

 University of Groningen

Investigating Quality Trade-offs in Open Source Critical Embedded Systems
Feitosa, Daniel; Ampatzoglou, Apostolos; Avgeriou, Paris; Nakagawa, Elisa Yumi

Published in:
11th International Conference on the Quality of Software Architectures (QoSA)

DOI:
10.1145/2737182.2737190

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Feitosa, D., Ampatzoglou, A., Avgeriou, P., & Nakagawa, E. Y. (2015). Investigating Quality Trade-offs in
Open Source Critical Embedded Systems. In 11th International Conference on the Quality of Software
Architectures (QoSA) (pp. 113-122). (QoSA '15). ACM Press. https://doi.org/10.1145/2737182.2737190

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-06-2022

https://doi.org/10.1145/2737182.2737190
https://research.rug.nl/en/publications/1aaf1460-9893-4cd2-90ba-319259ac47ba
https://doi.org/10.1145/2737182.2737190

Investigating Quality Trade-offs in Open Source Critical

Embedded Systems
Daniel Feitosa

1
, Apostolos Ampatzoglou

1
, Paris Avgeriou

1
, Elisa Yumi Nakagawa

2

1
Department of Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands

2
 Department of Computer Systems, University of São Paulo, São Carlos, SP, Brazil

d.feitosa@rug.nl, a.ampatzoglou@rug.nl, paris@cs.rug.nl, elisa@icmc.usp.br

ABSTRACT

During the development of Critical Embedded Systems (CES),

quality attributes that are critical for them (e.g., correctness,

security, etc.) must be guaranteed. However, this often leads to

complex quality trade-offs, since non-critical qualities (e.g.,

reusability, understandability, etc.) may be compromised. In this

study, we aim at empirically investigating the existence of quality

trade-offs, on the implemented architecture, among versions of

open source CESs, and compare them with those of systems from

other application domains. The results of the study suggest that in

CES, non-critical quality attributes are usually compromised in

favor of critical quality attributes. On the contrary, we have not

observed compromises of critical qualities in favor of non-critical

ones in either CES or other application domains. Furthermore,

quality trade-offs are more frequent among critical quality

attributes, compared to trade-offs among non-critical quality

attributes. Our study has implications for both practitioners when

making trade-offs in practice, as well as researchers that

investigate quality trade-offs.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics; D.2.11 [Software

Engineering]: Software Architectures – domain-specific

architectures.

General Terms

Measurement, Performance, Design, Experimentation, Security.

Keywords

embedded systems, quality trade-offs, software metrics.

1. INTRODUCTION
Critical Embedded Systems (CESs) are among the most

significant types of software-intensive systems, since they are

extremely pervasive in modern society, being used from cars to

power plants [19]. CESs are embedded systems in which design

errors can potentially be catastrophic [12], in terms of causing

serious damage to the environment or to human lives, or non-

recoverable material and financial losses [2]. Due to the criticality

of such systems, the satisfaction of multiple quality constraints

must be guaranteed, which is far from trivial, as it entails complex

trade-offs: compared to other application domains, in CES such

trade-offs to a large extent concern safeguarding the levels of

critical against other non-critical qualities [5], [18]. As critical

quality attributes (QAs), we characterize those that can cause

catastrophic failures, as mentioned before, and usually concern

performance, security and reliability.

Trade-offs occur because almost every design decision has the

potential to positively affect some QAs and negatively affect

others. For example, solutions that aim at enhancing security

might, as a side effect, harm the performance of the system.

Resolving a QA trade-off is a complex process, as it touches upon

multiple design decisions. If a trade-off is not resolved well, it can

lead to poor satisfaction of QAs, or an overkill in their satisfaction

[8]. Understanding the nature of such trade-offs is of paramount

importance to guide practitioners in making optimal trade-offs,

and researchers in facilitating the practitioners in their job.

Until now, trade-offs between quality attributes have not received

sufficient empirical investigation [8] in real-life systems, but have

mostly been addressed at a theoretical level. Specifically, we lack

empirical evidence on the types of trade-offs performed in the

domain of CES, and how exactly these trade-offs differ from other

application domains. The goal of this study is to provide such

evidence, by examining trade-offs in the implementation of real-

life systems for both CES and other domains. Although QA trade-

off analysis is usually investigated at the architecture design level,

we work at the architecture implementation level (i.e., source

code) for two reasons. First, the implemented architecture

(derived from the source code) may deviate from the intended (as

designed) architecture, in a phenomenon known as architectural

drift [23]. But we want to study the quality trade-offs as they exist

in real systems, not as they may have been intended during design.

Therefore, as a side-effect of this decision, we emphasize that in

this study both intentional and unintentional trade-offs are being

considered without distinction between them. Second, the

availability of source code is much greater than the availability of

architecture design documentation (especially with information

about quality trade-offs) in both open-source systems (OSS) and

commercial systems.

Thus, in this study, we aim at exploring:

(goal - a) the existence of quality trade-offs in the

implemented architecture of CES, by investigating

their source code; and

(goal - b) whether trade-offs differ between CES and systems

of other application domains.

In order to explore the existence of quality trade-offs from source

code, we need to use methods, such as static analysis, to explore

the evolution of quality attributes (i.e., changes in the levels of

quality across successive versions), since no documentation

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from permissions@acm.org.

QoSA'15, May 04-08, 2015, Montreal, QC, Canada

Copyright 2015 ACM 978-1-4503-3470-9/15/05…$15.00

http://dx.doi.org/10.1145/2737182.2737190

regarding quality trade-offs is available at the source code level.

In this sense, trade-offs refer to cases where changes in source

code correlate with the improvement of one quality attribute and

deterioration of a second. As aforementioned, this means that we

extract both intentional and unintentional trade-offs, thus being

inclusive rather than exclusive.

To accomplish the aforementioned goals, we performed an

embedded multiple-case study on multiple versions of twenty one

OSS projects [25]. The results of the study suggest the existence

of QAs trade-offs in the CES domain, as well as in other domains,

and highlight differences between them. The remainder of this

paper is organized as follows: related work is presented in Section

2, along with a discussion of the main contributions of this study.

In Section 3, we present the design of the case study. In Sections

4 and 5 we present the results and discuss the most important

findings respectively. In Section 6, we report on the identified

threats to validity and actions taken to mitigate them. Finally, in

Section 7 we conclude the paper and present some interesting

extensions for this study.

2. RELATED WORK
In this section we present related work that discusses software

quality attributes. In the software engineering literature, QAs can

be characterized based on many classifications (e.g., [1] and [17]);

however, since our work is focused on the domain of CES, we

decided to simply classify them as either critical or non-critical.

We organize this section by first presenting studies on the domain

of embedded systems (Section 2.1) and next on the evolution of

software qualities in general (Section 2.2)1, as trade-offs are

inherent in evolution. When presenting related work, we

emphasize (in bold italic) the number of cases considered in the

studies, as well as the tackled QAs. This information will be

further summarized and compared with the main points of

advancement of our work (Section 2.3). Most of the related work

discussed in this section is based on a mapping study on software

quality trade-offs by Barney et al. [8].

2.1 Quality Trade-offs in Embedded Systems
Concerning the interplay between QAs in the domain of

embedded systems, Del Rosso presents an architectural approach

for improving the performance of software products derived from

a product family for real-time embedded systems, and its possible

implications to maintainability [24]. To validate his approach, he

conducts two cases studies on assessing the performance: (a) of

one specific product line; and (b) on four scenarios involving

derived products during product line evolution (the addition of

new features). The first study involved one case, while the second

involved four cases. The performance is measured by run-time

metrics related to memory allocation, and the author discusses the

trade-offs with maintainability. The results suggest that, by

analyzing the commonalities and differences among derived

products, one can extract bottlenecks and problems in core

architecture (e.g., God class).

In a similar context, Oliveira et al. investigate the relationship

between non-critical quality attributes, measured by metrics

obtained from source code, and performance, measured by

1 We note that the presentation of related work on software evolution is

indicative, since the amount of research on this domain is too large to

include in this paper, due to size limitations.

physical metrics (i.e., memory, time, and energy) obtained from

run-time monitoring [21]. The explored quality attributes are the

following: complexity, coupling, cohesion, extendibility/ reuse,

and population / size. The study comprises a case study involving

the evaluation of four alternative designs of an example system,

in which measurements are collected for each design solution,

showing potential trade-offs between the aforementioned metrics,

and supporting the decision-making regarding the selection of a

design solution. Results indicate the existence of trade-offs

between quality and physical metrics, as well as the fact that

quality metrics can provide information regarding high-level QAs,

guiding the design solution selection at early stages, which might

lead to significant gain in physical characteristics latter on. A

main difference of this work, compared to ours, is that we are

investigating the relationship between QAs within the evolution

of the software, rather than trade-offs among possible designs

from the solution space.

2.2 Quality Analysis through Evolution
Concerning the investigation of quality attributes through source

code evolution; Buyens et al. [13] present an analysis of the

interaction, on three cases, between security, measured by two

metrics, and maintainability, measured by two metrics as well.

Each security metric is based on one security principle, namely

Least Privilege (the metric is the number of violations) and Attack

Surface (the metric is the estimation of the attackers’ effort).

Whereas, the two maintainability metrics are: Coupling Between

Components, and Components Instability. The metrics are

measured while applying modification in the implementation of

each security principle (i.e., changing the involved components),

causing changes in the system. Results of this study indicate that:

(a) transformations are more effective when applied jointly, and

(b) trade-offs exist between security metrics, and between security

and maintainability QAs.

Additionally, Barros et al. characterize the evolution of one open

source project (Apache Ant) in terms of size, changeability,

cohesion, and coupling QAs, through an exploratory study [9]. A

main point of discussion is regarding the investigation of the high

cohesion and low coupling principle. The results suggest that the

original design was “lost” throughout the evolution of the system,

while architectural optimization is hard, leading to a more

complex to maintain resulting design.

Finally, Di Penta et al. [22] study security in software systems by

investigating the life-span of vulnerabilities among software

versions. The authors define vulnerability as “any instance of an

error in the specification, development, or configuration of

software such that its execution can violate the security policy”

[22]. Di Penta et al. investigate a total of 14 vulnerabilities,

organized into four categories: input validation, memory safety,

race / control flow condition, and other. To investigate the

evolution of these vulnerabilities, they perform a case study on

three open source software projects. Results indicate that: (a)

vulnerabilities tend to be removed from the source code (between

56% and 93 %), (b) functions with security issues tend to be

replaced, and (c) new functionality tends to introduce new

vulnerabilities.

2.3 Overview of Related Work
The main differences of this study compared to the related work

are summarized in Table 1. Specifically, we present the

differences in: (a) the studied application domains, (b) the studied

QAs, and (c) the size of the performed case studies.

Therefore, the main contributions of this study with respect to the

research state-of-the-art are:

c1: it compares trade-offs that appear in CESs with other

application domains. To the best of our knowledge, this is the

first study that presents empirical evidence on this matter; and

c2: it investigates the interplay among 9 QAs. To the best of our

knowledge, this is the most inclusive study of this type in

terms of investigated QAs.

3. CASE STUDY DESIGN
This section describes the case study protocol, which was

designed according to the guidelines of Runeson et al. [25], and is

reported based on the Linear Analytic Structure [25].

3.1 Objectives and Research Questions
The goal of this study is described using the Goal-Question-

Metrics (GQM) approach [10], as follows: “analyze open source

software for the purpose of understanding quality attributes

trade-offs with respect to the application domain of CES and

others from the point of view of software developers in the

context of Open Source projects”. Based on the goal of this study,

we defined the following research questions:

RQ1: Are there trade-offs between quality attributes of CES?

RQ1.1: Are there trade-offs between non-critical quality

attributes?

RQ1.2: Are there trade-offs between critical quality attributes?

RQ1.3: Are there trade-offs between critical and non-critical

quality attributes?

RQ1.4: Are trade-offs between pairs of quality attributes bi-

directional?

RQ1 aims at investigating goal-a, i.e., investigating the existence

of quality trade-offs. In order to further investigate the nature of

such trade-offs (RQ1), we employ the QA classification into

critical and non-critical attributes and explore interactions

between them (RQ1.1 - RQ1.3). Intuitively, we would expect that

quality trade-offs in CES would be different among critical and

non-critical qualities categories. Subsequently, it is relevant to

explore whether trade-offs between QAs occur on both directions,

i.e., if the improvement of a certain QA “causes” another to

decrease, does the vice-versa phenomenon occur? (RQ1.4).

RQ2: What is the difference in quality attributes trade-offs among

CES and non-CES domains?

RQ2.1: Are there similar trade-offs among CES and non-CES

domains?

RQ2.2: Are there different trade-offs among CES and non-

CES domains?

Since one of the most prevalent characteristics of the CES domain

is the distinction between critical and non-critical qualities, it is

interesting to compare it to other domains (regarding the same

QAs), in order to see how this distinction is reflected in quality

trade-offs (RQ2). Therefore, it is important to identify similar

trade-offs among CES and other domains (RQ2.1), as well as the

differences in trade-offs between QAs (RQ2.2).

3.2 Case Selection and Unit of Analysis
This study is an embedded multiple-case study, in which

each case is represented by one project. As unit of analysis we

refer to changes in the quality attributes between subsequent

versions of any project. In order to select appropriate cases for our

study we needed to retrieve successive versions of OSS projects

of two different groups: CES projects, and non-CES projects. The

projects used in our analysis were required: (a) to be written in

Java, due to limitations of the used tools (see Section 3.3.3), (b) to

have an adequate number of versions for evolution analysis, and

(c) not to be considered as “toy examples”. The selected projects,

accompanied by some additional information, are presented in

Table 2. We clarify that although the selected CESs do not

provide high-level end-user functionalities (e.g., move a robot),

they are high-quality systems (more specifically, virtual machines)

tailored for CES. Therefore, they are subject to the same, or

stricter, (critical) constraints when compared to applications

running on top of the virtual machine.

In order to ensure that the sample of non-CES represents a

number of different application domains, thus avoiding bias from

Table 1. Overview of related work

#ref

App. Domain QA #cases

CES Others #critical

#non-

critical CES Others

[25] √ X 1 1 4 N/A

[22] √ X 1 5 4 N/A

[14] X √ 1 1 N/A 3

[10] X √ 0 4 N/A 1

[23] X √ 1 1 N/A 3

this √ √ 3 6 4 17

Table 2. Projects considered in the case study

Project Name
Starting

Year
Size** NoV* Group NoV*

Java-SE-Embedded 2010 834k 14

CES 50
LeJOS 2000 81k 16

LeJOS-EV3 2013 30k 9

LeJOS-NXJ 2006 52k 11

Art of Illusion 2000 53k 32

Non-

CES
572

DrJava 2002 180k 24

FileBot 2007 532k 25

FreeCol 2002 51k 34

FreeMind 2000 28k 34

Hibernate 2001 123k 28

HomePlayer 2005 24k 32

HtmlUnit 2002 27k 26

iText 2000 56k 23

JFreeChart 2000 62k 56

Lightweight-Java-

Game-Library
2002 72k 40

MediathekView 2008 17k 41

Mondrian 2001 51k 33

OpenRocket 2009 182k 27

Pixelitor 2009 27k 33

Subsonic 2004 282k 42

TuxGuitar 2005 28k 19

*NoV = Number of Versions
**Size, of the last version, in lines of code

specific non-CES domains, we have selected systems2 from 10

different domains. Therefore, our dataset contains four CES and

an average of 3.1 systems from each of the 10 different non-CES

domains. This means that the number of CES is not comparable to

the total number of non-CES, but it is comparable to the number

of systems in each of the different application domains.

3.3 Data Collection and Pre-processing
In order to answer the research questions, we extracted three sets

of variables from each unit of analysis (see Section 3.3.3). The

first set comprises data related to project identification and

classification (V1 and V2). The second and third sets comprise

variables for the quantification of critical (V3 – V5) and non-

critical (V6 – V11) QAs. We clarify that in this paper QAs are

assessed based on a set of metrics. To this end, we selected

several metrics that, to the best of our knowledge, are able to

quantify the levels of quality. The two sets of metrics, for critical

and non-critical QAs respectively, are presented in detail in the

following sections.

3.3.1 Assessment of Critical Quality Attributes
Bugs have been extensively investigated as indicators of quality.

More specifically, Misra and Bhavsar [20] have explored bugs as

indicators for correctness, and Zaman et al. [26] have explored

bugs as indicators for security and performance. When using bugs

to quantify quality, it is a common practice to classify them into

categories. For example, Zaman et al. [26] classified bugs

according to their effect on specific QAs (e.g., security and

performance). Therefore, to evaluate software projects with

respect to their critical quality attributes, we performed static

analysis by collecting the amount of several different types of

bugs. For that, we used the tool FindBugs3. FindBugs is capable

of detecting vulnerabilities in software by using bug patterns [16].

In this case study, we have chosen to use FindBugs because it

provides:

 adequate performance (with respect to precision) when

compared to similar tools [16] [27];

 a collection of over 400 bug patterns; and

 a grouping of these bug patterns in nine high-level categories

(i.e., Security, Correctness, Multithreaded Correctness,

Performance, Malicious Code, Bad Practice,

Internationalization, Experimental and Dodgy Code), which

can in turn be mapped into quality attributes.

In this study, in order to evaluate critical quality attributes, we

considered the first five categories (in total 246 bug patterns), as

they can be mapped to three critical QAs: correctness

(Correctness and Multithreaded Correctness categories),

performance (Performance category), and security (Security and

Malicious Code categories). Therefore, the level of quality for the

three aforementioned QAs is measured by the quantity of detected

bugs. We clarify that for the correctness and security QAs, the

number of bugs is the sum of the two categories each QA is

comprised of. For example, security is measured by summing the

number of bugs from both Security and Malicious Code

2 We collected these systems from https://sourceforge.net, and considered

the root from each category as the domain. Additionally, each system

may belong to more than one domain.
3 http://findbugs.sourceforge.net/

categories. For all QAs a lower number of bugs reflects a higher

level of quality.

3.3.2 Assessment of Non-critical QAs
Regarding the quantification of non-critical quality attributes, we

selected to use the Quality Model for Object-Oriented Design

(QMOOD) [7]. QMOOD is a well-known hierarchical quality

model that provides an approach for assessing six high-level

quality attributes: reusability, understandability, functionality,

extendibility, effectiveness, and flexibility [7]. These attributes are

quantified based on 11 structural object-oriented design

properties: design size, hierarchies, abstractions, encapsulation,

coupling, cohesion, composition, inheritance, polymorphism,

messaging, and complexity [7]. The definition for the

aforementioned quality attributes and properties, and the

equations to calculate the score of each quality attribute (by using

weighted sum) can be found in the work of Bansiya and Davis [7].

Although the QMOOD quality model seems rather simplistic in

its calculations, weighted sum is the most classical and, therefore,

used approach for combining metrics [14]. Additionally, Bansiya

and Davis [7] validated it empirically by using 13 appraisers, with

2-7 years of experience in commercial software development, to

evaluate 14 software projects. Their evaluation was compared to

the quality model output, which showed to be significantly

correlated. Therefore, we selected to use QMOOD since it:

 uses simple calculations, which can be easily automated;

 provides clear definitions of low-level properties and direct

mapping to quality attributes; and

 presents a fair amount of quality attributes.

In order to assess the QAs for each project we used Percerons

Client4, i.e., a tool developed in our research group, which

automates the assessment of these QAs for provided Java classes.

Percerons is a software engineering platform [6], created by one

of the authors, to facilitate empirical research in software

engineering, by providing: (a) indications of componentizable

parts of source code, (b) quality assessment, and (c) design pattern

instances. The platform has been used for similar reasons in [5],

[15], and [3].

3.3.3 Collection Procedure and Pre-processing
The data collection phase was a two-step process. First, the QAs

assessment variables were extracted from every unit of analysis,

using FindBugs and Percerons Client. Both tools work on Java

binary code, so we provided them with a set of .jar files (one per

version), and recorded the outcome in an initial dataset. For

FindBugs, we used the command line version 3.0.0, for easy

reproduction and automation purposes. During execution, we

requested maximum effort (i.e., enabling analysis that increases

precision), and reported bugs from all urgency priorities (i.e.,

from least to most harmful to the system).

The initial dataset was compiled in a single file for each project,

containing all extracted data (from both tools) for each version.

This file comprises a table with the following fields for each row

of data: version, number of correctness bugs, number of

performance bugs, number of security bugs, reusability score,

understandability score, functionality score, extendibility score,

effectiveness score, and flexibility score. The number of bugs from

4 http://www.percerons.com

https://sourceforge.net/
http://findbugs.sourceforge.net/
http://www.percerons.com/

each aforementioned QA was obtained by counting the rule

violations with medium and high confidence from Findbugs

output. We decided to filter out the bugs with low confidence

level for increasing the precision of the automatic rule violation

identification process. Specifically, we manually

analyzed/validated a sample of 15 bugs per level of confidence

(chosen randomly), and we estimated that the precision for low,

medium, and high categories were 26.67%, 60%, and 73.33%

respectively.

Next, the final dataset was created by calculating the difference

between two consecutive versions (δvariable = variablev - variablev-

1), for every version v of each project. This was performed for

each estimator (number of bugs or design-time attribute quality

score). Then all data were merged in a single table consisting of

the following fields: project name, type of project (i.e., CES or

non-CES), δcorrectness, δperformance, δsecurity, δreusability, δunderstandability,

δfunctionality, δextendibility, δeffectiveness, and δflexibility. Finally, the values

of the δ* variables were classified as improvement cases,

deterioration cases, or neutral cases, based on the sign of the

corresponding δ value.

Summarizing, the full list of variables collected from each unit of

analysis, together with their description, is presented in Table 3.

3.4 Data Analysis
During this phase, we analyzed the previously described δ* fields

(V3 – V11), in order to identify trade-offs, which will be further

used for comparison between CES and non-CES groups. We

clarify that these fields represent assessments of the studied QAs,

and, therefore, when referring to the attributes, we are in practice

referring to their assessments. The analysis of the collected data is

split in three steps:

(step 1) Analysis of pairs of QAs: For both groups (CES and

non-CES projects), we have to seek evidence on the

existence of trade-offs, in every pair of QAs. For

instance, Figure 1 depicts the analysis of qualities V6

vs. V10, for CES. Therefore, for every pair of QAs, we

proceed as follows:

(step 1.1) Filter improvement cases: As we are looking for

cases of occurrences of trade-offs, it is important

to select only cases in which one of the two QAs

has improved. For this reason, we create two sub-

datasets, each one consisting of the cases having

positive scores for the respective QA. For

instance, in Figure 1, the two sub-datasets consist

of the cases in which V6 improves (positive

values of V6), and the cases in which V10

improves (positive values of V10). This ensures

that we are tracking the cases in which perfective

maintenance tasks may have been performed in

order to improve the tracked aspect of the

software.

(step 1.2) Calculate statistics of sub-dataset: Each sub-

dataset (corresponding to an improving QA) is

analyzed by creating a frequency table for the

second QA. In the example presented in Figure 1,

for the sub-dataset comprising cases of

improvement of V6, we calculate the frequencies

for V10; and vice-versa. Thus, when exploring

each sub-dataset, we calculate the frequency

percentages of the classes of the second QA (i.e.,

improvement cases, deterioration cases, stable

cases). Next, the improvement cases are marked as

co-evolution, the deterioration cases are marked as

trade-offs, whereas the neutral cases as neutral.

For instance, in Figure 1, in the sub-dataset

comprising improvement cases of V6, we

calculated “V10 -” (trade-off), “V10 +” (co-

evolution), and “V10 0” (neutral).

(step 1.3) Filter evidence: To identify the trade-offs

occurring between QAs, we keep out of the two

sub-datasets of step 1.2, only those in which the

percentage of the trade-off cases is higher than the

percentage of co-evolution and neutral. In the

example of Figure 1, we identify a possible trade-

off at the sub-dataset in which the improvement of

V6 affects negatively V10.

(step 2) Synthesis of presentation: In this step we

synthesize and graphically represent the results of

step 1, so as to answer the research questions.

Two heat maps are derived from the information

Table 3. List of collected variables

Variable Description Tool

[V1]
Software project: the name of the OSS project

from which data were extracted.
-

[V2]
Domain Group: project belongs either to CES

or non-CES
-

[V3]

Difference between two versions, in the count

of security rule violations: count of bug pattern

instances in “Malicious code vulnerability” and

“Security” categories.

F
in

d
B

u
g

s

[V4]

Difference between two versions, in the count

of “Performance” rule violations: count of bug

pattern instances in “Performance” category.

[V5]

Difference between two versions, in the count

of correctness rule violations: count of bug

patterns in “Correctness” and “Multithread

correctness” categories.

[V6]

Difference between two versions, in the

reusability score: the reusability assessment

computed as defined by Bansiya and Davis [8].

P
ercero

n
s C

lien
t

[V7]

Difference between two versions, in the

flexibility score: the flexibility assessment

computed as defined by Bansiya and Davis [8].

[V8]

Difference between two versions, in the

Understandability score: the understandability

assessment computed as defined by Bansiya

and Davis [8].

[V9]

Difference between two versions, in the

Functionality score: the functionality

assessment computed as defined by Bansiya

and Davis [8].

[V10]

Difference between two versions, in the

Extendibility score: the extendibility assessment

computed as defined by Bansiya and Davis [8].

[V11]

Difference between two versions, in the

Effectiveness score: the effectiveness

assessment computed as defined by Bansiya

and Davis [8].

on step 1: one depicting the trade-offs within the

CES group (row: improved QAs, columns:

affected QAs, intensity: the frequency of trade-

offs); and another showing the comparison of

trade-offs between the two groups (the difference

and similarities between CES and non-CES trade-

offs).

(step 3) Comparison of evidence in CES projects: With the data

collected and summarized, it is analyzed within the CES

group, aiming at comparing the interactions between the

QAs in order to answer RQ1 and its sub-questions. For

this step the heat map on CES trade-offs is used.

(step 4) Comparison of evidence from groups: The analysis is

now extended to the non-CES group, aiming, therefore,

at comparing all collected data in order to answer RQ2

and its sub-questions. For this step the heat map on the

comparison between CES and non-CES groups is used.

Summarizing the procedure for answering the RQs, Table 4

presents the mapping between each RQ, the used variables, as

well as the step of the analysis in which RQs are answered and the

presentation methods that are used.

4. RESULTS
In this section we present the output of the analysis, and answer

the research questions. To answer RQ1 and its sub-questions, we

explore the findings obtained from step 3. In order to visualize the

interaction between the QAs, we compiled raw data (omitted from

this manuscript due to space limitations5) into a heat map (see

Figure 2). In the heat map of Figure 2, each cell represents the

effect of improving one QA (vertical axis) over another

(horizontal axis). The intensity of the heat map (i.e., color

darkness – also written inside the cell) represents the percentage

of the cases that constitute valid trade-offs (see step 1.3).

Moreover, the two bold lines in the map divide it into quadrants

in order to highlight the interactions within and between the

critical and non-critical groups of QAs. Hence, the top-left

quadrant represents the interactions between critical QAs, the

bottom-right quadrant represents the interactions between non-

5 Supplementary material on the collected data during the study is

available at:

 http://www.rug.nl/research/software-engineering/publication_files/QA-

tradeoffs-TR-2015-01-08.pdf

Figure 1. Example of trade-off analysis within the final dataset

Table 4. Mapping of RQs to variables, steps, and presentation

Research

Question

Variables

Used
Step Presentation Method

RQ1 [V2-V13]

3 Heat Map on CES trade-offs

RQ1.2
[V2]

[V8-V13]

RQ1.2 [V2-V7]

RQ1.3 [V2-V13]

RQ1.4 [V2-V13]

RQ2 [V2-V13]

4
Heat Map on comparison

between CES and non-CES
RQ2.1 [V2-V13]

RQ2.2 [V2-V13]

Figure 2. Trade-offs in CES domain

http://www.rug.nl/research/software-engineering/publication_files/QA-tradeoffs-TR-2015-01-08.pdf
http://www.rug.nl/research/software-engineering/publication_files/QA-tradeoffs-TR-2015-01-08.pdf

critical QAs, while the other two represent the interaction between

QAs of the two groups.

Based on Figure 2, we are able to answer all sub-questions of

RQ1, by confirming the existence of trade-offs between QAs (see

Section 3.4, step 1), and answering affirmatively RQ1.1 - RQ1.3.

Consequently, by investigating each quadrant separately, it’s also

possible to point out possible trade-offs between critical QAs

(second quadrant), non-critical QAs (fourth quadrant), and

between QAs of the two groups (first and third quadrants). The

findings from exploring RQ1.1 - RQ 1.3 is the existence of trade-

offs6 between:

 understandability and the other non-critical QAs (and vice-

versa);

 correctness and performance, as well as between security and

correctness;

 all critical QAs and extendibility, and between all QAs and

understandability;

 performance and reusability;

 reusability and extendibility.

Subsequently we examine whether the interactions between two

QAs are bi-directional (RQ1.4), i.e., if the improvement of one QA

negatively affects another QA, the opposite relationship also

holds. To answer this research question, we examine Figure 2 for

symmetries. We observe that although we identified some bi-

directional interactions, it is not possible to conclude that all

identified trade-offs between QAs are bi-directional. However, for

some pairs of QAs, bi-directional trade-offs can be identified, i.e.,

between understandability and the rest of the non-critical QAs

(effectiveness, extendibility, flexibility, functionality, and

reusability). Moreover, we highlight one interesting finding

regarding the interactions between critical and non-critical QAs:

although the improvement of some critical QAs negatively affects

non-critical QAs, the opposite phenomenon never appears, i.e., in

this study we found no evidence of non-critical QAs negatively

affecting critical QAs.

Finally, having examined the trade-offs in the CES domain, we

can compare them with other application domains (RQ2): in what

6 We note that, in this study, when reporting trade-offs in the form of

“trade-off between QAA and QAB”, we refer to a compromise in the

levels of QAB in favor of an improvement in the levels of QAA.

aspects they are similar (RQ2.1), and the ones in which they differ

(RQ2.2). To answer these questions, we created two heat maps:

one akin to that depicted on Figure 2 (see Figure 3), but

considering data from the non-CES projects, and another

representing the difference of the two heat maps (see Figure 4). In

Figure 4, three different filling patterns (with their respective

colors) represent the possible classifications for the observed

trade-offs: evident only in the group of CES projects (red

background with circles); evident only in the group of non-CES

projects (blue with slanted lines); and evident in both groups

(green background with vertical lines). Based on this figure, we

answer affirmatively RQ2.1 - RQ 2.2, and, additionally, make the

following observations:

 Similarities between the two groups of projects: Trade-offs

between security and correctness; between correctness and

performance; between all QAs and understandability; and

between understandability and non-critical QAs.

 Trade-offs occurred only in the group of CES projects:

between the critical QAs and extendibility; between

reusability and extendibility; and between performance and

reusability.

 Trade-offs occurred only in the group of non-CES projects:

between correctness and security, as well as between

performance and security; and between correctness and

effectiveness.

Finally, concerning the group of CES projects, the trade-offs

occur mostly between critical QAs and non-critical QAs, which

implies that, in the CES domain, non-critical QAs are more often

sacrificed in favor of critical QAs.

5. DISCUSSION
In this section we present a discussion of the results, by providing

possible interpretations and a comparison against related work

(when applicable). We first discuss the findings from the CES

trade-off analysis, and then the comparison between CES and

non-CES. At the end of this section, we discuss possible

implications to researchers and practitioners.

5.1 Trade-offs in CES Domain
By exploring the trade-offs in CES, the following observations

can be made:

 extendibility is negatively affected by reusability. This is

intuitive for CES. In general, embedded systems provide

Figure 4. Comparison between CES and non-CEs groups

Figure 3. Trade-offs in non-CES domain

specific functionalities that are not designed to facilitate future

extensions in an object-oriented way (e.g., adding subclasses,

polymorphic methods, etc.). Therefore, the addition of new

functionality is expected to be performed by adding methods

in existing classes, making existing methods larger in size, or

adding new concrete classes, which in turn lead to even more

decreased extendibility. On the other hand, according to [7],

such classes (which offer large amount of functionalities) are

considered more probable to be reused, since they provide

more reuse opportunities, regarding offered functionalities.

 performance negatively affects reusability. One possible

explanation is that, in order to improve the system

performance, some solutions (e.g. refactoring of class into

inner class7) lead to deterioration of aspects that support

reusability, such as cohesion, coupling, and size. Coupling

and cohesion are important assessors of reusability in the

sense that they are related to the adaptation time needed for

reusing a specific piece of code. A similar finding can also be

drawn based on the work of Oliveira et al. [21], who suggest

that cohesion and coupling metrics, that are assessments of

reusability, are compromised in favor of metrics for

performance [7].

Although the results of Figure 2 suggest that extendibility is

negatively affected by all critical QAs, we believe that this result

needs further investigation. Intuitively, extendibility is

compromised by source code growth [4], and embedded system

development style, as already mentioned. Therefore extendibility

deteriorates during the evolution of CES, but we do not have

evidence regarding the extent that this is connected to bug solving

(i.e. improvement of critical QAs). However, a similar finding is

reported in [21], where metrics for extendibility are compromised

in favor of performance.

The rest of the findings are discussed in the next subsection, as

they are also observed in the non-CES group.

5.2 Comparison of the Two Groups
On the one hand, in both CES and non-CES, we were able to

observe the following:

 non-critical QAs do not affect critical QAs. Improvements on

object-oriented properties (i.e., enhancement in design-time

QAs – all non-critical QAs investigated in this study are

design-time) are not likely to result in additional source code

vulnerabilities (rule violations – assessment of critical QAs).

A possible explanation is that there is no tension between

non-critical and critical QAs. However, another possibility is

that when improving design-time quality attributes, the

developers are refactoring the code without changing its

external behavior (extract class, extract method, etc.), which

only “moves” rule violations to other parts of the system,

without introducing new ones. In addition to that, especially

concerning CES, this finding is intuitive in the sense that it

was not expected from development teams to compromise a

critical QA in a critical system, in favor of a non-critical one.

 security negatively affects correctness. Fixing security

vulnerabilities can lead to additional errors in the code. For

example, in order to fix a vulnerability related to a field that is

7
http://findbugs.sourceforge.net/bugDescriptions.html#SIC_INNER_

SHOULD_BE_STATIC

not well implemented and should be moved8, one might do

the refactoring as suggested, but forget to initialize the field9.

 correctness negatively affects performance. Coding mistakes

are common during development (e.g., accessing an already

freed reference10). Therefore, in order to solve these bugs, one

might use inefficient coding styles (in terms of performance)

in order to ensure that the output is the expected (e.g.,

introducing extra parameters in a method that ends up being

of limited utility11).

On the other hand, by comparing the differences between the two

groups, we identified the following findings:

 Although specific evidence of trade-off was discussed already

(in the previous subsection), we note that the higher frequency

of trade-offs between the critical QAs with non-critical QAs

might reflect a higher importance of critical QAs over non-

critical QAs in CES.

 In non-CES, correctness negatively affects effectiveness.

While maintaining parts of source code, it might be the case

that more non-object-oriented approaches are employed,

leading to a reduction in system’s effectiveness. We note that

effectiveness is quantified by assessing how well the object-

orientation paradigm is employed in the source code [7]. For

example, in order to solve missed locks12, one might

centralize the responsibilities to avoid forgetting the lock.

 In non-CES, correctness affects all other critical QAs. This

might be an indication that functionalities are not optimally

implemented (i.e., implying less attention to errors or less

knowledge on the topic) in other domains, possibly due to a

lack on developers’ skills.

 In non-CES, security is affected by all other critical QAs.

Similarly to the previous finding, code exploitation

vulnerabilities appear to be common in other domains, and

could also be explained by lack of skills regarding this issue.

Finally, although the results of Figure 4 suggest that

understandability is negatively affected by all other QAs and vice-

versa, we believe that this result needs further investigation.

Specifically, we observed that understandability is a QA that

continually deteriorates during systems evolution [22], because

based on the way it is calculated [7] it is inversely proportional to

the growth of properties such as complexity (measured by number

of methods) and design size (measured by number of classes). On

the other hand, in the cases when understandability is increasing,

we observe a negative relationship with the rest of the non-critical

QAs, again because of the way that both understandability and

non-critical-QAs are calculated. Concluding, we believe that the

decrease of understandability in our study is not the result of

explicit trade-offs, but simply, the natural effect of system growth.

8http://findbugs.sourceforge.net/bugDescriptions.html#MS_OOI_

PKGPROTECT
9http://findbugs.sourceforge.net/bugDescriptions.html#UR_UNIN

IT_READ
10http://findbugs.sourceforge.net/bugDescriptions.html#NP_NUL

L_ON_ SOME_PATH
11http://findbugs.sourceforge.net/bugDescriptions.html#BX_UNB

OXING_ IMMEDIATELY_REBOXED
12http://findbugs.sourceforge.net/bugDescriptions.html#SWL_SL

EEP_WITH_LOCK_HELD

http://findbugs.sourceforge.net/bugDescriptions.html#SIC_INNER_ SHOULD_BE_STATIC
http://findbugs.sourceforge.net/bugDescriptions.html#SIC_INNER_ SHOULD_BE_STATIC
http://findbugs.sourceforge.net/bugDescriptions.html#MS_OOI_PKGPROTECT
http://findbugs.sourceforge.net/bugDescriptions.html#MS_OOI_PKGPROTECT
http://findbugs.sourceforge.net/bugDescriptions.html#UR_UNINIT_READ
http://findbugs.sourceforge.net/bugDescriptions.html#UR_UNINIT_READ
http://findbugs.sourceforge.net/bugDescriptions.html#NP_NULL_ON_SOME_PATH
http://findbugs.sourceforge.net/bugDescriptions.html#NP_NULL_ON_SOME_PATH
http://findbugs.sourceforge.net/bugDescriptions.html#BX_UNBOXING_IMMEDIATELY_REBOXED
http://findbugs.sourceforge.net/bugDescriptions.html#BX_UNBOXING_IMMEDIATELY_REBOXED
http://findbugs.sourceforge.net/bugDescriptions.html#SWL_SLEEP_WITH_LOCK_HELD
http://findbugs.sourceforge.net/bugDescriptions.html#SWL_SLEEP_WITH_LOCK_HELD

5.3 Implications for Practitioners and

Researchers
Firstly, by investigating our results, architects and software

engineers can become aware of the most probable side-effects that

the enhancement of one QA might have to another, in the sense

that some trade-offs may be performed unintentionally. For

example, by making developers aware of the fact that when fixing

bugs related to security, they usually introduce additional bugs

related to correctness, would make them consider possible ways

to avoid such side-effects. Similarly, architects can also benefit

from the identified trade-offs, as a source of potential threats to

QAs, enabling them to: (a) monitor the potentially harmed QAs,

and (b) identify concrete QA compromises earlier, so as to employ

the necessary countermeasures.

Secondly, the results of the study suggest that CES differ from

other application domains in terms of the actual trade-offs, and in

terms of trade-offs between QAs not being bi-directional.

Therefore, we strongly advise both researchers and practitioners

to: (a) reflect on the direction of trade-offs, when reasoning about

the interplay of QAs (e.g., the improvement of one QA affects

another QA negatively, but not vice-versa), and (b) to take into

account the application domain when investigating trade-offs.

Finally, the results of the study suggest that the outcome of

investigating trade-offs at the level of the implemented

architecture are intuitively correct, as they align with architecting

principles. Therefore, we induce researchers to consider source

code artifacts, when exploring trade-offs between QAs.

6. THREATS TO VALIDITY
In this section we present and discuss construct validity,

reliability, as well as external validity for this study. Internal

validity is not applicable, as the study does not examine causal

relations. Construct validity reflects how connected are the object

of study and the research questions. The reliability is related to

whether the case study is conducted and presented in such way

that others can replicate it with the same results. Finally, external

validity deals with possible threats when generalizing the findings

derived from sample to the entire population.

Concerning construct validity, one threat concerns the correctness

of the formulae, proposed by Bansiya and Davis [11], for

assessing the non-critical QAs. However, as described in the data

collection section, the calculation had been validated through an

empirical study involving experienced practitioners. Additionally,

regarding FindBugs, we acknowledge that the list of bug patterns

are by no means exhaustive, and additional bugs related to the

investigated QAs could be used. However, to the best of our

knowledge the used tool is among the most reputed in the

community, and has adequate performance (see Section 3.3.1).

Another threat is that effect size is not considered during the data

analysis (Section 3.4), i.e., any positive or negative change in an

attribute is considered the same, regardless of its magnitude. This

measure was taken in order to avoid bias from specific projects to

the entire domain.

In order to mitigate reliability, two different researchers were

involved in the data collection, having all outputs double-

checked. Furthermore, the same double-checking procedure

happened during the data analysis. Finally, all primitive data can

be reproduced by using the same bug detection tool (FindBugs,

v3.0.0), for estimating critical QAs, and the QMOOD quality

model calculations [11], for estimating non-critical QAs.

Finally, concerning external validity, we have identified four

possible threats to the validity of our results. Firstly, we

investigated a limited number of CESs, due to unavailability of

critical embedded OSS implemented in Java. Thus, the inclusion

of more CESs may differentiate the reported results. Additionally,

modifications on the type and/or number of non-CES may slightly

differentiate the results as well. Secondly, all software systems

that were investigated are written in Java, while C/C++ is a more

popular language for implementing CES; thus, there is a

possibility that results are different for other object-oriented

languages, as well as for other paradigms. Thirdly, due to the use

of FindBugs and QMOOD, the reported results concern three

critical and six non-critical QAs. Therefore, all discussions on the

existence of possible trade-offs between critical and non-critical

QAs, cannot be generalized to other QAs (e.g., reliability,

changeability, etc.) without further investigation. Finally, our

results cannot be generalized “as is” to trade-offs in the intended

architecture, because we have analyzed trade-offs from the

perspective of the implemented architecture, i.e. source code

(including both intentional and unintentional trade-offs). In order

to draw safe conclusions on the intentional trade-offs the

architectural design of a system should be explored. For example,

considering other points of view, such as risk analysis in the

intended architecture [11].

7. CONCLUSION
One of the greatest challenges in engineering CESs is to guarantee

critical QAs, which may pose hard constraints. This entails that

complex trade-offs need to be made, either intentionally or

unintentionally. In our study, we aimed at empirically

investigating the interplay of QA and existence of quality trade-

offs by analyzing source code through software evolution. For that

we explored 9 QAs, measured from a total of 622 versions,

obtained from 21 open source software projects.

Concerning CES, the results of the study imply the existence of

possible trade-offs between critical QAs (correctness, security,

and performance), as well as the fact that non-critical QAs (e.g.,

reusability, understandability, etc.) are usually compromised in

favor of critical QAs. However, we have not observed critical

QAs compromised in favor of non-critical QAs, for either CES or

other application domains. Finally, we provide evidence on the

fact that non-critical QAs are more often compromised than

critical QAs.

As interesting pointers for future work, the results of our study

highlight the relevance of investigating trade-offs involving

critical QAs from a more detailed perspective, exploring the bug

patterns entangled in the trade-offs, therefore, identifying possible

connections between patterns and specific trade-offs.

Furthermore, in order to support the high level findings presented

in this study, it is interesting to consider additional QAs,

especially critical ones. Finally, as an interesting replication we

consider the execution of this study with projects written in other

languages often used for developing embedded systems, such as C

and C++.

8. ACKNOWLEDGMENTS
This work is financially supported by Brazilian funding agencies

CAPES/Nuffic (Grant N.: 034/12), CNPq (Grant N.:

204607/2013-2), as well as the INCT-SEC (Grant N.:

573963/2008-8 and 2008/57870-9).

9. REFERENCES

[1] Abran, A., Moore, J.W., Bourque, P., Dupuis, R. and Tripp,

L.L. 2014. Guide to the Software Engineering Body of

Knowledge.

[2] Aguiar, A., Filho, S.J., Magalhães, F.G., Casagrande, T.D.

and Hessel, F. 2010. Hellfire: A design framework for

critical embedded systems’ applications. In Proceedings of

the 11th International Symposium on Quality Electronic

Design (2010). ISQED'10. 730–737.

[3] Alhusain, S., Coupland, S., John, R. and Kavanagh, M.

2013. Towards machine learning based design pattern

recognition. In 13th UK Workshop on Computational

Intelligence (2013). UKCI'13. 244–251.

[4] Alshammari, B., Fidge, C. and Corney, D. 2010. Security

Metrics for Object-Oriented Designs. In Proceedings of the

21st Australian Software Engineering Conference (2010).

ASWEC'10. 55–64.

[5] Ampatzoglou, A., Gkortzis, A., Charalampidou, S. and

Avgeriou, P. 2013. An Embedded Multiple-Case Study on

OSS Design Quality Assessment across Domains. In

Proceedings of the ACM / IEEE International Symposium

on Empirical Software Engineering and Measurement

(2013). ESEM'13. 255–258.

[6] Ampatzoglou, A., Michou, O. and Stamelos, I. 2013.

Building and mining a repository of design pattern

instances: Practical and research benefits. Entertainment

Computing. 4, 2 (Apr. 2013), 131–142.

[7] Bansiya, J. and Davis, C.G. 2002. A hierarchical model for

object-oriented design quality assessment. IEEE

Transactions on Software Engineering. 28, 1 (2002), 4–17.

[8] Barney, S., Petersen, K., Svahnberg, M., Aurum, A. and

Barney, H. 2012. Software quality trade-offs: A systematic

map. Information and Software Technology. 54, 7 (Jul.

2012), 651–662.

[9] Barros, M. de O., Farzat, F. de A. and Travassos, G.H.

2014. Learning from optimization: A case study with

Apache Ant. Information and Software Technology. 57, 1

(Aug. 2014), 684–704.

[10] Basili, V.R., Caldiera, G. and Rombach, H.D. 1994. Goal

Question Metric paradigm. Encyclopedia of Software

Engineering. Wiley & Sons. 528–532.

[11] Bass, L., Nord, R., Wood, W., Zubrow, D. and Ozkaya, I.

2008. Analysis of architecture evaluation data. Journal of

Systems and Software. 81, 9 (Sep. 2008), 1443–1455.

[12] Bate, I. 2008. Systematic approaches to understanding and

evaluating design trade-offs. Journal of Systems and

Software. 81, 8 (Aug. 2008), 1253–1271.

[13] Buyens, K., Scandariato, R. and Joosen, W. 2009.

Measuring the interplay of security principles in software

architectures. In Proceedings of the 3rd International

Symposium on Empirical Software Engineering and

Measurement (2009). ESEM'09. 554–563.

[14] Chatzigeorgiou, A. and Stiakakis, E. 2013. Combining

metrics for software evolution assessment by means of Data

Envelopment Analysis. Journal of Software: Evolution and

Process. 25, 3 (Mar. 2013), 303–324.

[15] Griffith, I. and Izurieta, C. 2014. Design pattern decay: the

case for class grime. In Proceedings of the 8th ACM/IEEE

International Symposium on Empirical Software

Engineering and Measurement (2014). ESEM'14. 1–4.

[16] Hovemeyer, D. and Pugh, W. 2004. Finding bugs is easy.

ACM SIGPLAN Notices. 39, 12 (2004), 92–106.

[17] Kitchenham, B. and Pfleeger, S.L. 1996. Software quality:

the elusive target [special issues section]. IEEE Software.

13, 1 (1996), 12–21.

[18] Linares-Vásquez, M., Klock, S., McMillan, C., Sabané, A.,

Poshyvanyk, D. and Guéhéneuc, Y.-G. 2014. Domain

matters: bringing further evidence of the relationships

among anti-patterns, application domains, and quality-

related metrics in Java mobile apps. In Proceedings of the

22nd International Conference on Program Comprehension

(2014). ICPC'14. 232–243.

[19] Marwedel, P. 2010. Embedded System Design: Embedded

Systems Foundations of Cyber-Physical Systems. Springer

Netherlands.

[20] Misra, S.C. and Bhavsar, V.C. 2003. Relationships Between

Selected Software Measures and Latent Bug-Density:

Guidelines for Improving Quality. In Proceedings of the

Computational Science and Its Applications (2003).

ICCSA'03. 724–732.

[21] Oliveira, M.F.S., Redin, R.M., Carro, L., Lamb, L. and

Wagner, F. 2008. Software Quality Metrics and their Impact

on Embedded Software. 5th International Workshop on

Model-based Methodologies for Pervasive and Embedded

Software (2008). MOMPES'08. 68–77.

[22] Penta, M. Di, Cerulo, L. and Aversano, L. 2009. The life

and death of statically detected vulnerabilities: An empirical

study. Information and Software Technology. 51, 10 (Oct.

2009), 1469–1484.

[23] Perry, D.E. and Wolf, A.L. 1992. Foundations for the study

of software architecture. ACM SIGSOFT Software

Engineering Notes. 17, 4 (Oct. 1992), 40–52.

[24] Del Rosso, C. 2008. Software performance tuning of

software product family architectures: Two case studies in

the real-time embedded systems domain. Journal of Systems

and Software. 81, 1 (Jan. 2008), 1–19.

[25] Runeson, P., Host, M., Rainer, A. and Regnell, B. 2012.

Case Study Research in Software Engineering: Guidelines

and Examples. Wiley Blackwell.

[26] Zaman, S., Adams, B. and Hassan, A.E. 2011. Security

versus performance bugs. Proceeding of the 8th working

conference on Mining software repositories (2011).

MSR'11. 93–102.

[27] Zheng, J., Williams, L., Nagappan, N., Snipes, W.,

Hudepohl, J.P. and Vouk, M.A.S.E.I.T. on 2006. On the

value of static analysis for fault detection in software.

Software Engineering, IEEE Transactions on. 32, 4 (2006),

240–253.

