3,874 research outputs found

    Inverting graphs of rectangular matrices

    Get PDF
    AbstractThis paper addresses the question of determining the class of rectangular matrices having a given graph as a row or column graph. We also determine equivalent conditions on a given pair of graphs in order for them to be the row and column graphs of some rectangular matrix. In connection with these graph inversion problems we discuss the concept of minimal inverses. This concept turns out to have two different forms in the case of one-graph inversion. For the two-graph case we present a method of determining when an inverse is minimal. Finally we apply the two-graph theorem to a class of energy related matrices

    Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices (The Extended Version)

    Full text link
    We consider a product of an arbitrary number of independent rectangular Gaussian random matrices. We derive the mean densities of its eigenvalues and singular values in the thermodynamic limit, eventually verified numerically. These densities are encoded in the form of the so called M-transforms, for which polynomial equations are found. We exploit the methods of planar diagrammatics, enhanced to the non-Hermitian case, and free random variables, respectively; both are described in the appendices. As particular results of these two main equations, we find the singular behavior of the spectral densities near zero. Moreover, we propose a finite-size form of the spectral density of the product close to the border of its eigenvalues' domain. Also, led by the striking similarity between the two main equations, we put forward a conjecture about a simple relationship between the eigenvalues and singular values of any non-Hermitian random matrix whose spectrum exhibits rotational symmetry around zero.Comment: 50 pages, 8 figures, to appear in the Proceedings of the 23rd Marian Smoluchowski Symposium on Statistical Physics: "Random Matrices, Statistical Physics and Information Theory," September 26-30, 2010, Krakow, Polan

    Faster all-pairs shortest paths via circuit complexity

    Full text link
    We present a new randomized method for computing the min-plus product (a.k.a., tropical product) of two n×nn \times n matrices, yielding a faster algorithm for solving the all-pairs shortest path problem (APSP) in dense nn-node directed graphs with arbitrary edge weights. On the real RAM, where additions and comparisons of reals are unit cost (but all other operations have typical logarithmic cost), the algorithm runs in time n32Ω(logn)1/2\frac{n^3}{2^{\Omega(\log n)^{1/2}}} and is correct with high probability. On the word RAM, the algorithm runs in n3/2Ω(logn)1/2+n2+o(1)logMn^3/2^{\Omega(\log n)^{1/2}} + n^{2+o(1)}\log M time for edge weights in ([0,M]Z){}([0,M] \cap {\mathbb Z})\cup\{\infty\}. Prior algorithms used either n3/(logcn)n^3/(\log^c n) time for various c2c \leq 2, or O(Mαnβ)O(M^{\alpha}n^{\beta}) time for various α>0\alpha > 0 and β>2\beta > 2. The new algorithm applies a tool from circuit complexity, namely the Razborov-Smolensky polynomials for approximately representing AC0[p]{\sf AC}^0[p] circuits, to efficiently reduce a matrix product over the (min,+)(\min,+) algebra to a relatively small number of rectangular matrix products over F2{\mathbb F}_2, each of which are computable using a particularly efficient method due to Coppersmith. We also give a deterministic version of the algorithm running in n3/2logδnn^3/2^{\log^{\delta} n} time for some δ>0\delta > 0, which utilizes the Yao-Beigel-Tarui translation of AC0[m]{\sf AC}^0[m] circuits into "nice" depth-two circuits.Comment: 24 pages. Updated version now has slightly faster running time. To appear in ACM Symposium on Theory of Computing (STOC), 201

    Constructing a Distance Sensitivity Oracle in O(n^2.5794 M) Time

    Get PDF
    M}, in O(n^2.5286 M) time. This algorithm is crucial in the preprocessing algorithm of our DSO. Our solution improves the O(n^2.6865 M) time bound in [Ren, ESA 2020], and matches the current best time bound for computing all-pairs shortest paths

    Connected Substitutes and Invertibility of Demand

    Get PDF
    We consider the invertibility of a nonparametric nonseparable demand system. Invertibility of demand is important in several contexts, including identification of demand, estimation of demand, testing of revealed preference, and economic theory requiring uniqueness of market clearing prices. We introduce the notion of "connected substitutes" and show that this structure is sufficient for invertibility. The connected substitutes conditions require weak substitution between all goods and sufficient strict substitution to necessitate treating them in a single demand system. These conditions are satisfied in many standard models, have transparent economic interpretation, and allow us to show invertibility without functional form restrictions, smoothness assumptions, or strong domain restrictions.Demand, Invertibility, Connected substitutes

    Quantum transport on two-dimensional regular graphs

    Get PDF
    We study the quantum-mechanical transport on two-dimensional graphs by means of continuous-time quantum walks and analyse the effect of different boundary conditions (BCs). For periodic BCs in both directions, i.e., for tori, the problem can be treated in a large measure analytically. Some of these results carry over to graphs which obey open boundary conditions (OBCs), such as cylinders or rectangles. Under OBCs the long time transition probabilities (LPs) also display asymmetries for certain graphs, as a function of their particular sizes. Interestingly, these effects do not show up in the marginal distributions, obtained by summing the LPs along one direction.Comment: 22 pages, 11 figure, acceted for publication in J.Phys.
    corecore