188 research outputs found

    Dynamics of the Orthoglide parallel robot

    Get PDF
    Recursive matrix relations for kinematics and dynamics of the Orthoglide parallel robot having three concurrent prismatic actuators are established in this paper. These are arranged according to the Cartesian coordinate system with fixed orientation, which means that the actuating directions are normal to each other. Three identical legs connecting to the moving platform are located on three planes being perpendicular to each other too. Knowing the position and the translation motion of the platform, we develop the inverse kinematics problem and determine the position, velocity and acceleration of each element of the robot. Further, the principle of virtual work is used in the inverse dynamic problem. Some matrix equations offer iterative expressions and graphs for the input forces and the powers of the three actuators

    Towards the Design and Evaluation of Robotic Legs of Quadruped Robots

    Get PDF
    Legged systems have potentials of better mobility than traditional wheeled and tracked vehicles on rough terrain. The reason for the superior mobility of legged systems has been studied for a long period and plenty of robots using legs for locomotion have been developed during recent few decades. However the built legged robots still exhibit insufficiency of expected locomotive ability comparing with their counterparts in nature with similar size. The reason may be complicated and systematic associated with several aspects of the development such as the design, key components, control & planning and/or test and evaluation. The goal of this thesis is to close the gap between legged robots research & development and practical application and deployment. The research presented in this thesis focuses on three aspects including morphological parameters of quadruped robots, optimal design for knee joint mechanism and the development of a novel test bench\u2014 Terrain Simulator Platform. The primary motivation and target for legged robots developing is to overcome the challenging terrain. However few legged robots take the feature of terrain into consideration when determining the morphological parameters, such as limb length and knee orientation for robots. In this thesis, the relationship between morphological parameters of quadruped robots and terrain features are studied by taking a ditch/gap as an example. The influence of diverse types of morphological parameters including limb length, limb mass, the center-of-mass position in limbs and knee configuration on the ditch crossing capability are presented. In order to realize extended motion range and desired torque profile, the knee joint of HyQ2max adopts a six-bar linkage mechanism as transmission. Owing to the complexity of closed-loop kinematic chain, the transmission ratio is difficult to design. In this thesis, I used a static equilibrium based approach to derive the transmission relationship and study the singularity conditions. Further desired torque profile of knee joint are realized by a multi-variable geometric parameters optimization. For the test and performance evaluation of robotic leg, I designed and constructed a novel test bench\u2014 Terrain Simulator Platform (TSP). The main function of the TSP is to provide sufficient test conditions for robotic leg by simulating various terrain features. Thus working status of robotic leg can be known before the construction of the whole robot. The core of the TSP is a 3-PRR planar parallel mechanism. In this thesis, the structure design and implementation, the kinematics including singularity, workspace etc, and dynamics of this 3-PRR mechanism are presented

    Micro position control of a designed 3-PRR compliant mechanism using experimental models

    Get PDF
    A new compliant stage based on 3-PRR kinematic structure is designed to be used as a planar micro positioner. The mechanism is actuated by using piezoelectric actuators and center position of the stage is measured using a dual laser position sensor. It's seen that manufactured mechanism has unpredictable motion errors due to manufacturing and assembly faults. Thus, sliding mode control with disturbance observer is chosen to be implemented as position control in x-y axes of the center of the mechanism. Instead of piezoelectric actuator models, experimental models are extracted for each actuation direction in order to be used as nominal plants for the disturbance observer. The position control results are compared with the previous position control using linear piezoelectric actuator models and it's seen that the implemented control methodology is better in terms of errors in x and y axes. Besides, the position errors are lowered down to ±0.06 microns, which is the accuracy of the dual laser position sensor

    Synchronization controller for a 3-RRR parallel manipulator

    Get PDF
    A 3-RRR parallel manipulator has been well-known as a closed-loop kinematic chain mechanism in which the end-effector generally a moving platform is connected to the base by several independent actuators. Performance of the robot is decided by performances of the component actuators which are independently driven by tracking controllers without acknowledging information from each other. The platform performance is degraded if any actuator could not be driven well. Therefore, this paper aims to develop an advanced synchronization (SYNC) controller for position tracking of a 3-RRR parallel robot using three DC motor-driven actuators. The proposed control scheme consists of three sliding mode controllers (SMC) to drive the actuators and a supervisory controller named PID-neural network controller (PIDNNC) to compensate the synchronization errors due to system nonlinearities, uncertainties and external disturbances. A Lyapunov stability condition is added to the PIDNNC training mechanism to ensure the robust tracking performance of the manipulator. Numerical simulations have been performed under different working conditions to demonstrate the effectiveness of the suggested control approach

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Inverse and forward kinematics and workspace analysis of a novel 5-DOF (3T2R) parallel–serial (hybrid) manipulator:

    Get PDF
    The proposed study provides a solution of the inverse and forward kinematic problems and workspace analysis for a five-degree-of-freedom parallel–serial manipulator, in which the parallel kinematic chain is made in the form of a tripod and the serial kinematic chain is made in the form of two carriages displaced in perpendicular directions. The proposed manipulator allows to realize five independent movements—three translations and two rotations motion pattern (3T2R). Analytical relationships between the coordinates of the end-effector and five controlled movements provided by manipulator's drives (generalized coordinates) were determined. The approach of reachable workspace calculation was defined with respect to available design constraints of the manipulator based on the obtained algorithms of the inverse and forward kinematics. Case studies are considered based on the obtained algorithms of inverse and forward kinematics. For the inverse kinematic problem, the solution is obtained in accordance with the given laws of position and orientation change of the end-effector, corresponding to the motion along a spiral-helical trajectory. For the forward kinematic problem, various assemblies of the manipulator are obtained at the same given values of the generalized coordinates. An example of reachable workspace designing finalizes the proposed study. Dimensions and extreme values of the end-effector orientation angles are calculated

    A novel aerial manipulation design, modelling and control for geometric com compensation

    Get PDF
    International audienceThis paper presents the design and modelling of a new Aerial manipulating system, that resolve a displacement of centre of gravity of the whole system with a mechanical device. A prismatic joint between the multirotor and a robotic arm is introduced to make a centre of mass as close as to the geometric centre of the whole system. This paper details also the geometric and dynamic modelling of a coupled system with a Lagrange formalism and control law with a Closed Loop Inverse Kinematic Algorithm (CLIKA). This dynamic inverse control is validated in a Simulink environment showing the efficiency of our approach

    Experimental Study of Active Vibration Control of Planar 3- R

    Get PDF
    • …
    corecore