6 research outputs found

    The Perception of Technical Debt in the Embedded Systems Domain:An Industrial Case Study

    Get PDF
    Technical Debt Management (TDM) has drawn the attention of software industries during the last years, including embedded systems. However, we currently lack an overview of how practitioners from this application domain perceive technical debt. To this end, we conducted a multiple case study in the embedded systems industry, to investigate: (a) the expected life-time of components that have TD, (b) the most frequently occurring types of TD in them, and (c) the significance of TD against run-time quality attributes. The case study was performed on seven embedded systems industries (telecommunications, printing, smart manufacturing, sensors, etc.) from five countries (Greece, Netherlands, Sweden, Austria, and Finland). The results of the case study suggest that: (a) maintainability is more seriously considered when the expected lifetime of components is larger than ten years, (b) the most frequent types of debt are test, architectural, and code debt, and (c) in embedded systems the run-time qualities are prioritized compared to design-time qualities that are usually associated with TD. The obtained results can be useful for both researchers and practitioners: the former can focus their research on the most industrially-relevant aspects of TD, whereas the latter can be informed about the most common types of TD and how to focus their TDM processes

    Applying patterns in embedded systems design for managing quality attributes and their trade-offs

    Get PDF
    Embedded systems comprise one of the most important types of software-intensive systems, as they are pervasive and used in daily life more than any other type, e.g., in cars or in electrical appliances. When these systems operate under hard constraints, the violation of which can lead to catastrophic events, the system is classified as a critical embedded system (CES). The quality attributes related to these hard constraints are named critical quality attributes (CQAs). For example, the performance of the software for cruise-control or self-driving in a car are critical as they can potentially relate to harming human lives. Despite the growing body of knowledge on engineering CESs, there is still a lack of approaches that can support its design, while managing CQAs and their trade-offs with noncritical ones (e.g., maintainability and reusability). To address this gap, the state-of-research and practice on designing CES and managing quality trade-offs were explored, approaches to improve its design identified, and the merit of these approaches empirically investigated. When designing software, one common approach is to organize its components according to well-known structures, named design patterns. However, these patterns may be avoided in some classes of systems such as CES, as they are sometimes associated with the detriment of CQAs. In short, the findings reported in the thesis suggest that, when applicable, design patterns can promote CQAs while supporting the management of trade-offs. The thesis also reports on a phenomena, namely pattern grime, and factors that can influence the extent of the observed benefits

    Framework for examination of software quality characteristics in conflict: A security and usability exemplar

    Get PDF
    © 2020, © 2020 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. Standards and best practices for software quality guide on handling each quality characteristic individually, but not when two or more characteristics come into conflict such as security and usability. The objectives of this paper are twofold: (a) to argue on the importance of handling the conflicts between quality characteristics in general; (b) to formulate a framework for conflict examination of the software quality characteristics, we do so while considering the specific case of security and usability. In line with the objectives, a framework called Pattern-oriented Design Framework (PoDF) was formulated. The PoDF provides a mechanism for identification of the conflicts, modeling the conflicts to illuminate the reason for their occurrence, and eliciting the suitable trade-offs between the conflicting characteristics. The suitable trade-offs are thus documented as design patterns. The patterns can assist developers and designers in handling the conflicts in other but similar context of use. To validate and instantiate the PoDF, two studies were conducted. Usable security patterns discovered as a result of the studies are also presented in the paper

    Quality attribute trade-offs in the embedded systems industry: An exploratory case study

    Get PDF
    The embedded systems domain has grown exponentially over the past years. The industry is forced by the market to rapidly improve and release new products to beat the competition. Frenetic development rhythms thus shape this domain and give rise to several new challenges for software design and development. One of them is dealing with trade-offs between run-time and design-time quality attributes. To study practices, processes and tools concerning the management of run-time and design-time quality attributes as well as the trade-offs among them from the perspective of embedded systems software engineers. An exploratory case study with two qualitative data collection steps, namely interviews and a focus group, involving six different companies from the embedded systems domain with a total of twenty participants. The interviewed subjects showed a preference for run-time over design-time qualities. Trade-offs between design-time and run-time qualities are very common, but they are often implicit, due to the lack of adequate monitoring tools and practices. Practitioners prefer to deal with trade-offs in the most lightweight way possible, by applying ad-hoc practices, thus avoiding any overhead incurred. Finally, practitioners have elaborated on how they envision the ideal tool support for dealing with trade-offs. Although it is notoriously difficult to deal with trade-offs, constantly monitoring the quality attributes of interest with automated tools is key in making explicit and prudent trade-offs and mitigating the risk of incurring technical debt
    corecore