326 research outputs found

    Theory and Applications for Advanced Text Mining

    Get PDF
    Due to the growth of computer technologies and web technologies, we can easily collect and store large amounts of text data. We can believe that the data include useful knowledge. Text mining techniques have been studied aggressively in order to extract the knowledge from the data since late 1990s. Even if many important techniques have been developed, the text mining research field continues to expand for the needs arising from various application fields. This book is composed of 9 chapters introducing advanced text mining techniques. They are various techniques from relation extraction to under or less resourced language. I believe that this book will give new knowledge in the text mining field and help many readers open their new research fields

    Discovering lesser known molecular players and mechanistic patterns in Alzheimer's disease using an integrative disease modelling approach

    Get PDF
    Convergence of exponentially advancing technologies is driving medical research with life changing discoveries. On the contrary, repeated failures of high-profile drugs to battle Alzheimer's disease (AD) has made it one of the least successful therapeutic area. This failure pattern has provoked researchers to grapple with their beliefs about Alzheimer's aetiology. Thus, growing realisation that Amyloid-β and tau are not 'the' but rather 'one of the' factors necessitates the reassessment of pre-existing data to add new perspectives. To enable a holistic view of the disease, integrative modelling approaches are emerging as a powerful technique. Combining data at different scales and modes could considerably increase the predictive power of the integrative model by filling biological knowledge gaps. However, the reliability of the derived hypotheses largely depends on the completeness, quality, consistency, and context-specificity of the data. Thus, there is a need for agile methods and approaches that efficiently interrogate and utilise existing public data. This thesis presents the development of novel approaches and methods that address intrinsic issues of data integration and analysis in AD research. It aims to prioritise lesser-known AD candidates using highly curated and precise knowledge derived from integrated data. Here much of the emphasis is put on quality, reliability, and context-specificity. This thesis work showcases the benefit of integrating well-curated and disease-specific heterogeneous data in a semantic web-based framework for mining actionable knowledge. Furthermore, it introduces to the challenges encountered while harvesting information from literature and transcriptomic resources. State-of-the-art text-mining methodology is developed to extract miRNAs and its regulatory role in diseases and genes from the biomedical literature. To enable meta-analysis of biologically related transcriptomic data, a highly-curated metadata database has been developed, which explicates annotations specific to human and animal models. Finally, to corroborate common mechanistic patterns — embedded with novel candidates — across large-scale AD transcriptomic data, a new approach to generate gene regulatory networks has been developed. The work presented here has demonstrated its capability in identifying testable mechanistic hypotheses containing previously unknown or emerging knowledge from public data in two major publicly funded projects for Alzheimer's, Parkinson's and Epilepsy diseases

    Entity-centric knowledge discovery for idiosyncratic domains

    Get PDF
    Technical and scientific knowledge is produced at an ever-accelerating pace, leading to increasing issues when trying to automatically organize or process it, e.g., when searching for relevant prior work. Knowledge can today be produced both in unstructured (plain text) and structured (metadata or linked data) forms. However, unstructured content is still themost dominant formused to represent scientific knowledge. In order to facilitate the extraction and discovery of relevant content, new automated and scalable methods for processing, structuring and organizing scientific knowledge are called for. In this context, a number of applications are emerging, ranging fromNamed Entity Recognition (NER) and Entity Linking tools for scientific papers to specific platforms leveraging information extraction techniques to organize scientific knowledge. In this thesis, we tackle the tasks of Entity Recognition, Disambiguation and Linking in idiosyncratic domains with an emphasis on scientific literature. Furthermore, we study the related task of co-reference resolution with a specific focus on named entities. We start by exploring Named Entity Recognition, a task that aims to identify the boundaries of named entities in textual contents. We propose a newmethod to generate candidate named entities based on n-gram collocation statistics and design several entity recognition features to further classify them. In addition, we show how the use of external knowledge bases (either domain-specific like DBLP or generic like DBPedia) can be leveraged to improve the effectiveness of NER for idiosyncratic domains. Subsequently, we move to Entity Disambiguation, which is typically performed after entity recognition in order to link an entity to a knowledge base. We propose novel semi-supervised methods for word disambiguation leveraging the structure of a community-based ontology of scientific concepts. Our approach exploits the graph structure that connects different terms and their definitions to automatically identify the correct sense that was originally picked by the authors of a scientific publication. We then turn to co-reference resolution, a task aiming at identifying entities that appear using various forms throughout the text. We propose an approach to type entities leveraging an inverted index built on top of a knowledge base, and to subsequently re-assign entities based on the semantic relatedness of the introduced types. Finally, we describe an application which goal is to help researchers discover and manage scientific publications. We focus on the problem of selecting relevant tags to organize collections of research papers in that context. We experimentally demonstrate that the use of a community-authored ontology together with information about the position of the concepts in the documents allows to significantly increase the precision of tag selection over standard methods

    Semi-automated Ontology Generation for Biocuration and Semantic Search

    Get PDF
    Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and Protégé, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org

    Mining the Medical and Patent Literature to Support Healthcare and Pharmacovigilance

    Get PDF
    Recent advancements in healthcare practices and the increasing use of information technology in the medical domain has lead to the rapid generation of free-text data in forms of scientific articles, e-health records, patents, and document inventories. This has urged the development of sophisticated information retrieval and information extraction technologies. A fundamental requirement for the automatic processing of biomedical text is the identification of information carrying units such as the concepts or named entities. In this context, this work focuses on the identification of medical disorders (such as diseases and adverse effects) which denote an important category of concepts in the medical text. Two methodologies were investigated in this regard and they are dictionary-based and machine learning-based approaches. Futhermore, the capabilities of the concept recognition techniques were systematically exploited to build a semantic search platform for the retrieval of e-health records and patents. The system facilitates conventional text search as well as semantic and ontological searches. Performance of the adapted retrieval platform for e-health records and patents was evaluated within open assessment challenges (i.e. TRECMED and TRECCHEM respectively) wherein the system was best rated in comparison to several other competing information retrieval platforms. Finally, from the medico-pharma perspective, a strategy for the identification of adverse drug events from medical case reports was developed. Qualitative evaluation as well as an expert validation of the developed system's performance showed robust results. In conclusion, this thesis presents approaches for efficient information retrieval and information extraction from various biomedical literature sources in the support of healthcare and pharmacovigilance. The applied strategies have potential to enhance the literature-searches performed by biomedical, healthcare, and patent professionals. The applied strategies have potential to enhance the literature-searches performed by biomedical, healthcare, and patent professionals. This can promote the literature-based knowledge discovery, improve the safety and effectiveness of medical practices, and drive the research and development in medical and healthcare arena

    Conceptualization of Computational Modeling Approaches and Interpretation of the Role of Neuroimaging Indices in Pathomechanisms for Pre-Clinical Detection of Alzheimer Disease

    Get PDF
    With swift advancements in next-generation sequencing technologies alongside the voluminous growth of biological data, a diversity of various data resources such as databases and web services have been created to facilitate data management, accessibility, and analysis. However, the burden of interoperability between dynamically growing data resources is an increasingly rate-limiting step in biomedicine, specifically concerning neurodegeneration. Over the years, massive investments and technological advancements for dementia research have resulted in large proportions of unmined data. Accordingly, there is an essential need for intelligent as well as integrative approaches to mine available data and substantiate novel research outcomes. Semantic frameworks provide a unique possibility to integrate multiple heterogeneous, high-resolution data resources with semantic integrity using standardized ontologies and vocabularies for context- specific domains. In this current work, (i) the functionality of a semantically structured terminology for mining pathway relevant knowledge from the literature, called Pathway Terminology System, is demonstrated and (ii) a context-specific high granularity semantic framework for neurodegenerative diseases, known as NeuroRDF, is presented. Neurodegenerative disorders are especially complex as they are characterized by widespread manifestations and the potential for dramatic alterations in disease progression over time. Early detection and prediction strategies through clinical pointers can provide promising solutions for effective treatment of AD. In the current work, we have presented the importance of bridging the gap between clinical and molecular biomarkers to effectively contribute to dementia research. Moreover, we address the need for a formalized framework called NIFT to automatically mine relevant clinical knowledge from the literature for substantiating high-resolution cause-and-effect models

    Robust Entity Linking in Heterogeneous Domains

    Get PDF
    Entity Linking is the task of mapping terms in arbitrary documents to entities in a knowledge base by identifying the correct semantic meaning. It is applied in the extraction of structured data in RDF (Resource Description Framework) from textual documents, but equally so in facilitating artificial intelligence applications, such as Semantic Search, Reasoning and Question and Answering. Most existing Entity Linking systems were optimized for specific domains (e.g., general domain, biomedical domain), knowledge base types (e.g., DBpedia, Wikipedia), or document structures (e.g., tables) and types (e.g., news articles, tweets). This led to very specialized systems that lack robustness and are only applicable for very specific tasks. In this regard, this work focuses on the research and development of a robust Entity Linking system in terms of domains, knowledge base types, and document structures and types. To create a robust Entity Linking system, we first analyze the following three crucial components of an Entity Linking algorithm in terms of robustness criteria: (i) the underlying knowledge base, (ii) the entity relatedness measure, and (iii) the textual context matching technique. Based on the analyzed components, our scientific contributions are three-fold. First, we show that a federated approach leveraging knowledge from various knowledge base types can significantly improve robustness in Entity Linking systems. Second, we propose a new state-of-the-art, robust entity relatedness measure for topical coherence computation based on semantic entity embeddings. Third, we present the neural-network-based approach Doc2Vec as a textual context matching technique for robust Entity Linking. Based on our previous findings and outcomes, our main contribution in this work is DoSeR (Disambiguation of Semantic Resources). DoSeR is a robust, knowledge-base-agnostic Entity Linking framework that extracts relevant entity information from multiple knowledge bases in a fully automatic way. The integrated algorithm represents a collective, graph-based approach that utilizes semantic entity and document embeddings for entity relatedness and textual context matching computation. Our evaluation shows, that DoSeR achieves state-of-the-art results over a wide range of different document structures (e.g., tables), document types (e.g., news documents) and domains (e.g., general domain, biomedical domain). In this context, DoSeR outperforms all other (publicly available) Entity Linking algorithms on most data sets
    • …
    corecore