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If L is a language, the automaticity function AL(n) (resp. NL(n)) of L counts the number of states of a smallest
deterministic (resp. non-deterministic) finite automaton that accepts a language that agrees with L on all inputs of
length at most n. We provide bounds for the automaticity of the language of primitive words and the language of
unbordered words over a k-letter alphabet. We also give a bound for the automaticity of the language of base-b
representations of the irreducible polynomials over a finite field. This latter result is analogous to a result of Shallit
concerning the base-k representations of the set of prime numbers.
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1 Introduction
Automaticity is a measure of how close a non-regular language is to being regular. We can approximate a
non-regular language L by considering a regular language L′ such that the words of length at most n in L
are exactly the words of length at most n in L′. The automaticity of L is the number of states of a smallest
deterministic finite automaton accepting some approximation L′. Non-deterministic automaticity can be
defined similarly. Automaticity was first introduced by Trakhtenbrot [18] and later by Karp [7]. Shallit
and Breitbart [17] wrote a survey of the basic results concerning automaticity known at the time.

In the first part of this article we give bounds for the non-deterministic automaticity of the language
of primitive words and the language of unbordered words. A word is primitive if it is not a power of a
smaller word. A word is unbordered if it has no non-trivial period. The language of primitive words has
been well-studied (see the survey by Lischke [9], for example). It is not difficult to show that the language
of primitive words is not regular, but it is a long-standing open problem to show that this language is not
context-free. It is also not difficult to show that the language of unbordered words is not regular. For a
proof that this language is not context-free see [12].

In the second part we give a bound on the automaticity of the set of irreducible polynomials over a
finite field. The set of base-k representations of the prime numbers is not a regular language for any base
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k. Shallit [16] gave a lower bound on the automaticity of the set of prime numbers in any base. We
consider the same problem in the setting of polynomials over a finite field. Given a fixed non-constant
polynomial b, one can also define the base-b representation for such polynomials (see for example [14]).
Rigo and Waxweiler [15] proved that the set of base-b representations of the irreducible polynomials is
again a non-regular language for any base b. We obtain our bound for the automaticity using arguments
similar to those of [16].

There is an interesting connection between primitive words and irreducible polynomials over a finite
field. The number of primitive words of length n over an alphabet of size q is∑

d|n

µ(d)qn/d, (1)

where µ is the Möbius function (see [10, Section 1.3]). Similarly, the number of monic irreducible poly-
nomials of degree n over the finite field with q elements is

1

n

∑
d|n

µ(d)qn/d.

This is equal to the number of equivalence classes of primitive words of length n under the conjugacy
relation x ∼ y if x is a cyclic shift of y. For an explicit bijection between the set of irreducible polynomials
and the set of primitive necklaces, see [13, Section 7.6.2].

2 Definitions
Let L ⊆ Σ∗. A language L′ is an n-th order approximation to L if

L′ ∩ Σ≤n = L ∩ Σ≤n.

We define the automaticity AL(n) of a language L to be the number of states of a smallest DFA accepting
some n-th order approximation to L. Similarly, the nondeterministic automaticity NL(n) of a language L
is the number of states of a smallest NFA accepting some n-th order approximation to L.

Let x, y ∈ Σ∗. We say that x and y are n-similar for L if for all z ∈ Σ∗ with |xz|, |yz| ≤ n, we have
xz ∈ L if and only if yz ∈ L. If x and y are not n-similar, then they are n-dissimilar for L.

Theorem 1 ([8]) Let L ⊆ Σ∗. For all n ≥ 0, AL(n) is the maximum possible cardinality of a set of
pairwise n-dissimilar words for L.

Example 2 LetL = {0n1n : n ≥ 0}. ThenAL(n) ≥ m+1 for n = 2m, 2m+1, since {ε, 0, 00, . . . , 0m}
is a set of pairwise 2m-dissimilar words for L. To see this, consider 0j and 0k for 0 ≤ j < k ≤ n. Then
0j1j ∈ L and 0k1j /∈ L.

Let U be a finite set of words. We say that U is a set of uniformly n-dissimilar words for L if for each
x ∈ U there exists z such that

• |xz| ≤ n and xz ∈ L; and

• for each y ∈ U such that x 6= y, we have |yz| ≤ n and yz /∈ L.

Theorem 3 ([3]) Let L ⊆ Σ∗ and let U be a set of uniformly n-dissimilar words for L. Then NL(n) ≥
|U |.
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3 Automaticity of primitive and unbordered words
Let k ≥ 2 be an integer. A word y is a k-power if y can be written as y = xk for some non-empty word
x. If y cannot be so written for any k ≥ 2, then y is primitive.

Bordered words are generalizations of powers. We say a word x is bordered if there exist words
u, v, w ∈ Σ+ such that x = uv = wu. In this case, the word u is said to be a border for x. Otherwise, x
is unbordered.

Let w = w0 · · ·w`−1 and let p < `. The word w has a period p if wi = wi+p for all 0 ≤ i ≤ `− p− 1.
Note that a word is unbordered if it has no period.

We recall the notation O(·) and Ω(·). Let f and g be functions from N to R. The function f is O(g) if
there exist C > 0 and n0 such that for all n > n0 we have f(n) ≤ C · g(n). The function f is Ω(g) if
there exist C > 0 and n0 such that for all n > n0 we have f(n) ≥ C · g(n).

Theorem 4 Let ε > 0 be a real number. The nondeterministic automaticity of the set Qk of primitive
words over the alphabet Σk = {0, . . . , k − 1} is

NQk
(n) ≥ βkkbn/2c +O((k + ε)n/4),

where βk is a constant that depends only on k.

Proof: For n ≥ 0, we will define a set of uniformly n-dissimilar words as follows. Let

Dn = {w ∈ Σ
bn/2c
k : w is unbordered }.

To show that the words in Dn are uniformly n-dissimilar, let x, y ∈ Dn, x 6= y. Observe that xx is not
primitive, but yx is, for if yx were not primitive, then yx = z` for some word z and some ` ≥ 3. In this
case |yx|/` is a period of y, and hence y is bordered, which contradicts the definition of Dn.

Guibas and Odlyzko [4, Theorem 7.2] gave the following formula for the size of Dn (see also [11]):
there exists a constant βk such that

|Dn| = βkk
bn/2c +O((k + ε)n/4).

By Theorem 3 we have NQk
(n) ≥ |Dn|, which is the desired result. 2

Note that Guibas and Odlyzko gave an explicit formula for the βk, which permits one to calculate βk
to any desired degree of accuracy. For example, if k = 2, we have β2 = 0.26771654 · · · .

Next we give an upper bound on the nondeterministic automaticity of Qk.

Theorem 5 For n ≥ 0,

NQk
(n) ≤

(
2k3/2

(k − 1)(
√
k − 1)

)
kn/2 + n3kn/3

Proof: For each n ≥ 0 we construct a deterministic automaton that accepts all words of length at most n
in the complement of Qk. The automaton is constructed as follows. First consider the language of square
words (2-powers) of length i. We can construct an automaton accepting this language by first constructing
the complete k-ary tree with ki/2 leaves so that each path from the root to a leaf is labeled by a different



32 Anne Lacroix and Narad Rampersad

start

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Fig. 1: An automaton accepting binary squares of length 6

word of length i/2. We then make a copy of this tree, but reflected, so that the arrows are directed away
from the leaves towards the root of the tree. The leaves of the first tree are identified with the leaves of the
second tree. This construction is illustrated in Figure 1, which shows the automaton accepting all binary
squares of length 6. In the figure, dotted lines connect states to be identified, and transitions not shown go
to a sink state.

The left tree has

k(i/2)+1 − 1

k − 1

states, so the automaton for the squares of length i has at most

2

(
k(i/2)+1 − 1

k − 1

)

states.

For each d > 2, to accept d-powers of length i we simply construct a tree with ki/d leaves so that each
path from the root to a leaf is labeled by a different d-power of length i. This tree has at most iki/d states.

To create the automaton accepting all non-primitive words of length i, we can combine all of these
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automata, sharing edges and transitions whenever possible. The resulting automaton has at most

2

(
k(i/2)+1 − 1

k − 1

)
+
∑
d|i
d>2

iki/d

≤
(

2k

k − 1

)
ki/2 +

∑
d|i
d>2

iki/d

≤
(

2k

k − 1

)
ki/2 +

∑
d|i
d>2

iki/3

≤
(

2k

k − 1

)
ki/2 + i2ki/3

states.
We can therefore can construct an automaton accepting all non-primitive words of length at most n

using at most
n∑

i=1

((
2k

k − 1

)
ki/2 + i2ki/3

)

≤ 2k

k − 1

n∑
i=1

ki/2 +

n∑
i=1

i2ki/3

≤ 2k

k − 1

(
k(n+1)/2 −

√
k√

k − 1

)
+

n∑
i=1

i2ki/3

≤ 2k

k − 1

(
k(n+1)/2 −

√
k√

k − 1

)
+ n3kn/3

≤
(

2k3/2

(k − 1)(
√
k − 1)

)
kn/2 + n3kn/3

states. Since this automaton is deterministic, the automaton accepting Qk has at most this many states as
well. 2

Next we consider the language of unbordered words.

Theorem 6 Let ε > 0. The nondeterministic automaticity of the set UBk of unbordered words over the
alphabet Σk is

NUBk
(n) = Ω((k − ε)n/2).

Proof: For each ε > 0 there exists j such that the number of words of length m over a k-letter alphabet
that avoid 1j is Ω((k− ε)m) (see for example the analysis given in the section “Longest runs” starting on
p. 308 of [2]). Fix such a j. For n ≥ 2(j + 2) we define

Dn = {0w01j : |w| = bn/2c − (j + 2) and w does not contain 1j}.
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To show that the words in Dn are uniformly n-dissimilar, let x, y ∈ Dn, x 6= y. Since x, y ∈ Dn, there
exist w1 and w2 such that

x = 0w101j and y = 0w201j .

Clearly xx is bordered; however, xy is not bordered. Suppose to the contrary that xy has a border b. Since
b is a non-empty prefix of xy, it must begin with 0; since it is also a suffix, it must end with 1j . However
xy contains only one occurrence of 1j apart from the occurrence at the end. It follows that b = x, and
since b is also a suffix of xy and |x| = |y|, we must also have b = y. Thus x = y, which is a contradiction.
Since |Dn| = Ω((k − ε)n/2−(j+2)) = Ω((k − ε)n/2), we have the result by Theorem 3. 2

4 Irreducible polynomials
In this section we consider the automaticity of the language of representations of irreducible polynomials
over a finite field with respect to some base b.

Let F be a field with q elements. Let F[X] be the polynomial ring over F. If f ∈ F[X] we denote
its degree by deg f . Let B be an integer and let F[X]<B denote the set of polynomials over F of degree
strictly less thanB. If b is a fixed non-constant polynomial, then any polynomial f can be written uniquely
as

f =
∑̀
i=0

cib
`−i, c0 6= 0,

where each ci has degree less than deg b.
We define a function Ψ : F[X]<B → FB by

Ψ(f) := (0, . . . , 0︸ ︷︷ ︸
B−N−1

, F0, . . . , FN )

if f = F0X
N + · · · + FN . The word [f ]b := Ψ(c`)Ψ(c`−1) · · ·Ψ(c0) over the alphabet FB is the b-

representation of f . By convention, the representation of the zero polynomial is ε. Given a b-representation
w ∈ (FB)∗, we denote its value in F[X] by 〈w〉b. Note that we have chosen to write f starting with the
least significant “digit” and ending with the most significant “digit”.

A set T ⊆ F[X] is b-recognizable if the language

[T ]b = {[f ]b : f ∈ T } ⊆ (FB)∗

is regular. Rigo and Waxweiler [15] proved that for any base b, the set of irreducible polynomials over F
is not b-recognizable.

Let T ⊂ F[X] and let b be a non-constant polynomial. The b-automaticity of T is denoted by Ab
T (n)

and is defined as the automaticity Ab
L(n) of the language L = {[f ]b : f ∈ T }.

Theorem 7 There exists a constant B such that the set S of monic irreducible polynomials over F has
b-automaticity Ab

S(n) ≥ qBn/Bn+O(qBn/2/Bn).

The main tool for the proof of this theorem is the following result of Hsu [6, Corollary 3.4].
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Theorem 8 Let a and m be polynomials over F such that (a,m) = 1. Let #SN (a,m) denote the
number of monic irreducible polynomials of degree N congruent to a modulo m and let M = degm. If
qN/2 > (3 +M)qM then

#SN (a,m) ≥ 1.

The proof of the following lemma is similar to that of [16, Lemma 6], which is in turn based on an idea
found in [5] and [1].

Lemma 9 Let d ∈ F[X] such that deg d > 0 and let f, g ∈ F[X]<deg d such that f 6= g and (d, f) =
(d, g) = 1. Then there exists a constant Cq and a polynomial h such that hd+f is irreducible and hd+g
is not irreducible, where deg h ≤ Cq deg d.

Proof: By Theorem 8 there exist a constant C and a polynomial h0 such that r = h0d+ f is irreducible,
where deg h0 ≤ C deg d. If s = h0d+ g is reducible, we are done. Otherwise, since (sd+ r, sd) = 1, by
Theorem 8 again, there exists h1 such that h1(sd)+(sd+r) is irreducible, where deg h1 ≤ C(deg sd) =
C(deg s + deg d). However, h1(sd) + (sd + s) is a multiple of s and hence is reducible. Therefore we
set h = s(h1 + 1) + h0. Furthermore, we have

deg h ≤ max{deg h1 + deg s,deg h0}
≤ max{C(2 deg s+ deg d), C deg d}
≤ C(2 deg s+ deg d)

≤ C(2(C deg d) + 2(deg d))

≤ 2C(C + 1)(deg d).

We may thus take Cq = 2C(C + 1) to complete the proof. 2

Proof of Theorem 7: To prove Theorem 7 we will contruct a set Dn of n-dissimilar words for [S]b. Let
Cq be as in Lemma 9. Let

Dn = {[f ]b : f ∈ S, (f, b) = 1,deg f = (n deg b)/(1 + Cq)}.

Note that all words in Dn have the same length. Consider two elements x, y ∈ Dn. Let f = 〈x〉b,
g = 〈y〉b. By Lemma 9, there exists h such that hb|x| + f is irreducible and hb|x| + g is not, where
deg h = Cq deg b|x|. Let z = [h]b. Then xz ∈ [S]b and yz /∈ [S]b. Since deg h = Cq deg b|x|, we have
|z|deg b = Cq|x|deg b, and so |z| = Cq|x|. Since deg f = (ndeg b)/(1+Cq), we have |x| = n/(1+Cq).
Hence |xz| = n/(1 + Cq) + Cq|x| = n/(1 + Cq) + Cq(n/(1 + Cq)) = n.

We now estimate the size ofDn. LetB = deg b/(1+Cq). Note that there are qBn/Bn+O(qBn/2/Bn)
monic irreducible polynomials in F [X] of degree Bn. Since deg b is a constant, there are at most a
constant number of polynomials f that divide b. Hence |Dn| = qBn/Bn+O(qBn/2/Bn). 2
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