3,330 research outputs found

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Asymptotically-Optimal Incentive-Based En-Route Caching Scheme

    Full text link
    Content caching at intermediate nodes is a very effective way to optimize the operations of Computer networks, so that future requests can be served without going back to the origin of the content. Several caching techniques have been proposed since the emergence of the concept, including techniques that require major changes to the Internet architecture such as Content Centric Networking. Few of these techniques consider providing caching incentives for the nodes or quality of service guarantees for content owners. In this work, we present a low complexity, distributed, and online algorithm for making caching decisions based on content popularity, while taking into account the aforementioned issues. Our algorithm performs en-route caching. Therefore, it can be integrated with the current TCP/IP model. In order to measure the performance of any online caching algorithm, we define the competitive ratio as the ratio of the performance of the online algorithm in terms of traffic savings to the performance of the optimal offline algorithm that has a complete knowledge of the future. We show that under our settings, no online algorithm can achieve a better competitive ratio than Ω(logn)\Omega(\log n), where nn is the number of nodes in the network. Furthermore, we show that under realistic scenarios, our algorithm has an asymptotically optimal competitive ratio in terms of the number of nodes in the network. We also study an extension to the basic algorithm and show its effectiveness through extensive simulations

    Review of name resolution and data routing for information centric networking

    Get PDF
    Information Centric Networking (ICN) a future Internet, presents a new paradigm by shifting the current network to the modern network protocols. Its goal, to improve the traditional network operations by enabling ICN packet routing and forwarding based on names.This shift will bring advantages, but at the same time, it is leading to a big challenge on routing approaches to implement ICN nodes. Routing approaches must use special techniques to publish messages to all the network nodes.Flooding approach is an easy and stateless, however, results in control overhead, depending on the network size.Moreover, designing, implementing, and evaluating routing approaches with higher capacity is really a key challenge in the overall ICN research area, because the state of ICN brings a significant cost; both in packet processing and router storage.Many approaches were proposed in the literatures over these years for the efficient control of forwarding on the network.This paper provides a classification and review of the routing mechanisms that are proposed on six ICN architectures.A summary in tabular form and a comparative study of these six architectures is also given in the paper as well as few open research challenges are highlighted

    Mobility support in Named Data Networking: a survey

    Get PDF

    Vicinity-based Replica Finding in Named Data Networking

    Get PDF
    In Named Data Networking (NDN) architectures, a content object is located according to the content's identifier and can be retrieved from all nodes that hold a replica of the content. The default forwarding strategy of NDN is to forward an Interest packet along the default path from the requester to the server to find a content object according to its name prefix. However, the best path may not be the default path, since content might also be located nearby. Hence, the default strategy could result in a sub-optimal delivery efficiency. To address this issue we introduce a vicinity-based replica finding scheme. This is based on the observation that content objects might be requested several times. Therefore, replicas can be often cached within a particular neighbourhood and thus it might be efficient to specifically look for them in order to improve the content delivery performance. Within this paper, we evaluate the optimal size of the vicinity within which content should be located (i.e. the distance between the requester and its neighbours that are considered within the content search). We also compare the proposed scheme with the default NDN forwarding strategy with respect to replica finding efficiency and network overhead. Using the proposed scheme, we demonstrate that the replica finding mechanism reduces the delivery time effectively with acceptable overhead costs

    Measuring named data networks

    Get PDF
    2020 Spring.Includes bibliographical references.Named Data Networking (NDN) is a promising information-centric networking (ICN) Internet architecture that addresses the content directly rather than addressing servers. NDN provides new features, such as content-centric security, stateful forwarding, and in-network caches, to better satisfy the needs of today's applications. After many years of technological research and experimentation, the community has started to explore the deployment path for NDN. One NDN deployment challenge is measurement. Unlike IP, which has a suite of measurement approaches and tools, NDN only has a few achievements. NDN routing and forwarding are based on name prefixes that do not refer to individual endpoints. While rich NDN functionalities facilitate data distribution, they also break the traditional end-to-end probing based measurement methods. In this dissertation, we present our work to investigate NDN measurements and fill some research gaps in the field. Our thesis of this dissertation states that we can capture a substantial amount of useful and actionable measurements of NDN networks from end hosts. We start by comparing IP and NDN to propose a conceptual framework for NDN measurements. We claim that NDN can be seen as a superset of IP. NDN supports similar functionalities provided by IP, but it has unique features to facilitate data retrieval. The framework helps identify that NDN lacks measurements in various aspects. This dissertation focuses on investigating the active measurements from end hosts. We present our studies in two directions to support the thesis statement. We first present the study to leverage the similarities to replicate IP approaches in NDN networks. We show the first work to measure the NDN-DPDK forwarder, a high-speed NDN forwarder designed and implemented by the National Institute of Standards and Technology (NIST), in a real testbed. The results demonstrate that Data payload sizes dominate the forwarding performance, and efficiently using every fragment to improve the goodput. We then present the first work to replicate packet dispersion techniques in NDN networks. Based on the findings in the NDN-DPDK forwarder benchmark, we devise the techniques to measure interarrivals for Data packets. The results show that the techniques successfully estimate the capacity on end hosts when 1Gbps network cards are used. Our measurements also indicate the NDN-DPDK forwarder introduces variance in Data packet interarrivals. We identify the potential bottlenecks and the possible causes of the variance. We then address the NDN specific measurements, measuring the caching state in NDN networks from end hosts. We propose a novel method to extract fingerprints for various caching decision mechanisms. Our simulation results demonstrate that the method can detect caching decisions in a few rounds. We also show that the method is not sensitive to cross-traffic and can be deployed on real topologies for caching policy detection

    Study and analysis of mobility, security, and caching issues in CCN

    Get PDF
    Existing architecture of Internet is IP-centric, having capability to cope with the needs of the Internet users. Due to the recent advancements and emerging technologies, a need to have ubiquitous connectivity has become the primary focus. Increasing demands for location-independent content raised the requirement of a new architecture and hence it became a research challenge. Content Centric Networking (CCN) paradigm emerges as an alternative to IP-centric model and is based on name-based forwarding and in-network data caching. It is likely to address certain challenges that have not been solved by IP-based protocols in wireless networks. Three important factors that require significant research related to CCN are mobility, security, and caching. While a number of studies have been conducted on CCN and its proposed technologies, none of the studies target all three significant research directions in a single article, to the best of our knowledge. This paper is an attempt to discuss the three factors together within context of each other. In this paper, we discuss and analyze basics of CCN principles with distributed properties of caching, mobility, and secure access control. Different comparisons are made to examine the strengths and weaknesses of each aforementioned aspect in detail. The final discussion aims to identify the open research challenges and some future trends for CCN deployment on a large scale
    corecore