2,274 research outputs found

    Effects of work injury cost to overall production cost with linear programming approach

    Get PDF
    Production planning is an important activity in manufacturing industries. The main goal of production planning is to minimize the cost under the condition that the customer requirement in terms of quality, quantity, and time is satisfied. An important player (human) is with little attention in traditional production planning. This thesis studied production planning with consideration of human factor, especially human work injuries as a result of performing a repetitive operation for a certain period of time in production systems. Production planning in this thesis only takes the minimization of total production cost as its goal. A linear programming technique was employed to incorporate the cost of work injury into the total production cost model. The LINDOTM software was used to solve the linear production planning model and to analyze the solution. Finally, the benefits of the production planning, which considers work injury, were discussed. Several conclusions can be drawn from this study: (1) the traditional production planning model, which only takes the material costs and labor costs into account, cannot deal with the cost related to work injury; (2) the work injury cost could be significant in those manual-intensive assembly systems, especially with high production rates; (3) the careful design of the worker’s postures can significantly reduce the work injury cost and thus the total cost of production. The significant contributions of this thesis are: (1) the development of a mathematical model for the total production cost including the work injury cost and (2) the finding that the work injury cost may be a significant portion in the total cost of production in the assembly system that has intensive manual works.

    Discrete Event Simulations

    Get PDF
    Considered by many authors as a technique for modelling stochastic, dynamic and discretely evolving systems, this technique has gained widespread acceptance among the practitioners who want to represent and improve complex systems. Since DES is a technique applied in incredibly different areas, this book reflects many different points of view about DES, thus, all authors describe how it is understood and applied within their context of work, providing an extensive understanding of what DES is. It can be said that the name of the book itself reflects the plurality that these points of view represent. The book embraces a number of topics covering theory, methods and applications to a wide range of sectors and problem areas that have been categorised into five groups. As well as the previously explained variety of points of view concerning DES, there is one additional thing to remark about this book: its richness when talking about actual data or actual data based analysis. When most academic areas are lacking application cases, roughly the half part of the chapters included in this book deal with actual problems or at least are based on actual data. Thus, the editor firmly believes that this book will be interesting for both beginners and practitioners in the area of DES

    Cross-chain collaboration in the fast moving consumer goods supply chain

    Get PDF

    Artificial Intelligence Applied to Supply Chain Management and Logistics: Systematic Literature Review

    Get PDF
    The growing impact of automation and artificial intelligence (AI) on supply chain management and logistics is remarkable. This technological advance has the potential to significantly transform the handling and transport of goods. The implementation of these technologies has boosted efficiency, predictive capabilities and the simplification of operations. However, it has also raised critical questions about AI-based decision-making. To this end, a systematic literature review was carried out, offering a comprehensive view of this phenomenon, with a specific focus on management. The aim is to provide insights that can guide future research and decision-making in the logistics and supply chain management sectors. Both the articles in this thesis and that form chapters present detailed methodologies and transparent results, reinforcing the credibility of the research for researchers and managers. This contributes to a deeper understanding of the impact of technology on logistics and supply chain management. This research offers valuable information for both academics and professionals in the logistics sector, revealing innovative solutions and strategies made possible by automation. However, continuous development requires vigilance, adaptation, foresight and a rapid problem-solving capacity. This research not only sheds light on the current panorama, but also offers a glimpse into the future of logistics in a world where artificial intelligence is set to prevail

    Graduate School: Course Decriptions, 1972-73

    Full text link
    Official publication of Cornell University V.64 1972/7

    Towards More Nuanced Patient Management: Decomposing Readmission Risk with Survival Models

    Get PDF
    Unplanned hospital readmissions are costly and associated with poorer patient outcomes. Overall readmission rates have also come to be used as performance metrics in reimbursement in healthcare policy, further motivating hospitals to identify and manage high-risk patients. Many models predicting readmission risk have been developed to facilitate the equitable measurement of readmission rates and to support hospital decision-makers in prioritising patients for interventions. However, these models consider the overall risk of readmission and are often restricted to a single time point. This work aims to develop the use of survival models to better support hospital decision-makers in managing readmission risk. First, semi-parametric statistical and nonparametric machine learning models are applied to adult patients admitted via the emergency department at Gold Coast University Hospital (n = 46,659) and Robina Hospital (n = 23,976) in Queensland, Australia. Overall model performance is assessed based on discrimination and calibration, as measured by time-dependent concordance and D-calibration. Second, a framework based on iterative hypothesis development and model fitting is proposed for decomposing readmission risk into persistent, patient-specific baselines and transient, care-related components using a sum of exponential hazards structure. Third, criteria for patient prioritisation based on the duration and magnitude of care-related risk components are developed. The extensibility of the framework and subsequent prioritisation criteria are considered for alternative populations, such as outpatient admissions and specific diagnosis groups, and different modelling techniques. Time-to-event models have rarely been applied for readmission modelling but can provide a rich description of the evolution of readmission risk post-discharge and support more nuanced patient management decisions than simple classification models

    A hierarchical control architecture for job-shop manufacturing systems

    Get PDF
    • …
    corecore