8 research outputs found

    Inverse star, borders, and palstars

    Full text link
    peer reviewedA language L is closed if L = L*. We consider an operation on closed languages, L-*, that is an inverse to Kleene closure. It is known that if L is closed and regular, then L-* is also regular. We show that the analogous result fails to hold for the context-free languages. Along the way we find a new relationship between the unbordered words and the prime palstars of Knuth, Morris, and Pratt. We use this relationship to enumerate the prime palstars, and we prove that neither the language of all unbordered words nor the language of all prime palstars is context-free

    Factorization in Formal Languages

    Get PDF
    We consider several novel aspects of unique factorization in formal languages. We reprove the familiar fact that the set uf(L) of words having unique factorization into elements of L is regular if L is regular, and from this deduce an quadratic upper and lower bound on the length of the shortest word not in uf(L). We observe that uf(L) need not be context-free if L is context-free. Next, we consider variations on unique factorization. We define a notion of "semi-unique" factorization, where every factorization has the same number of terms, and show that, if L is regular or even finite, the set of words having such a factorization need not be context-free. Finally, we consider additional variations, such as unique factorization "up to permutation" and "up to subset"

    Automaticity of Primitive Words and Irreducible Polynomials

    Get PDF
    If L is a language, the automaticity function AL(n) (resp. NL(n)) of L counts the number of states of a smallest deterministic (resp. non-deterministic) finite automaton that accepts a language that agrees with L on all inputs of length at most n. We provide bounds for the automaticity of the language of primitive words and the language of unbordered words over a k-letter alphabet. We also give a bound for the automaticity of the language of base-b representations of the irreducible polynomials over a finite field. This latter result is analogous to a result of Shallit concerning the base-k representations of the set of prime numbers.https://hal.archives-ouvertes.fr/hal-00990604v

    On the Combinatorics of Palindromes and Antipalindromes

    Full text link
    We prove a number of results on the structure and enumeration of palindromes and antipalindromes. In particular, we study conjugates of palindromes, palindromic pairs, rich words, and the counterparts of these notions for antipalindromes.Comment: 13 pages/ submitted to DLT 201

    Automatic Sequences and Decidable Properties: Implementation and Applications

    Get PDF
    In 1912 Axel Thue sparked the study of combinatorics on words when he showed that the Thue-Morse sequence contains no overlaps, that is, factors of the form ayaya. Since then many interesting properties of sequences began to be discovered and studied. In this thesis, we consider a class of infinite sequences generated by automata, called the k-automatic sequences. In particular, we present a logical theory in which many properties of k-automatic sequences can be expressed as predicates and we show that such predicates are decidable. Our main contribution is the implementation of a theorem prover capable of practically characterizing many commonly sought-after properties of k-automatic sequences. We showcase a panoply of results achieved using our method. We give new explicit descriptions of the recurrence and appearance functions of a list of well-known k-automatic sequences. We define a related function, called the condensation function, and give explicit descriptions for it as well. We re-affirm known results on the critical exponent of some sequences and determine it for others where it was previously unknown. On the more theoretical side, we show that the subword complexity p(n) of k-automatic sequences is k-synchronized, i.e., the language of pairs (n, p(n)) (expressed in base k) is accepted by an automaton. Furthermore, we prove that the Lyndon factorization of k-automatic sequences is also k-automatic and explicitly compute the factorization for several sequences. Finally, we show that while the number of unbordered factors of length n is not k-synchronized, it is k-regular
    corecore