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ABSTRACT 

During the development of Critical Embedded Systems (CES), 

quality attributes that are critical for them (e.g., correctness, 

security, etc.) must be guaranteed. However, this often leads to 

complex quality trade-offs, since non-critical qualities (e.g., 

reusability, understandability, etc.) may be compromised. In this 

study, we aim at empirically investigating the existence of quality 

trade-offs, on the implemented architecture, among versions of 

open source CESs, and compare them with those of systems from 

other application domains. The results of the study suggest that in 

CES, non-critical quality attributes are usually compromised in 

favor of critical quality attributes. On the contrary, we have not 

observed compromises of critical qualities in favor of non-critical 

ones in either CES or other application domains. Furthermore, 

quality trade-offs are more frequent among critical quality 

attributes, compared to trade-offs among non-critical quality 

attributes. Our study has implications for both practitioners when 

making trade-offs in practice, as well as researchers that 

investigate quality trade-offs.   

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Metrics; D.2.11 [Software 

Engineering]: Software Architectures – domain-specific 

architectures. 

General Terms 

Measurement, Performance, Design, Experimentation, Security. 

Keywords 

embedded systems, quality trade-offs, software metrics. 

1. INTRODUCTION 
Critical Embedded Systems (CESs) are among the most 

significant types of software-intensive systems, since they are 

extremely pervasive in modern society, being used from cars to 

power plants [19]. CESs are embedded systems in which design 

errors can potentially be catastrophic [12], in terms of causing 

serious damage to the environment or to human lives, or non-

recoverable material and financial losses [2]. Due to the criticality 

of such systems, the satisfaction of multiple quality constraints 

must be guaranteed, which is far from trivial, as it entails complex 

trade-offs: compared to other application domains, in CES such 

trade-offs to a large extent concern safeguarding the levels of 

critical against other non-critical qualities [5], [18]. As critical 

quality attributes (QAs), we characterize those that can cause 

catastrophic failures, as mentioned before, and usually concern 

performance, security and reliability.  

Trade-offs occur because almost every design decision has the 

potential to positively affect some QAs and negatively affect 

others. For example, solutions that aim at enhancing security 

might, as a side effect, harm the performance of the system. 

Resolving a QA trade-off is a complex process, as it touches upon 

multiple design decisions. If a trade-off is not resolved well, it can 

lead to poor satisfaction of QAs, or an overkill in their satisfaction 

[8]. Understanding the nature of such trade-offs is of paramount 

importance to guide practitioners in making optimal trade-offs, 

and researchers in facilitating the practitioners in their job.  

Until now, trade-offs between quality attributes have not received 

sufficient empirical investigation [8] in real-life systems, but have 

mostly been addressed at a theoretical level. Specifically, we lack 

empirical evidence on the types of trade-offs performed in the 

domain of CES, and how exactly these trade-offs differ from other 

application domains. The goal of this study is to provide such 

evidence, by examining trade-offs in the implementation of real-

life systems for both CES and other domains. Although QA trade-

off analysis is usually investigated at the architecture design level, 

we work at the architecture implementation level (i.e., source 

code) for two reasons. First, the implemented architecture 

(derived from the source code) may deviate from the intended (as 

designed) architecture, in a phenomenon known as architectural 

drift [23]. But we want to study the quality trade-offs as they exist 

in real systems, not as they may have been intended during design. 

Therefore, as a side-effect of this decision, we emphasize that in 

this study both intentional and unintentional trade-offs are being 

considered without distinction between them. Second, the 

availability of source code is much greater than the availability of 

architecture design documentation (especially with information 

about quality trade-offs) in both open-source systems (OSS) and 

commercial systems.  

Thus, in this study, we aim at exploring: 

(goal - a)  the existence of quality trade-offs in the 

implemented architecture of CES, by investigating 

their source code; and 

(goal - b)  whether trade-offs differ between CES and systems 

of other application domains.  

In order to explore the existence of quality trade-offs from source 

code, we need to use methods, such as static analysis, to explore 

the evolution of quality attributes (i.e., changes in the levels of 

quality across successive versions), since no documentation 
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regarding quality trade-offs is available at the source code level. 

In this sense, trade-offs refer to cases where changes in source 

code correlate with the improvement of one quality attribute and 

deterioration of a second. As aforementioned, this means that we 

extract both intentional and unintentional trade-offs, thus being 

inclusive rather than exclusive. 

To accomplish the aforementioned goals, we performed an 

embedded multiple-case study on multiple versions of twenty one 

OSS projects [25]. The results of the study suggest the existence 

of QAs trade-offs in the CES domain, as well as in other domains, 

and highlight differences between them. The remainder of this 

paper is organized as follows: related work is presented in Section 

2, along with a discussion of the main contributions of this study. 

In Section 3, we present the design of the case study. In Sections 

4 and 5 we present the results and discuss the most important 

findings respectively. In Section 6, we report on the identified 

threats to validity and actions taken to mitigate them. Finally, in 

Section 7 we conclude the paper and present some interesting 

extensions for this study.  

2. RELATED WORK 
In this section we present related work that discusses software 

quality attributes. In the software engineering literature, QAs can 

be characterized based on many classifications (e.g., [1] and [17]); 

however, since our work is focused on the domain of CES, we 

decided to simply classify them as either critical or non-critical.     

We organize this section by first presenting studies on the domain 

of embedded systems (Section 2.1) and next on the evolution of 

software qualities in general (Section 2.2)1, as trade-offs are 

inherent in evolution. When presenting related work, we 

emphasize (in bold italic) the number of cases considered in the 

studies, as well as the tackled QAs. This information will be 

further summarized and compared with the main points of 

advancement of our work (Section 2.3). Most of the related work 

discussed in this section is based on a mapping study on software 

quality trade-offs by Barney et al. [8].  

2.1 Quality Trade-offs in Embedded Systems 
Concerning the interplay between QAs in the domain of 

embedded systems, Del Rosso presents an architectural approach 

for improving the performance of software products derived from 

a product family for real-time embedded systems, and its possible 

implications to maintainability [24]. To validate his approach, he 

conducts two cases studies on assessing the performance: (a) of 

one specific product line; and (b) on four scenarios involving 

derived products during product line evolution (the addition of 

new features). The first study involved one case, while the second 

involved four cases. The performance is measured by run-time 

metrics related to memory allocation, and the author discusses the 

trade-offs with maintainability. The results suggest that, by 

analyzing the commonalities and differences among derived 

products, one can extract bottlenecks and problems in core 

architecture (e.g., God class).  

In a similar context, Oliveira et al. investigate the relationship 

between non-critical quality attributes, measured by metrics 

obtained from source code, and performance, measured by 

                                                                 

1 We note that the presentation of related work on software evolution is 

indicative, since the amount of research on this domain is too large to 

include in this paper, due to size limitations. 

physical metrics (i.e., memory, time, and energy) obtained from 

run-time monitoring [21]. The explored quality attributes are the 

following: complexity, coupling, cohesion, extendibility/ reuse, 

and population / size. The study comprises a case study involving 

the evaluation of four alternative designs of an example system, 

in which measurements are collected for each design solution, 

showing potential trade-offs between the aforementioned metrics, 

and supporting the decision-making regarding the selection of a 

design solution. Results indicate the existence of trade-offs 

between quality and physical metrics, as well as the fact that 

quality metrics can provide information regarding high-level QAs, 

guiding the design solution selection at early stages, which might 

lead to significant gain in physical characteristics latter on. A 

main difference of this work, compared to ours, is that we are 

investigating the relationship between QAs within the evolution 

of the software, rather than trade-offs among possible designs 

from the solution space. 

2.2 Quality Analysis through Evolution 
Concerning the investigation of quality attributes through source 

code evolution; Buyens et al. [13] present an analysis of the 

interaction, on three cases, between security, measured by two 

metrics, and maintainability, measured by two metrics as well. 

Each security metric is based on one security principle, namely 

Least Privilege (the metric is the number of violations) and Attack 

Surface (the metric is the estimation of the attackers’ effort). 

Whereas, the two maintainability metrics are: Coupling Between 

Components, and Components Instability. The metrics are 

measured while applying modification in the implementation of 

each security principle (i.e., changing the involved components), 

causing changes in the system. Results of this study indicate that: 

(a) transformations are more effective when applied jointly, and 

(b) trade-offs exist between security metrics, and between security 

and maintainability QAs.  

Additionally, Barros et al. characterize the evolution of one open 

source project (Apache Ant) in terms of size, changeability, 

cohesion, and coupling QAs, through an exploratory study [9]. A 

main point of discussion is regarding the investigation of the high 

cohesion and low coupling principle. The results suggest that the 

original design was “lost” throughout the evolution of the system, 

while architectural optimization is hard, leading to a more 

complex to maintain resulting design. 

Finally, Di Penta et al. [22] study security in software systems by 

investigating the life-span of vulnerabilities among software 

versions. The authors define vulnerability as “any instance of an 

error in the specification, development, or configuration of 

software such that its execution can violate the security policy” 

[22]. Di Penta et al. investigate a total of 14 vulnerabilities, 

organized into four categories: input validation, memory safety, 

race / control flow condition, and other. To investigate the 

evolution of these vulnerabilities, they perform a case study on 

three open source software projects. Results indicate that: (a) 

vulnerabilities tend to be removed from the source code (between 

56% and 93 %), (b) functions with security issues tend to be 

replaced, and (c) new functionality tends to introduce new 

vulnerabilities. 

2.3 Overview of Related Work 
The main differences of this study compared to the related work 

are summarized in Table 1. Specifically, we present the 



differences in: (a) the studied application domains, (b) the studied 

QAs, and (c) the size of the performed case studies. 

Therefore, the main contributions of this study with respect to the 

research state-of-the-art are: 

c1: it compares trade-offs that appear in CESs with other 

application domains. To the best of our knowledge, this is the 

first study that presents empirical evidence on this matter; and 

c2: it investigates the interplay among 9 QAs. To the best of our 

knowledge, this is the most inclusive study of this type in 

terms of investigated QAs.  

3. CASE STUDY DESIGN 
This section describes the case study protocol, which was 

designed according to the guidelines of Runeson et al. [25], and is 

reported based on the Linear Analytic Structure [25]. 

3.1 Objectives and Research Questions 
The goal of this study is described using the Goal-Question-

Metrics (GQM) approach [10], as follows: “analyze open source 

software for the purpose of understanding quality attributes 

trade-offs with respect to the application domain of CES and 

others from the point of view of software developers in the 

context of Open Source projects”. Based on the goal of this study, 

we defined the following research questions: 

RQ1: Are there trade-offs between quality attributes of CES? 

RQ1.1: Are there trade-offs between non-critical quality 

attributes? 

RQ1.2: Are there trade-offs between critical quality attributes? 

RQ1.3: Are there trade-offs between critical and non-critical 

quality attributes? 

RQ1.4: Are trade-offs between pairs of quality attributes bi-

directional? 

RQ1 aims at investigating goal-a, i.e., investigating the existence 

of quality trade-offs. In order to further investigate the nature of 

such trade-offs (RQ1), we employ the QA classification into 

critical and non-critical attributes and explore interactions 

between them (RQ1.1 - RQ1.3). Intuitively, we would expect that 

quality trade-offs in CES would be different among critical and 

non-critical qualities categories. Subsequently, it is relevant to 

explore whether trade-offs between QAs occur on both directions, 

i.e., if the improvement of a certain QA “causes” another to 

decrease, does the vice-versa phenomenon occur? (RQ1.4). 

RQ2: What is the difference in quality attributes trade-offs among 

CES and non-CES domains? 

RQ2.1:  Are there similar trade-offs among CES and non-CES 

domains? 

RQ2.2:  Are there different trade-offs among CES and non-

CES domains? 

Since one of the most prevalent characteristics of the CES domain 

is the distinction between critical and non-critical qualities, it is 

interesting to compare it to other domains (regarding the same 

QAs), in order to see how this distinction is reflected in quality 

trade-offs (RQ2). Therefore, it is important to identify similar 

trade-offs among CES and other domains (RQ2.1), as well as the 

differences in trade-offs between QAs (RQ2.2). 

3.2 Case Selection and Unit of Analysis 
This study is an embedded multiple-case study, in which 

each case is represented by one project. As unit of analysis we 

refer to changes in the quality attributes between subsequent 

versions of any project. In order to select appropriate cases for our 

study we needed to retrieve successive versions of OSS projects 

of two different groups: CES projects, and non-CES projects. The 

projects used in our analysis were required: (a) to be written in 

Java, due to limitations of the used tools (see Section 3.3.3), (b) to 

have an adequate number of versions for evolution analysis, and 

(c) not to be considered as “toy examples”. The selected projects, 

accompanied by some additional information, are presented in 

Table 2. We clarify that although the selected CESs do not 

provide high-level end-user functionalities (e.g., move a robot), 

they are high-quality systems (more specifically, virtual machines) 

tailored for CES. Therefore, they are subject to the same, or 

stricter, (critical) constraints when compared to applications 

running on top of the virtual machine.  

In order to ensure that the sample of non-CES represents a 

number of different application domains, thus avoiding bias from 

Table 1. Overview of related work 

#ref 

App. Domain QA #cases 

CES Others #critical 

#non-

critical CES Others 

[25] √ X 1 1 4 N/A 

[22] √ X 1 5 4 N/A 

[14] X √ 1 1 N/A 3 

[10] X √ 0 4 N/A 1 

[23] X √ 1 1 N/A 3 

this √ √ 3 6 4 17 

 

Table 2. Projects considered in the case study 

Project Name 
Starting 

Year 
Size** NoV* Group NoV* 

Java-SE-Embedded 2010 834k 14 

CES 50 
LeJOS 2000 81k 16 

LeJOS-EV3 2013 30k 9 

LeJOS-NXJ 2006 52k 11 

Art of Illusion 2000 53k 32 

Non-

CES 
572 

DrJava 2002 180k 24 

FileBot 2007 532k 25 

FreeCol 2002 51k 34 

FreeMind 2000 28k 34 

Hibernate 2001 123k 28 

HomePlayer 2005 24k 32 

HtmlUnit 2002 27k 26 

iText 2000 56k 23 

JFreeChart 2000 62k 56 

Lightweight-Java-

Game-Library 
2002 72k 40 

MediathekView 2008 17k 41 

Mondrian 2001 51k 33 

OpenRocket 2009 182k 27 

Pixelitor 2009 27k 33 

Subsonic 2004 282k 42 

TuxGuitar 2005 28k 19 

*NoV = Number of Versions  
**Size, of the last version, in lines of code 



specific non-CES domains, we have selected systems2 from 10 

different domains. Therefore, our dataset contains four CES and 

an average of 3.1 systems from each of the 10 different non-CES 

domains. This means that the number of CES is not comparable to 

the total number of non-CES, but it is comparable to the number 

of systems in each of the different application domains. 

3.3 Data Collection and Pre-processing 
In order to answer the research questions, we extracted three sets 

of variables from each unit of analysis (see Section 3.3.3). The 

first set comprises data related to project identification and 

classification (V1 and V2). The second and third sets comprise 

variables for the quantification of critical (V3 – V5) and non-

critical (V6 – V11) QAs. We clarify that in this paper QAs are 

assessed based on a set of metrics. To this end, we selected 

several metrics that, to the best of our knowledge, are able to 

quantify the levels of quality. The two sets of metrics, for critical 

and non-critical QAs respectively, are presented in detail in the 

following sections.  

3.3.1 Assessment of Critical Quality Attributes 
Bugs have been extensively investigated as indicators of quality. 

More specifically, Misra and Bhavsar [20] have explored bugs as 

indicators for correctness, and Zaman et al. [26] have explored 

bugs as indicators for security and performance. When using bugs 

to quantify quality, it is a common practice to classify them into 

categories. For example, Zaman et al. [26] classified bugs 

according to their effect on specific QAs (e.g., security and 

performance). Therefore, to evaluate software projects with 

respect to their critical quality attributes, we performed static 

analysis by collecting the amount of several different types of 

bugs. For that, we used the tool FindBugs3. FindBugs is capable 

of detecting vulnerabilities in software by using bug patterns [16]. 

In this case study, we have chosen to use FindBugs because it 

provides:  

 adequate performance (with respect to precision) when 

compared to similar tools [16] [27];   

 a collection of over 400 bug patterns; and  

 a grouping of these bug patterns in nine high-level categories 

(i.e., Security, Correctness, Multithreaded Correctness, 

Performance, Malicious Code, Bad Practice, 

Internationalization, Experimental and Dodgy Code), which 

can in turn be mapped into quality attributes.  

In this study, in order to evaluate critical quality attributes, we 

considered the first five categories (in total 246 bug patterns), as 

they can be mapped to three critical QAs: correctness 

(Correctness and Multithreaded Correctness categories), 

performance (Performance category), and security (Security and 

Malicious Code categories). Therefore, the level of quality for the 

three aforementioned QAs is measured by the quantity of detected 

bugs. We clarify that for the correctness and security QAs, the 

number of bugs is the sum of the two categories each QA is 

comprised of. For example, security is measured by summing the 

number of bugs from both Security and Malicious Code 

                                                                 

2 We collected these systems from https://sourceforge.net, and considered 

the root from each category as the domain. Additionally, each system 

may belong to more than one domain. 
3 http://findbugs.sourceforge.net/ 

categories. For all QAs a lower number of bugs reflects a higher 

level of quality. 

3.3.2 Assessment of Non-critical QAs 
Regarding the quantification of non-critical quality attributes, we 

selected to use the Quality Model for Object-Oriented Design 

(QMOOD) [7]. QMOOD is a well-known hierarchical quality 

model that provides an approach for assessing six high-level 

quality attributes: reusability, understandability, functionality, 

extendibility, effectiveness, and flexibility [7]. These attributes are 

quantified based on 11 structural object-oriented design 

properties: design size, hierarchies, abstractions, encapsulation, 

coupling, cohesion, composition, inheritance, polymorphism, 

messaging, and complexity [7]. The definition for the 

aforementioned quality attributes and properties, and the 

equations to calculate the score of each quality attribute (by using 

weighted sum) can be found in the work of Bansiya and Davis [7]. 

Although the QMOOD quality model seems rather simplistic in 

its calculations, weighted sum is the most classical and, therefore, 

used approach for combining metrics [14]. Additionally, Bansiya 

and Davis [7] validated it empirically by using 13 appraisers, with 

2-7 years of experience in commercial software development, to 

evaluate 14 software projects. Their evaluation was compared to 

the quality model output, which showed to be significantly 

correlated. Therefore, we selected to use QMOOD since it: 

 uses simple calculations, which can be easily automated; 

 provides clear definitions of low-level properties and direct 

mapping to quality attributes; and 

 presents a fair amount of quality attributes. 

In order to assess the QAs for each project we used Percerons 

Client4, i.e., a tool developed in our research group, which 

automates the assessment of these QAs for provided Java classes. 

Percerons is a software engineering platform [6], created by one 

of the authors, to facilitate empirical research in software 

engineering, by providing: (a) indications of componentizable 

parts of source code, (b) quality assessment, and (c) design pattern 

instances. The platform has been used for similar reasons in [5], 

[15], and [3].  

3.3.3 Collection Procedure and Pre-processing 
The data collection phase was a two-step process. First, the QAs 

assessment variables were extracted from every unit of analysis, 

using FindBugs and Percerons Client. Both tools work on Java 

binary code, so we provided them with a set of .jar files (one per 

version), and recorded the outcome in an initial dataset. For 

FindBugs, we used the command line version 3.0.0, for easy 

reproduction and automation purposes. During execution, we 

requested maximum effort (i.e., enabling analysis that increases 

precision), and reported bugs from all urgency priorities (i.e., 

from least to most harmful to the system).  

The initial dataset was compiled in a single file for each project, 

containing all extracted data (from both tools) for each version. 

This file comprises a table with the following fields for each row 

of data: version, number of correctness bugs, number of 

performance bugs, number of security bugs, reusability score, 

understandability score, functionality score, extendibility score, 

effectiveness score, and flexibility score. The number of bugs from 

                                                                 
4  http://www.percerons.com 

https://sourceforge.net/
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http://www.percerons.com/


each aforementioned QA was obtained by counting the rule 

violations with medium and high confidence from Findbugs 

output. We decided to filter out the bugs with low confidence 

level for increasing the precision of the automatic rule violation 

identification process. Specifically, we manually 

analyzed/validated a sample of 15 bugs per level of confidence 

(chosen randomly), and we estimated that the precision for low, 

medium, and high categories were 26.67%, 60%, and 73.33% 

respectively. 

Next, the final dataset was created by calculating the difference 

between two consecutive versions (δvariable = variablev - variablev-

1), for every version v of each project. This was performed for 

each estimator (number of bugs or design-time attribute quality 

score). Then all data were merged in a single table consisting of 

the following fields: project name, type of project (i.e., CES or 

non-CES), δcorrectness, δperformance, δsecurity, δreusability, δunderstandability, 

δfunctionality, δextendibility, δeffectiveness, and δflexibility. Finally, the values 

of the δ* variables were classified as improvement cases, 

deterioration cases, or neutral cases, based on the sign of the 

corresponding δ value. 

Summarizing, the full list of variables collected from each unit of 

analysis, together with their description, is presented in Table 3. 

3.4 Data Analysis 
During this phase, we analyzed the previously described δ* fields 

(V3 – V11), in order to identify trade-offs, which will be further 

used for comparison between CES and non-CES groups. We 

clarify that these fields represent assessments of the studied QAs, 

and, therefore, when referring to the attributes, we are in practice 

referring to their assessments. The analysis of the collected data is 

split in three steps: 

(step 1)  Analysis of pairs of QAs: For both groups (CES and 

non-CES projects), we have to seek evidence on the 

existence of trade-offs, in every pair of QAs. For 

instance, Figure 1 depicts the analysis of qualities V6 

vs. V10, for CES. Therefore, for every pair of QAs, we 

proceed as follows:  

(step 1.1)  Filter improvement cases: As we are looking for 

cases of occurrences of trade-offs, it is important 

to select only cases in which one of the two QAs 

has improved. For this reason, we create two sub-

datasets, each one consisting of the cases having 

positive scores for the respective QA. For 

instance, in Figure 1, the two sub-datasets consist 

of the cases in which V6 improves (positive 

values of V6), and the cases in which V10 

improves (positive values of V10). This ensures 

that we are tracking the cases in which perfective 

maintenance tasks may have been performed in 

order to improve the tracked aspect of the 

software. 

(step 1.2)  Calculate statistics of sub-dataset: Each sub-

dataset (corresponding to an improving QA) is 

analyzed by creating a frequency table for the 

second QA. In the example presented in Figure 1, 

for the sub-dataset comprising cases of 

improvement of V6, we calculate the frequencies 

for V10; and vice-versa. Thus, when exploring 

each sub-dataset, we calculate the frequency 

percentages of the classes of the second QA (i.e., 

improvement cases, deterioration cases, stable 

cases). Next, the improvement cases are marked as 

co-evolution, the deterioration cases are marked as 

trade-offs, whereas the neutral cases as neutral. 

For instance, in Figure 1, in the sub-dataset 

comprising improvement cases of V6, we 

calculated “V10 -” (trade-off), “V10 +” (co-

evolution), and “V10 0” (neutral).  

(step 1.3)  Filter evidence: To identify the trade-offs 

occurring between QAs, we keep out of the two 

sub-datasets of step 1.2, only those in which the 

percentage of the trade-off cases is higher than the 

percentage of co-evolution and neutral. In the 

example of Figure 1, we identify a possible trade-

off at the sub-dataset in which the improvement of 

V6 affects negatively V10. 

(step 2)  Synthesis of presentation: In this step we 

synthesize and graphically represent the results of 

step 1, so as to answer the research questions. 

Two heat maps are derived from the information 

Table 3. List of collected variables 

Variable Description Tool 

[V1] 
Software project: the name of the OSS project 

from which data were extracted. 
- 

[V2] 
Domain Group: project belongs either to CES 

or non-CES 
- 

[V3] 

Difference between two versions, in the count 

of security rule violations: count of bug pattern 

instances in “Malicious code vulnerability” and 

“Security” categories. 

F
in

d
B

u
g

s 

[V4] 

Difference between two versions, in the count 

of “Performance” rule violations: count of bug 

pattern instances in “Performance” category. 

[V5] 

Difference between two versions, in the count 

of correctness rule violations: count of bug 

patterns in “Correctness” and “Multithread 

correctness” categories. 

[V6] 

Difference between two versions, in the 

reusability score: the reusability assessment 

computed as defined by Bansiya and Davis [8]. 

P
ercero

n
s C

lien
t 

[V7] 

Difference between two versions, in the 

flexibility score: the flexibility assessment 

computed as defined by Bansiya and Davis [8]. 

[V8] 

Difference between two versions, in the 

Understandability score: the understandability 

assessment computed as defined by Bansiya 

and Davis [8]. 

[V9] 

Difference between two versions, in the 

Functionality score: the functionality 

assessment computed as defined by Bansiya 

and Davis [8]. 

[V10] 

Difference between two versions, in the 

Extendibility score: the extendibility assessment 

computed as defined by Bansiya and Davis [8]. 

[V11] 

Difference between two versions, in the 

Effectiveness score: the effectiveness 

assessment computed as defined by Bansiya 

and Davis [8]. 

 



on step 1: one depicting the trade-offs within the 

CES group (row: improved QAs, columns: 

affected QAs, intensity: the frequency of trade-

offs); and another showing the comparison of 

trade-offs between the two groups (the difference 

and similarities between CES and non-CES trade-

offs). 

(step 3)  Comparison of evidence in CES projects: With the data 

collected and summarized, it is analyzed within the CES 

group, aiming at comparing the interactions between the 

QAs in order to answer RQ1 and its sub-questions. For 

this step the heat map on CES trade-offs is used. 

(step 4)  Comparison of evidence from groups: The analysis is 

now extended to the non-CES group, aiming, therefore, 

at comparing all collected data in order to answer RQ2 

and its sub-questions. For this step the heat map on the 

comparison between CES and non-CES groups is used.  

Summarizing the procedure for answering the RQs, Table 4 

presents the mapping between each RQ, the used variables, as 

well as the step of the analysis in which RQs are answered and the 

presentation methods that are used.  

4. RESULTS 
In this section we present the output of the analysis, and answer 

the research questions. To answer RQ1 and its sub-questions, we 

explore the findings obtained from step 3. In order to visualize the 

interaction between the QAs, we compiled raw data (omitted from 

this manuscript due to space limitations5) into a heat map (see 

Figure 2). In the heat map of Figure 2, each cell represents the 

effect of improving one QA (vertical axis) over another 

(horizontal axis). The intensity of the heat map (i.e., color 

darkness – also written inside the cell) represents the percentage 

of the cases that constitute valid trade-offs (see step 1.3). 

Moreover, the two bold lines in the map divide it into quadrants 

in order to highlight the interactions within and between the 

critical and non-critical groups of QAs. Hence, the top-left 

quadrant represents the interactions between critical QAs, the 

bottom-right quadrant represents the interactions between non-

                                                                 

5  Supplementary material on the collected data during the study is 

available at:  

    http://www.rug.nl/research/software-engineering/publication_files/QA-

tradeoffs-TR-2015-01-08.pdf  

 

Figure 1. Example of trade-off analysis within the final dataset 

Table 4. Mapping of RQs to variables, steps, and presentation 

Research 

Question 

Variables 

Used 
Step Presentation Method 

RQ1 [V2-V13] 

3 Heat Map on CES trade-offs  

RQ1.2 
[V2] 

[V8-V13] 

RQ1.2 [V2-V7] 

RQ1.3 [V2-V13] 

RQ1.4 [V2-V13] 

RQ2 [V2-V13] 

4 
Heat Map on comparison 

between CES and non-CES 
RQ2.1 [V2-V13] 

RQ2.2 [V2-V13] 

 

 

Figure 2. Trade-offs in CES domain 
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critical QAs, while the other two represent the interaction between 

QAs of the two groups.  

Based on Figure 2, we are able to answer all sub-questions of 

RQ1, by confirming the existence of trade-offs between QAs (see 

Section 3.4, step 1), and answering affirmatively RQ1.1 - RQ1.3. 

Consequently, by investigating each quadrant separately, it’s also 

possible to point out possible trade-offs between critical QAs 

(second quadrant), non-critical QAs (fourth quadrant), and 

between QAs of the two groups (first and third quadrants). The 

findings from exploring RQ1.1 - RQ 1.3 is the existence of trade-

offs6 between: 

 understandability and the other non-critical QAs (and vice-

versa); 

 correctness and performance, as well as between security and 

correctness;  

 all critical QAs and extendibility, and between all QAs and 

understandability; 

 performance and reusability; 

 reusability and extendibility.  

Subsequently we examine whether the interactions between two 

QAs are bi-directional (RQ1.4), i.e., if the improvement of one QA 

negatively affects another QA, the opposite relationship also 

holds. To answer this research question, we examine Figure 2 for 

symmetries. We observe that although we identified some bi-

directional interactions, it is not possible to conclude that all 

identified trade-offs between QAs are bi-directional. However, for 

some pairs of QAs, bi-directional trade-offs can be identified, i.e., 

between understandability and the rest of the non-critical QAs 

(effectiveness, extendibility, flexibility, functionality, and 

reusability). Moreover, we highlight one interesting finding 

regarding the interactions between critical and non-critical QAs: 

although the improvement of some critical QAs negatively affects 

non-critical QAs, the opposite phenomenon never appears, i.e., in 

this study we found no evidence of non-critical QAs negatively 

affecting critical QAs. 

Finally, having examined the trade-offs in the CES domain, we 

can compare them with other application domains (RQ2): in what 

                                                                 

6  We note that, in this study, when reporting trade-offs in the form of 

“trade-off between QAA and QAB”, we refer to a compromise in the 

levels of QAB in favor of an improvement in the levels of QAA. 

aspects they are similar (RQ2.1), and the ones in which they differ 

(RQ2.2). To answer these questions, we created two heat maps: 

one akin to that depicted on Figure 2 (see Figure 3), but 

considering data from the non-CES projects, and another 

representing the difference of the two heat maps (see Figure 4). In 

Figure 4, three different filling patterns (with their respective 

colors) represent the possible classifications for the observed 

trade-offs: evident only in the group of CES projects (red 

background with circles); evident only in the group of non-CES 

projects (blue with slanted lines); and evident in both groups 

(green background with vertical lines). Based on this figure, we 

answer affirmatively RQ2.1 - RQ 2.2, and, additionally, make the 

following observations:  

 Similarities between the two groups of projects: Trade-offs 

between security and correctness; between correctness and 

performance; between all QAs and understandability; and 

between understandability and non-critical QAs. 

 Trade-offs occurred only in the group of CES projects: 

between the critical QAs and extendibility; between 

reusability and extendibility; and between performance and 

reusability.  

 Trade-offs occurred only in the group of non-CES projects: 

between correctness and security, as well as between 

performance and security; and between correctness and 

effectiveness. 

Finally, concerning the group of CES projects, the trade-offs 

occur mostly between critical QAs and non-critical QAs, which 

implies that, in the CES domain, non-critical QAs are more often 

sacrificed in favor of critical QAs. 

5. DISCUSSION 
In this section we present a discussion of the results, by providing 

possible interpretations and a comparison against related work 

(when applicable). We first discuss the findings from the CES 

trade-off analysis, and then the comparison between CES and 

non-CES. At the end of this section, we discuss possible 

implications to researchers and practitioners. 

5.1 Trade-offs in CES Domain 
By exploring the trade-offs in CES, the following observations 

can be made:  

 extendibility is negatively affected by reusability. This is 

intuitive for CES. In general, embedded systems provide 

 

Figure 4. Comparison between CES and non-CEs groups 

 

Figure 3. Trade-offs in non-CES domain 



specific functionalities that are not designed to facilitate future 

extensions in an object-oriented way (e.g., adding subclasses, 

polymorphic methods, etc.). Therefore, the addition of new 

functionality is expected to be performed by adding methods 

in existing classes, making existing methods larger in size, or 

adding new concrete classes, which in turn lead to even more 

decreased extendibility. On the other hand, according to  [7], 

such classes (which offer large amount of functionalities) are 

considered more probable to be reused, since they provide 

more reuse opportunities, regarding offered functionalities.  

 performance negatively affects reusability. One possible 

explanation is that, in order to improve the system 

performance, some solutions (e.g. refactoring of class into 

inner class7) lead to deterioration of aspects that support 

reusability, such as cohesion, coupling, and size. Coupling 

and cohesion are important assessors of reusability in the 

sense that they are related to the adaptation time needed for 

reusing a specific piece of code. A similar finding can also be 

drawn based on the work of Oliveira et al. [21], who suggest 

that cohesion and coupling metrics, that are assessments of 

reusability, are compromised in favor of metrics for 

performance [7]. 

Although the results of Figure 2 suggest that extendibility is 

negatively affected by all critical QAs, we believe that this result 

needs further investigation. Intuitively, extendibility is 

compromised by source code growth [4], and embedded system 

development style, as already mentioned. Therefore extendibility 

deteriorates during the evolution of CES, but we do not have 

evidence regarding the extent that this is connected to bug solving 

(i.e. improvement of critical QAs). However, a similar finding is 

reported in [21], where metrics for extendibility are compromised 

in favor of performance. 

The rest of the findings are discussed in the next subsection, as 

they are also observed in the non-CES group.  

5.2 Comparison of the Two Groups 
On the one hand, in both CES and non-CES, we were able to 

observe the following: 

 non-critical QAs do not affect critical QAs. Improvements on 

object-oriented properties (i.e., enhancement in design-time 

QAs – all non-critical QAs investigated in this study are 

design-time) are not likely to result in additional source code 

vulnerabilities (rule violations – assessment of critical QAs). 

A possible explanation is that there is no tension between 

non-critical and critical QAs. However, another possibility is 

that when improving design-time quality attributes, the 

developers are refactoring the code without changing its 

external behavior (extract class, extract method, etc.), which 

only “moves” rule violations to other parts of the system, 

without introducing new ones. In addition to that, especially 

concerning CES, this finding is intuitive in the sense that it 

was not expected from development teams to compromise a 

critical QA in a critical system, in favor of a non-critical one. 

 security negatively affects correctness. Fixing security 

vulnerabilities can lead to additional errors in the code. For 

example, in order to fix a vulnerability related to a field that is 

                                                                 

7
http://findbugs.sourceforge.net/bugDescriptions.html#SIC_INNER_ 

SHOULD_BE_STATIC  

not well implemented and should be moved8, one might do 

the refactoring as suggested, but forget to initialize the field9. 

 correctness negatively affects performance. Coding mistakes 

are common during development (e.g., accessing an already 

freed reference10). Therefore, in order to solve these bugs, one 

might use inefficient coding styles (in terms of performance) 

in order to ensure that the output is the expected (e.g., 

introducing extra parameters in a method that ends up being 

of limited utility11). 

On the other hand, by comparing the differences between the two 

groups, we identified the following findings: 

 Although specific evidence of trade-off was discussed already 

(in the previous subsection), we note that the higher frequency 

of trade-offs between the critical QAs with non-critical QAs 

might reflect a higher importance of critical QAs over non-

critical QAs in CES. 

 In non-CES, correctness negatively affects effectiveness. 

While maintaining parts of source code, it might be the case 

that more non-object-oriented approaches are employed, 

leading to a reduction in system’s effectiveness. We note that 

effectiveness is quantified by assessing how well the object-

orientation paradigm is employed in the source code [7]. For 

example, in order to solve missed locks12, one might 

centralize the responsibilities to avoid forgetting the lock. 

 In non-CES, correctness affects all other critical QAs. This 

might be an indication that functionalities are not optimally 

implemented (i.e., implying less attention to errors or less 

knowledge on the topic) in other domains, possibly due to a 

lack on developers’ skills. 

 In non-CES, security is affected by all other critical QAs. 

Similarly to the previous finding, code exploitation 

vulnerabilities appear to be common in other domains, and 

could also be explained by lack of skills regarding this issue.  

Finally, although the results of Figure 4 suggest that 

understandability is negatively affected by all other QAs and vice-

versa, we believe that this result needs further investigation. 

Specifically, we observed that understandability is a QA that 

continually deteriorates during systems evolution [22], because 

based on the way it is calculated [7] it is inversely proportional to 

the growth of properties such as complexity (measured by number 

of methods) and design size (measured by number of classes). On 

the other hand, in the cases when understandability is increasing, 

we observe a negative relationship with the rest of the non-critical 

QAs, again because of the way that both understandability and 

non-critical-QAs are calculated. Concluding, we believe that the 

decrease of understandability in our study is not the result of 

explicit trade-offs, but simply, the natural effect of system growth. 

                                                                 

8http://findbugs.sourceforge.net/bugDescriptions.html#MS_OOI_ 

PKGPROTECT 
9http://findbugs.sourceforge.net/bugDescriptions.html#UR_UNIN

IT_READ 
10http://findbugs.sourceforge.net/bugDescriptions.html#NP_NUL

L_ON_ SOME_PATH 
11http://findbugs.sourceforge.net/bugDescriptions.html#BX_UNB

OXING_ IMMEDIATELY_REBOXED 
12http://findbugs.sourceforge.net/bugDescriptions.html#SWL_SL

EEP_WITH_LOCK_HELD 
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5.3 Implications for Practitioners and 

Researchers 
Firstly, by investigating our results, architects and software 

engineers can become aware of the most probable side-effects that 

the enhancement of one QA might have to another, in the sense 

that some trade-offs may be performed unintentionally. For 

example, by making developers aware of the fact that when fixing 

bugs related to security, they usually introduce additional bugs 

related to correctness, would make them consider possible ways 

to avoid such side-effects. Similarly, architects can also benefit 

from the identified trade-offs, as a source of potential threats to 

QAs, enabling them to: (a) monitor the potentially harmed QAs, 

and (b) identify concrete QA compromises earlier, so as to employ 

the necessary countermeasures.  

Secondly, the results of the study suggest that CES differ from 

other application domains in terms of the actual trade-offs, and in 

terms of trade-offs between QAs not being bi-directional. 

Therefore, we strongly advise both researchers and practitioners 

to: (a) reflect on the direction of trade-offs, when reasoning about 

the interplay of QAs (e.g., the improvement of one QA affects 

another QA negatively, but not vice-versa), and (b) to take into 

account the application domain when investigating trade-offs.  

Finally, the results of the study suggest that the outcome of 

investigating trade-offs at the level of the implemented 

architecture are intuitively correct, as they align with architecting 

principles. Therefore, we induce researchers to consider source 

code artifacts, when exploring trade-offs between QAs. 

6. THREATS TO VALIDITY 
In this section we present and discuss construct validity, 

reliability, as well as external validity for this study. Internal 

validity is not applicable, as the study does not examine causal 

relations. Construct validity reflects how connected are the object 

of study and the research questions. The reliability is related to 

whether the case study is conducted and presented in such way 

that others can replicate it with the same results. Finally, external 

validity deals with possible threats when generalizing the findings 

derived from sample to the entire population.  

Concerning construct validity, one threat concerns the correctness 

of the formulae, proposed by Bansiya and Davis [11], for 

assessing the non-critical QAs. However, as described in the data 

collection section, the calculation had been validated through an 

empirical study involving experienced practitioners. Additionally, 

regarding FindBugs, we acknowledge that the list of bug patterns 

are by no means exhaustive, and additional bugs related to the 

investigated QAs could be used. However, to the best of our 

knowledge the used tool is among the most reputed in the 

community, and has adequate performance (see Section 3.3.1). 

Another threat is that effect size is not considered during the data 

analysis (Section 3.4), i.e., any positive or negative change in an 

attribute is considered the same, regardless of its magnitude. This 

measure was taken in order to avoid bias from specific projects to 

the entire domain. 

In order to mitigate reliability, two different researchers were 

involved in the data collection, having all outputs double-

checked. Furthermore, the same double-checking procedure 

happened during the data analysis. Finally, all primitive data can 

be reproduced by using the same bug detection tool (FindBugs, 

v3.0.0), for estimating critical QAs, and the QMOOD quality 

model calculations [11], for estimating non-critical QAs. 

Finally, concerning external validity, we have identified four 

possible threats to the validity of our results. Firstly, we 

investigated a limited number of CESs, due to unavailability of 

critical embedded OSS implemented in Java. Thus, the inclusion 

of more CESs may differentiate the reported results. Additionally, 

modifications on the type and/or number of non-CES may slightly 

differentiate the results as well.  Secondly, all software systems 

that were investigated are written in Java, while C/C++ is a more 

popular language for implementing CES; thus, there is a 

possibility that results are different for other object-oriented 

languages, as well as for other paradigms. Thirdly, due to the use 

of FindBugs and QMOOD, the reported results concern three 

critical and six non-critical QAs. Therefore, all discussions on the 

existence of possible trade-offs between critical and non-critical 

QAs, cannot be generalized to other QAs (e.g., reliability, 

changeability, etc.) without further investigation. Finally, our 

results cannot be generalized “as is” to trade-offs in the intended 

architecture, because we have analyzed trade-offs from the 

perspective of the implemented architecture, i.e. source code 

(including both intentional and unintentional trade-offs). In order 

to draw safe conclusions on the intentional trade-offs the 

architectural design of a system should be explored. For example, 

considering other points of view, such as risk analysis in the 

intended architecture [11]. 

7. CONCLUSION 
One of the greatest challenges in engineering CESs is to guarantee 

critical QAs, which may pose hard constraints. This entails that 

complex trade-offs need to be made, either intentionally or 

unintentionally. In our study, we aimed at empirically 

investigating the interplay of QA and existence of quality trade-

offs by analyzing source code through software evolution. For that 

we explored 9 QAs, measured from a total of 622 versions, 

obtained from 21 open source software projects.  

Concerning CES, the results of the study imply the existence of 

possible trade-offs between critical QAs (correctness, security, 

and performance), as well as the fact that non-critical QAs (e.g., 

reusability, understandability, etc.) are usually compromised in 

favor of critical QAs. However, we have not observed critical 

QAs compromised in favor of non-critical QAs, for either CES or 

other application domains. Finally, we provide evidence on the 

fact that non-critical QAs are more often compromised than 

critical QAs.  

As interesting pointers for future work, the results of our study 

highlight the relevance of investigating trade-offs involving 

critical QAs from a more detailed perspective, exploring the bug 

patterns entangled in the trade-offs, therefore, identifying possible 

connections between patterns and specific trade-offs. 

Furthermore, in order to support the high level findings presented 

in this study, it is interesting to consider additional QAs, 

especially critical ones. Finally, as an interesting replication we 

consider the execution of this study with projects written in other 

languages often used for developing embedded systems, such as C 

and C++. 
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