intelligent player, as

illustrated by the gains in performance when increasing the swarm size and hidden layers in

certain instances. Extending the baseline configuration will definitely yield interesting experi-

mental results, and will specifically impact a series of tests conducted in this study, including:

• The effectiveness of GCPSO.

• The performance of the sliding window technique.

• The application of the GPX scoring system.

• The effectiveness of the particle dispersement operator.

• The influence of the Hall of Fame.

Extend the tree depth

Given enough time, processing power, and the implementation of an optimised and robust

game engine, extending the tree depth beyond 2-ply will also yield interesting results. It will

then be possible to answer the research questions listed in chapter 7, specifically:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

CHAPTER 9. CONCLUSION AND FUTURE WORK 176

• Revisiting HITECH versus LOTECH on deeper ply-depths and searching for diminish-

ing returns.

• What PSO parameters will enable good scalability of the neural network evaluation

method in larger tree depths?

• Would it be possible to compress game-tree knowledge into a neural network?

Extending the tree depth will also allow for more thorough testing against commercial

software, as was done by Chellapilla and Fogel [27].

Expand to other games

Extending the PSO-based coevolutionary game learning technique to even more challenging

games like Go and the recently developed Arimaa [7] should prove interesting. These games

have proven to not be easily ‘solvable’ using brute-force search methods such as game trees,

due to the sheer exponential growth in size of the number of possible moves for each game

state. Creating capable intelligent players without relying on human game expertise will be

very difficult, and represent the future of game learning research.

Controlled training and improved benchmarking

As already mentioned, improving and optimising the game engine will allow for proper bench-

marking against commercial software at deeper ply-depths. Some additional training and

benchmarking options could involve the solving of Checkers end-game datasets – a technique

sometimes used to test the performance of Chess engines. To date, the author have been unable

to locate an electronic set of Checkers test problems. It is expected that either substituting

or interleaving the coevolutionary training scheme with the dataset training will result in im-

proved intelligent play. An investment in studying proper Checkers theory and strategic game

analysis will also aid in providing a clearer understanding of the level of expertise attained by

the evolved players.

Investigate PSO with multi-player IPD

As previously mentioned, the traditional IPD can be extended from a one-on-one encounter to

a multi-player game. Extending the PSO-based strategy generation schemes to a multi-player

IPD game will also be worthwhile investigating.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

Bibliography

[1] S. G. Akl and M. M. Newborn. The principal continuation and the killer heuristic. In

Proceedings of the 1977 annual conference, pages 466–473. ACM Press, 1977.

[2] American Checkers Federation, Official Rules. http://www.acfcheckers.com/rules.htm,

Available [On-line], Accessed on 6 June 2003.

[3] T. S. Anantharaman, M. Campbell, and F.-H. Hsu. Singular extensions: Adding selec-

tivity to brute-force searching. Artificial Intelligence, 43(1):99–109, 1990.

[4] P. J. Angeline. Using selection to improve particle swarm optimisation. In IEEE Inter-

national Joint Conference on Neural Networks (IJCNN1999), 1999.

[5] P. J. Angeline and J. B. Pollack. Coevolving high-level representations. In C. Langton,

editor, Proceedings of the 3rd Artificial Life Meeting, 1994.

[6] P. J. Angeline and J. B. Pollack. Competitive environments evolve better solutions for

complex tasks. In Proceedings of the 5th International Conference on Genetic Algorithms

(GA-93), pages 264–270, 1994.

[7] Arimaa. Available [On-line], http://www.arimaa.com, Accessed on 6 June 2003.

[8] R. Axelrod. The Evolution of Cooperation. Basic Books, 1984.

[9] R. Axelrod. The evolution of strategies in the iterated prisoner’s dilemma. In L. Davis,

editor, Genetic Algorithms and Simulated Annealing, pages 32 –41. London: Pitman, and

Los Altos, CA: Morgan Kaufman, 1987.

177

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

BIBLIOGRAPHY 178

[10] R. Axelrod. Tit-for-tat strategies. In Routledge Encyclopedia of International Political

Economy. Routledge, June 2001.

[11] R. Axelrod and L. D’Ambrosio. Announcement for bibliography on the evolution of

cooperation. Journal of Conflict Resolution, 39:190, 1995.

[12] T. Bäck, D. B. Fogel, and T. Michalewicz, editors. Basic Algorithms and Operators,

volume 1 of Evolutionary Computation. Institute of Physics Publishing, Bristol and

Philidelphia, 1999.

[13] D. Beal. Null moves. Advances in Computer Chess, V, 1987.

[14] H. J. Berliner, G. Goetsch, M. S. Campbell, and C. Ebeling. Measuring the performance

potential of chess programs. Artificial Intelligence, 43(1):7–21, 1990.

[15] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

[16] T. M. Blackwell. Swarms in dynamic environments. In Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO’03), volume 2723 of Lecture notes in

Computer Science, pages 1 – 12, 2003.

[17] T. M. Blackwell and P. J. Bentley. Don’t push me! Collision-avoiding swarms. In

Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), 2002.

[18] A. D. Blair and J. B. Pollack. What makes a good co-evolutionary learning environment?

Australian Journal of Intelligent Information Processing Systems, 4:166–175, 1997.

[19] C. Blake, E. Keogh, and C. J. Merz. UCI repository of machine learning databases,

2002. University of California, Irvine, Department of Information and Computer Sciences,

http://www.ics.uci.edu/∼MLRepository.html.

[20] R. Brits. Niching strategies for particle swarm optimisation. Master’s thesis, Department

of Computer Science, University of Pretoria, South Africa, 2002.

[21] A. L. Brundo. Bounds and valuations for abridging the search for estimates. Problems of

Cybernetics, 10:225–261, 1963. Translation of Russian original in Problemy Kibernetiki,

10:141-150, May 1963.

[22] M. Buro. Toward opening book learning. In H. Iida, J. Schaeffer, J. W. H. M. Uiterwijk,

and Y. Saito, editors, Proceedings of the IJCAI-97 Workshop on Using Games as an

Experimental Testbed for AI Research, Nagoya, Japan, 1997.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

BIBLIOGRAPHY 179

[23] M. S. Campbell. Knowledge discovery in deep blue. Communications of the ACM,

42(11):65–67, November 1999.

[24] E. Cantú-Paz. A summary of research on parallel genetic algorithms. Technical Re-

port IlliGAL report no. 95007, Illinois Genetic Algorithms Laboratory (IlliGAL), Urbana

Champaign, IL, USA, July 1995.

[25] K. Chellapilla and D. B. Fogel. Evolution, neural networks, games, and intelligence. In

Proceedings of the IEEE, pages 1471–1496, 1999.

[26] K. Chellapilla and D. B. Fogel. Evolving neural networks to play checkers without expert

knowledge. IEEE Transactions on Neural Networks, 10(6):1382–1391, 1999.

[27] K. Chellapilla and D. B. Fogel. Anaconda defeats hoyle 6-0: A case study competing

an evolved checkers program against commercially available software. In Proceedings of

Congress on Evolutionary Computation, pages 857–863, La Jolla Marriot Hotel, La Jolla,

California, USA, July 2000.

[28] ChessBase. Available [On-line], http://www.chessbase.com, Accessed on 3 October 2003.

[29] J. Churchill, R. Cant, and D. Al-Dabass. A new computational approach to the game

of go. In Proceedings of the 2nd Annual European Conference on Simulation and AI in

Computer Games (GAME-ON-01), pages 81–86, London, 2001.

[30] Computational Intelligence Research Group - Swarm Intelligence Research, University of

Pretoria. Available [On-line], http://cirg.cs.up.ac.za, Accessed on 28 November 2003.

[31] M. Clerc. The swarm and the queen: Towards a deterministic and adaptive particle swarm

optimization. In Proceedings of the IEEE World Congress on Evolutionary Computation,

volume 3, pages 1951–1957, Washington DC, USA, July 1999.

[32] M. Clerc and J. Kennedy. The particle swarm – explosion, stability and convergence in

a multidimensional complex space. IEEE Transactions on Evolutionary Computation,

6(1):58–73, February 2002.

[33] Sir A. Conan Doyle. The Complete Sherlock Holmes. Gramercy, September 2002.

[34] F. A. Dahl. Honte, a go-playing program using neural nets. In J. Fürnkranz and M. Ku-

bat, editors, Workshop Notes: Machine Learning in Game Playing, Bled, Slovenia, 1999.

16th International Conference on Machine Learning (ICML-99).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

BIBLIOGRAPHY 180

[35] P. J. Darwen and X. Yao. On evolving robust strategies for iterated prisoners dilemma.

Progress in Evolutionary Computation, LNAI, 956:276–292, 1995.

[36] P. J. Darwen and X. Yao. Speciation as automatic categorical modularization. IEEE

Transactions on Evolutionary Computing, 1(2):101–108, July 1997.

[37] P. J. Darwen and X. Yao. Does extra genetic diversity maintain escalation in a co-

evolutionary arms race? International Journal of Knowledge-Based Intelligent Engineer-

ing Systems, 4(3):191–200, July 2000.

[38] P. J. Darwen and X. Yao. Co-evolution in iterated prisoner’s dilemma with intermediate

levels of cooperation: Application to missile defense. International Journal of Computa-

tional Intelligence and Applications, 2(1):83–107, 2002.

[39] C. R. Darwin. On the origin of species by means of natural selection or the preservation

of favoured races in the struggle for life. Murray, London, 1859. (New York: Modern

Library, 1967).

[40] D. DeCoste. The future of chess-playing technologies and the significance of Kasparov

versus Deep Blue. In Deep Blue Versus Kasparov: The Significance for Artificial Intelli-

gence: Papers from the 1997 AAAI Workshop, pages 9–13. AAAI Press, 1997.

[41] Deep junior - the reigning world computer chess champion. Available [On-line],

http://www.x3dworld.com, Accessed on 22 September 2003.

[42] W. Durham. Co-Evolution: Genes, Culture and Human Diversity. Stanford University

Press, Stanford, 1994.

[43] R. C. Eberhart and J. Kennedy. Swarm Intelligence. Morgan Kaufmann, 2001.

[44] R. C. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in particle

swarm optimization. In Proceedings of the IEEE Congress on Evolutionary Computation,

pages 84–89, San Diego, USA, 2000.

[45] A. P. Engelbrecht. Sensitivity analysis of multi-layer feedforward neural networks. PhD

thesis, Department of Computer Science, University of Stellenbosch, 1999.

[46] A. P. Engelbrecht. Computational Intelligence: An Introduction. Wiley and Sons, October

2002.

[47] S. L. Epstein. Toward an ideal trainer. Machine Learning, 15:251–277, 1994.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

BIBLIOGRAPHY 181

[48] Fédération Internationale de l’Automobile, 2004 Formula One Sporting Regulations.

Available [On-line], http://www.fia.com/sport/Regulations/f1regs.html, Accessed on 19

April 2004.

[49] R. Feldmann, P. Mysliwietz, and B. Monien. Distributed game tree search on a massively

parallel system. In Data Structures and Efficient Algorithms: Final Report on the DFG

Special Joint Initiative, volume 594 of Lecture Notes in Computer Science, pages 270–288.

Springer-Verlag, 1992.

[50] S. G. Ficici, O. Melnik, and J. B. Pollack. A game-theoretic investigation of selection

methods used in evolutionary algorithms. In Proceedings of the Congress on Evolutionary

Computation (CEC 2000), La Jolla Marriot Hotel, La Jolla, California, USA, 2000.

[51] M. Fierz. Basics of strategy game programming: part iii - scientific questions. Available

[On-line], http://www.fierz.ch/strategy3.htm, Accessed on 17 June 2003.

[52] D. B. Fogel. Evolving behaviors in the iterated prisoner’s dilemma. Evolutionary Com-

putation, 1:77–97, 1993.

[53] D. B. Fogel. Blondie24: Playing at the edge of A.I. Morgan Kaufmann Publishers, 2001.

[54] L. J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence through Simulated Evo-

lution. Wiley, 1966.

[55] N. Franken and A.P Engelbrecht. Comparing PSO structures to learn the game of Check-

ers from zero knowledge. In Proceedings of the Congress on Evolutionary Computation

(CEC2003), Canberra, Australia, 2003.

[56] N. Franken and A.P Engelbrecht. Evolving intelligent game playing agents. South African

Computer Journal, 2004. Accepted for publication (to appear in June 2004).

[57] N. Franken and A.P Engelbrecht. PSO approaches to co-evolve IPD strategies. In Proceed-

ings of the IEEE Congress on Evolutionary Computation (CEC2004), Portland, Oregon,

USA, 2004.

[58] A. S. Fraser. Simulation of genetic systems by automatic digital computers. Australian

Journal of Biological Science, 10:484–491, 1957.

[59] J. Fürnkranz and M. Kubat. Chapter 2. In Machines that Learn to Play Games, pages

11–59. Nova Scientific Publishers, Huntington, New York, 2001.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

BIBLIOGRAPHY 182

[60] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison Wesley, Reading, MA, 1989.

[61] D. E. Goldberg and J. Richardson. Genetic algorithm with sharing for multimodal func-

tion optimization. In Proceedings of the Second International Conference on Genetic

Algorithms, pages 41–49, 1987.

[62] R. D. Greenblatt, D. E. Eastlake III, and S.D. Crocker. The Greenblatt chess program.

In Fall joint computing conference proceedings, volume 31, pages 801–810, San Francisco,

1967. New-York ACM.

[63] P. Grosso. Computer Simulations of Genetic Adaption: Parallel Subcomponent Interac-

tion in a Multilocus model. PhD thesis, University of Michigan, 1985.

[64] G. Hardin. The tragedy of the commons. Science, 162:1243–1248, December 1968.

[65] P. G. Harrald and D. B. Fogel. Evolving continuous behaviors in the iterated prisoner’s

dilemma. BioSystems, 37:135–145, 1996.

[66] E. A. Heinz. Darkthought goes deep. ICCA Journal, 21(4), 1998.

[67] J. H. Holland. Adapation in Natural and Artificial Systems. University of Michigan Press,

Ann Arbor, Michigan, USA, 1975.

[68] J. H. Holland. Echo: Explorations of evolution in a miniature world. In J. D. Farmer

and J. Doyne, editors, Proceedings of the second conference on Artificial Intelligence.

Addison-Wesley, 1990.

[69] X. Hu. Particle swarm optimisation: Bibliography. http://www.swarmintelligence.org,

Available [On-line], Accessed on 22 May 2004.

[70] X. Hu and R. Eberhart. Multiobjective optimization using dynamic neighborhood par-

ticle swarm optimization. In Proceedings of the IEEE World Congress on Evolutionary

Computation (CEC 2002), pages 1677–1681, Honolulu, Hawaii, 12–17 May 2002.

[71] IBM Research. Deep Blue. Available [On-line], http://www.research.ibm.com/deepblue,

Accessed on 12 March 2003.

[72] A. Ismail and A. P. Engelbrecht. Training product units in feedforward neural networks

using particle swarm optimization. Proceedings of the International Conference on Arti-

ficial Intelligence, pages 36–40, 1999.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

BIBLIOGRAPHY 183

[73] G. Kendall and G. Whitwell. An evolutionary approach for the tuning of a chess evalua-

tion function using population dynamics. In Proceedings of the Congress on Evolutionary

Computation (CEC 2001), pages 995–1002, COEX Center, Seoul, Korea, May 2001.

[74] J. Kennedy. The behaviour of particles. In V. W. Porto, N. Saravanan, and D. Waagen,

editors, Proceedings of the 7th International Conference on Evolutionary Programming,

pages 581 – 589, 1998.

[75] J. Kennedy. Small worlds and mega-minds: Effects of neighborhood topology on particle

swarm performance. In Proceedings of the IEEE Congress on Evolutionary Computation,

pages 1931–1938, Washington DC, USA, July 1999.

[76] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of IEEE

International Conference on Neural Networks, volume IV, pages 1942–1948, Perth, Aus-

tralia, 1995.

[77] J. Kennedy and R. C. Eberhart. A discrete binary version of the particle swarm algorithm.

In Proceedings of the 1997 Conference on Systems, Man, and Cybernetics, pages 4104–

4109, 1997.

[78] J. Kennedy and R. Mendes. Population structure and particle swarm performance. In

Proceedings of Congress on Evolutionary Computing (CEC 2002), Honolulu, Hawaii,

2002.

[79] K. Kim and S. Cho. Evolving speciated checkers players with crowding algorithm. In

Proceedings of the IEEE World Congress on Evolutionary Computation (CEC 2002),

pages 407–412, Honolulu, Hawaii, 12–17 May 2002.

[80] W. Knight. Every move you make. New Scientist, 179(2403):40, July 2003.

[81] D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Artificial Intelligence,

6:293–326, 1975.

[82] T. Kohonen. Self-Organizing Maps. Springer Series in Information Sciences, 1995.

[83] T. Kojima, K. Ueda, and S. Nagano. Flexible acquisition of various types of knowledge

from game records: Application to the game of go. In H. Iida, J. Schaeffer, J. W. H. M.

Uiterwijk, and Y. Saito, editors, Proceedings of the IJCAI-97 Workshop on Using Games

as an Experimental Testbed for AI Research, pages 51–57, Nagoya, Japan, 1997.

[84] R. E. Korf. Depth-first iterative deepening: An optimal admissible tree search. Artificial

Intelligence, 27:97–109, 1985.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

BIBLIOGRAPHY 184

[85] J. R. Koza. Genetic Programming: On the programming of computers by means of natural

selection. MIT Press, 1992.

[86] S. Kuhn. Prisoner’s dilemma. Stanford Encyclopedia of Philosophy, 1997. Available

[On-line], http://plato.stanford.edu/entries/prisoner-dilemma, Accessed on 25 November

2003.

[87] K. Lindgren. Evolutionary phenomena in simple dynamics. In C. G. Langton, C. Taylor,

J. D. Farmer, and S. Rasmussen, editors, Artificial Life 2, volume 10 of Santa Fe Institute

Studies in the Sciences of Complexity, pages 295–312. Addison-Wesley, 1991.

[88] M. Løvberg and T. Krink. Extending particle swarm optimisers with self-organized

criticality. In Proceedings of the Congress on Evolutionary Computation (CEC2002),

2002.

[89] M. Løvberg, T. K. Rasmussen, and T. Krink. Hybrid particle swarm optimiser with

breeding and subpopulations. In Proceedings of the Genetic and Evolutionary Computa-

tion Conference (GECCO’01), San Francisco, 2001.

[90] J. Loy. The Standard Laws of Checkers [with comments by Jim Loy]. Available [On-line],

http://www.jimloy.com/checkers/rules.htm, Accessed on 6 June 2003.

[91] A. Lubberts and R. Miikkulainen. Co-evolving a go-playing neural network. In Proceed-

ings of the GECCO-01 Workshop on Coevolution: Turning Adaptive Algorithms upon

Themselves, pages 14–19, 2001.

[92] B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In Proceedings

of the 3rd International Conference on Genetic Algorithms, Fairfax, WA, USA, 1989.

[93] T. A. Marsland. Relative performance of alpha-beta implementations. In Proceedings

of International Joint Conferences on Artificial Intelligence (IJCAI’83), pages 763–766,

Karlsruhe, Germany, 1983.

[94] T. A. Marsland and A. Reinefeld. Heuristic search in one and two player games. Technical

Report TR 93-02, Department of Computer Science, University of Alberta, 1993.

[95] E. Mayr. Animal Species and Evolution. Belknap, Cambridge, MA, 1963.

[96] R. Mendes, P. Cortez, M. Rocha, and J. Neves. Particle swarms for feedforward neural

network training. In Proceedings of the IEEE Joint Conference on Neural Networks,

pages 1895–1899, Honolulu, Hawaii, 12–17 May 2002.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

BIBLIOGRAPHY 185

[97] L. Messerschmidt and A. P. Engelbrecht. Learning to play games using a PSO-based

competitive learning approach. In Proceedings of the 4th Asia-Pacific Conference on

Simulated Evolution and Learning, 2002.

[98] S. Milgram. The small world problem. Psychology Today, 22:61–67, 1967.

[99] T. M. Mitchell. Machine Learning. McGraw-Hill, Portland, Oregon, USA, 1997.

[100] D. Montgomery. Engineering Statistics, 2nd edition. Wiley and Sons, 2001.

[101] N. J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers,

1998.

[102] J. Pearl. Scout: A simple game-searching algorithm with proven optimal properties. In

Proceedings of AAAI-80, pages 143–145, Stanford, California, 1980.

[103] A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin. Nearly optimal minimax tree search?

Technical Report 94-19, Department of Computer Science, University of Alberta, 1994.

[104] A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin. Best-first fixed-depth minimax algo-

rithms. Artificial Intelligence, 87:255–293, 1996.

[105] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in

C: The Art of Scientific Computing. Cambridge University Press, second edition, 1992.

[106] K. V. Price. An introduction to differential evolution. In D. Corne, M. Dorigo, and

F. Glover, editors, New Ideas in Optimization, pages 79–108, 1999.

[107] A. Rapoport. Book reviews: J.C. Harsanyi and R. Selten’s A General Theory of Equi-

librium Selection in Games. Behavioral Science, 34:154–158, 1989.

[108] I. Rechenberg. Cybernetic solution path of an experimental problem. Royal Aircraft

Establishment, Library translation no. 1122, Farnborough, Hants, UK, 1965.

[109] I. Rechenberg. Evolutionary strategy. In J.M. Zurada, R. Marks II, and C. Robinson,

editors, Computational Intelligence - Imitating Life, pages 147–159. IEEE Press, 1994.

[110] A. Reineveld. An improvement of the scout tree-search algorithm. Journal of the Inter-

national Computer Chess Association, 6(4):4–14, 1983.

[111] C. W. Reynolds. Flocks, herds and schools: a distributed behavioural model. Computer

Graphics, 21:25 – 34, 1987.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

BIBLIOGRAPHY 186

[112] C. D. Rosin and R. K. Belew. Finding opponents worth beating: Methods for competitive

co-evolution. In Proceedings of the 6th International Conference on Genetic Algorithms,

1995.

[113] C. D. Rosin and R. K. Belew. New methods for competitive coevolution. Evolutionary

Computation, 5(1):1–29, 1997.

[114] A. Samuel. Some studies in machine learning using the game of checkers. IBM Journal

of Research and Development, 3(3):211–229, 1959.

[115] J. Schaeffer. Marion Tinsley: Human Perfection at Checkers? Available [On-line],

http://www.wylliecheckers.pwp.blueyonder.co.uk/Tinsley.htm, Accessed on 22 Septem-

ber 2003.

[116] J. Schaeffer. The history heuristic and alpha-beta search enhancements in practice. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-11(11):1203–1212,

1989.

[117] J. Schaeffer. The games computers (and people) play. In M. V. Zelkowitz, editor, Ad-

vances in Computers, volume 50, pages 189–266. Academic Press, 2000.

[118] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron. A world

championship caliber checkers program. Artificial Intelligence, 53(2–3):273–290, 1992.

[119] M. Schoenauer and Z. Michaelewicz. Evolutionary computation. Control and Cybernetics,

26(3):307–338, 1997.

[120] H.-P. Schwefel. Kybernetische evolution als strategie der experimentellen forschung in

der strömungstechnik. Diplomarbeit, Technische Universität Berlin, 1965.

[121] C. Shannon. Programming a computer for playing chess. Philosophical Magazine, 41:256–

275, 1950.

[122] Y. Shi and R. C. Eberhart. A modified particle swarm optimizer. In Proceedings of the

IEEE World Conference on Computational Intelligence, pages 69–73, Anchorage, Alaska,

May 1998.

[123] Y. Shi and R. C. Eberhart. Parameter selection in particle swarm optimisation. In

Proceedings of Evolutionary Programming VII (EP98), pages 591–600. Springer Verlag,

1998.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

BIBLIOGRAPHY 187

[124] Y. Shi and R. C. Eberhart. Empirical study of particle swarm optimisation. In Proceedings

of the Congress on Evolutionary Computation (CEC1999), pages 1945 – 1950, 1999.

[125] Y. Shi and R. C. Eberhart. Fuzzy adaptive particle swarm optimization. In Proceedings of

the 2001 Congress on Evolutionary Computation (CEC 2001), volume 1, pages 101–106,

2001.

[126] A. Silva, A. Neves, and E. Costa. An empirical comparison of particle swarm and

predator-prey optimisation. In Proceedings of the 13th Irish Conference on AI and Cog-

nitive Science, volume 2464 of Lecture notes in Artificial Intelligence, page 103, 2002.

[127] G. C. Stockman. A minimax algorithm better than alpha-beta? Artificial Intelligence,

12:179–196, 1979.

[128] P. N. Suganthan. Particle swarm optimizer with neighbourhood operator. Proceedings of

the IEEE Congress on Evolutionary Computation, pages 1958–1961, July 1999.

[129] C. E. Sutton. Learning to predict by the methods of temporal differences. Machine

Learning, 3:9–44, 1988.

[130] G. Tesauro. Practical issues in temporal difference learning. Machine Learning, 8:257–

278, 1992.

[131] G. Tesauro. Temporal difference learning and td-gammon. Communications of the ACM,

38(3):58–68, 1995.

[132] E. Thiémard. Economic generation of low-discrepancy sequences with a b-ary gray

code. Department of Mathematics, Ecole Polytechnique Fédérale de Lausanne, Lau-

sanne, Switzerland.

[133] K. Thompson. Computer chess strength. In M. R. B. Clarke, editor, Advances in Com-

puter Chess 3, pages 55–56. Pergamon, 1982.

[134] K. Thompson. 6-piece endgames. International Computer Chess Association Journal,

19(4):215–226, 1996.

[135] A. Turing. Digital computers applied to games. In B. Bowden, editor, Faster than

Thought, pages 286–295. Pitman, 1953.

[136] F. van den Bergh. Particle swarm weight initialization in multi-layer perceptron artificial

neural networks. In Development and Practice of Artificial Intelligence Techniques, pages

41–45, Durban, South Africa, September 1999.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

BIBLIOGRAPHY 188

[137] F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis, Department

of Computer Science, University of Pretoria, South Africa, 2002.

[138] F. van den Bergh and A. P. Engelbrecht. Cooperative learning in neural networks using

particle swarm optimizers. South African Computer Journal, 26:84–90, November 2000.

[139] F. van den Bergh and A. P. Engelbrecht. Training product unit networks using coopera-

tive particle swarm optimizers. In Proceedings of the IEEE International Joint Conference

on Neural Networks, pages 126–132, Washington DC, USA, July 2001.

[140] F. van den Bergh and A. P. Engelbrecht. A new locally convergent particle swarm

optimizer. IEEE Conference on Systems, Man and Cybernetics, October 2002.

[141] J. van Rijswijck. Learning from perfection: A data mining approach to evaluation func-

tion learning in awari. In T. A. Marsland and I. Frank, editors, Computers and Games:

Proceedings of the 2nd International Conference (CG-00), volume 2063 of Lecture Notes

in Computer Science, pages 115–132, Hamamatsu, Japan, 2001. Springer-Verlag.

[142] J. S. Vesterstrøm and R. Riget. Particle swarms: extensions for improved local, multi-

modal, and dynamic search in numerical optimization. Master’s thesis, Department of

Computer Science, University of Aarhus, 2002.

[143] J. von Neumann. Zur theorie der gesellshaftsspiele. Mathematische Annalen, 100:295–

320, 1928.

[144] J. von Neumann and O. Morgenstern. Theory of Games and Economic behaviour. Prince-

ton University Press, 1944.

[145] P. J. Werbos. Beyond regression: New tools for prediction and analysis in the behavioural

sciences. PhD thesis, Harvard University, Boston, USA, 1974.

[146] L. F. A. Wessels and E. Barnard. Avoiding false local minima by proper initialization of

connections. IEEE Transactions on Neural Networks, 3(6):899–905, 1992.

[147] O. Williams. Garry Kimovich Kasparov biography. http://www.x3dworld.com, Available

[On-line], Accessed on 22 September 2003.

[148] J. Wu and R. Axelrod. How to cope with noise in the iterated prisoner’s dilemma. Journal

of Conflict Resolution, 39(1):183–189, 1995.

[149] H. P. Young and D. Foster. Cooperation in the short and in the long run. Games and

Economic Behavior, 3:145–156, 1991.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

BIBLIOGRAPHY 189

[150] D. Zuckerman. Can genes help helping? Psychology Today, 19(80), 1985.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

APPENDIX A

Glossary

This appendix provides brief descriptions for acronyms and commonly used terms in this thesis.

ALLC: Always Cooperate. Näıve IPD strategy that always cooperates with the opponent.

ANN: Artificial Neural Network.

AOP: Average Opponent Payoff. Used to measure the performance of strategies in the IPD.

APP: Average Personal Payoff. Used to measure the performance of strategies in the IPD.

ATP: Average Total Payoff. Sum of AOP and APP, used to measure the performance of

strategies in the IPD.

BinPSO: Binary PSO. Discrete form of the traditional PSO, invented by Eberhart and

Kennedy. Used in this thesis to evolve IPD strategies.

Coevolution: Competitive population-based training strategy, mimicking predator-prey in-

teractions in nature that lead to escalating arms races – resulting in stronger individuals.

Experimental configuration: The term used to refer to the selection of parameters for a

specific experiment, encompassing PSO, neural network and coevolutionary-specific set-

tings.

FSM: Finite State Machine. Employed by Fogel to represent IPD strategies.

190

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

APPENDIX A. GLOSSARY 191

GA: Genetic Algorithm. Originally developed by Fraser and later formalised by Holland.

Computational technique that models biological evolution by generating potential solu-

tions (represented as chromosomes) to an optimisation problem.

GBest PSO: Global Best PSO. Original PSO neighbourhood structure, wherein all the par-

ticles share information about the best solution found thus far.

GCPSO: Guaranteed Convergence PSO. Developed by Van den Bergh, improves the perfor-

mance of standard GBest PSO by not converging prematurely on local optima. Compared

to other PSO algorithms to train intelligent Checkers players.

GPX: Grand Prix. Elements from Formula One Grand Prix racing are applied in the form

of a coevolutionary racing scheme, as well as a particle dispersement operator to more

accurately measure playing performance.

HOF: Hall of Fame. Coevolution technique that maintains previous best solutions in a fixed-

size list. Currently evolved players compete against the HOF in order to maintain ro-

bustness and counter-act drift.

IPD: Iterated Prisoner’s Dilemma. In its standard form, a two-player non-cooperative non-

zero sum game. Defined by a payoff matrix, with the ultimate goal of mutual cooperation.

LBest PSO: Local Best PSO. Improvement on GBest PSO by restricting connectivity to a

one-dimensional lattice structure, only allowing information sharing among immediate

neighbours in variable space.

PSO: Particle Swarm Optimisation. Particle-based evolutionary technique developed by Eber-

hart and Kennedy, inspired by the flocking behaviour of birds.

PVLV: Pavlov IPD strategy developed to cope with noisy environments. Changes move if

last move was not profitable.

RAND: Strategy in the IPD that makes moves at random.

STFT: Suspicious Tit-for-tat. Similar to TFT, but starts with a defection instead.

TDL: Temporal Difference Learning. Technique first used in the game-playing domain by

Tesauro to train intelligent Backgammon players. A form of neural network-based ma-

chine learning.

TFT: Tit-for-tat. Winning IPD strategy submitted by Anatol Rapoport. Cooperates on the

first move, and repeats opponent’s last move thereafter.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

APPENDIX A. GLOSSARY 192

TFTT: Tit-for-two-tats. A more generous version of TFT, invented to improve TFT’s per-

formance in noisy environments. Only defects after two successive defections by the

opponent.

TTT: Tic-tac-toe. Intellectually simple 2-player game represented by a 3x3 grid. First player

to align 3 pieces (X’s or O’s) in any direction wins. Used as initial test-bed for PSO

training.

Von Neumann PSO: Extension of LBest PSO by increasing communication network to a

two-dimensional lattice structure, only allowing information sharing among immediate

neighbours in two-dimensional variable space.

VMax: Maximum velocity. Places a restriction on the maximum velocity of a particle, limiting

explosive behaviour.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

APPENDIX B

Definition of Symbols

This appendix list symbols used in this thesis along with their explanations.

ρi: Payoff i in the general IPD payoff matrix, where i ∈ {R,S, P, T}

ψ: Mirroring parameter used to construct the bottom half of a complete 64-bit strategy in

the IPD, assuming the use of a custom (sin/cos-based) objective function.

β: The total number of cooperations for the best individual during a single epoch in the IPD.

τ : The average total number of cooperations for the population during a single epoch in the

IPD.

a: Horizontal shift of a sin/cos function to generate the top half of an IPD strategy.

b: Maximum frequency for the sin part of the IPD generation function.

c: Frequency of the cos part of the IPD generation function. Can also be seen as the rate of

change for the sin function’s frequency.

d : Vertical shift of a sin/cos function to generate the top half of an IPD strategy.

R: Reward for mutual cooperation in the IPD. Set to 3 according to Axelrod’s payoff matrix.

S : Sucker payoff in the IPD. Set to 0 according to Axelrod’s payoff matrix.

P : Punishment payoff for mutual defection. Set to 1 according to Axelrod’s payoff matrix.

T : Temptation payoff in the IPD. Set to 5 according to Axelrod’s payoff matrix.

M : A value representing the performance measure defined by Messerschmidt et al. to evaluate

the performance of an evolved Tic-Tac-Toe player against a random moving player. Also

extended to evaluate Checkers players.

193

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

APPENDIX B. DEFINITION OF SYMBOLS 194

F : A value representing the new Franken performance measure that incorporates the number

of games drawn in addition to games won or lost. Applied to evaluate Checkers players’

performance against various opponents.

n: The total number of weights in a specific neural network structure. Directly representative

of the dimension of a particle in search space.

Ω: A n-dimensional search space, which may be real-valued or discrete.

Φ: A swarm of particles in search space Ω.

~xi: A vector representing a particle i’s position in search space Ω.

~yi: A vector representing the personal best position of particle i in search space Ω.

~vi: A vector representing the velocity of particle i in search space Ω.

~z: A vector representing the neighbourhood best particle position in search space Ω.

t: Time step during the PSO algorithm’s progression.

f : Represents a particle’s fitness value.

φ: Inertia weight used in the PSO velocity update equation.

κ: Constriction coefficient defined by Clerc et al. to limit the velocity values of particles.

α: Global best particle index used in the GCPSO algorithm.

δ: Local search term added in the GCPSO algorithm to combat premature convergence on

suboptimal solutions.

σ̂: The standard deviation for a particular player playing against a random-moving player, as

defined by Messerschmidt et al.

π̂: A probability to winning a game playing as player one or player two against a random-

moving player.

ε: The resultant value for the piece-count Checkers evaluation function.

µ: A bias factor for the calculation of the piece-count advantage.

ω: A random tie-breaker term to resolve decisions between equal board state evaluations.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

APPENDIX C

Derived Publications

This appendix lists all the papers that have been published, or are currently under review, that were

derived from work done in this thesis.

1. N. Franken and A. P. Engelbrecht. Evolving intelligent game playing agents. South

African Computer Journal, Accepted for publication (to appear in June 2004).

2. N. Franken and A. P. Engelbrecht. Analysis of PSO approaches to co-evolve IPD strate-

gies. IEEE Transactions on Evolutionary Computation, Submitted for review (June

2004).

3. N. Franken and A. P. Engelbrecht. Evolving intelligent game playing agents. In Pro-

ceedings of the Annual Conference of the South African Institute of Computer Scientists

and Information Technologists (SAICSIT 2003), Johannesburg, South Africa, 2003.

4. N. Franken and A. P. Engelbrecht. State of the art in game learning: teaching ‘Deep

Blue’ to think. In Proceedings of the Annual Conference of the South African Institute

of Computer Scientists and Information Technologists (SAICSIT 2003), Post-Graduate

Symposium, Johannesburg, South Africa, 2003.

5. N. Franken and A. P. Engelbrecht. Comparing PSO structures to learn the game of

checkers from zero knowledge. In Proceedings of the IEEE Congress on Evolutionary

Computation (CEC2003), Canberra, Australia, 2003.

195

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

APPENDIX C. DERIVED PUBLICATIONS 196

6. N. Franken and A. P. Engelbrecht. PSO approaches to co-evolve IPD strategies. In

Proceedings of the IEEE Congress on Evolutionary Computation (CEC2004), Portland,

USA, 2004.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– FFrraannkkeenn,, CC JJ ((22000044))

	Front
	Title page
	Abstract
	Preface
	Contents
	List of Figures
	List of Tables

	Chapter 1 - Background on Game Learning
	1.1 Introduction
	1.2 Game Types
	1.3 Game Architecture
	1.4 Evaluation techniques
	1.5 Game Learning
	1.6 World Champions
	1.7 Future directions
	1.8 Conclusion

	Chapter 2 -Background on Computational Intelligence Techniques
	2.1 Introduction
	2.2 Neural networks
	2.3 Evolutionary Computation
	2.4 Particle Swarm Optimisation
	2.5 Coevolution
	2.6 Conclusion

	Chapter 3 - Training with PSO
	3.1 Introduction
	3.2 Basic algorithm
	3.3 Measuring performance
	3.4 Tree depth
	3.5 Final algorithm
	3.6 Conclusion

	Chapter 4 -Tic-Tac-Toe
	4.1 Introduction
	4.2 Game rules
	4.3 Choosing an opponent
	4.4 Choosing a PSO architecture
	4.6 Experimental results
	4.5 Experimental procedure
	4.7 Conclusion

	Chapter 5 - Checkers
	5.1 Introduction
	5.2 Game rules
	5.3 Choosing an opponent
	5.4 Choosing a PSO architecture
	5.5 Experimental procedure
	5.6 Experimental results
	5.7 Conclusion

	Chapter 6 - Investigating performance factors
	6.1 Introduction
	6.2 Particle Swarm Parameters
	6.3 Neural network input representation
	6.4 Coevolutionary techniques
	6.5 Stricter training conditions
	6.6 Conclusion

	Chapter 7 - Assessing intelligence
	7.1 Introduction
	7.2 Intelligent evaluation functions
	7.3 Benchmarking Intelligence
	7.4 Increasing tree depth
	7.5 Observations
	7.6 Improving the training partner
	7.7 Conclusion

	Chapter 8 - Iterated Prisoner’s Dilemma
	8.1 Introduction
	8.2 Historic overview
	8.3 Choosing an opponent
	8.4 Training algorithm
	8.5 Strategy generation
	8.6 Experimental procedure
	8.7 Experimental results
	8.8 Conclusion

	Chapter 9 - Conclusion and future work
	9.1 Conclusion
	9.2 Future work

	Bibliography
	Appendices
	Appendix A - Glossary
	Appendix B - Definition of Symbols
	Appendix C - Derived Publications

