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ABSTRACT 

 

Production planning is an important activity in manufacturing industries. The main goal of 

production planning is to minimize the cost under the condition that the customer requirement in 

terms of quality, quantity, and time is satisfied. An important player (human) is with little 

attention in traditional production planning. This thesis studied production planning with 

consideration of human factor, especially human work injuries as a result of performing a 

repetitive operation for a certain period of time in production systems. Production planning in 

this thesis only takes the minimization of total production cost as its goal. 

A linear programming technique was employed to incorporate the cost of work injury into the 

total production cost model. The LINDO
TM

 software was used to solve the linear production 

planning model and to analyze the solution. Finally, the benefits of the production planning, 

which considers work injury, were discussed. 

Several conclusions can be drawn from this study: (1) the traditional production planning model, 

which only takes the material costs and labor costs into account, cannot deal with the cost related 

to work injury; (2) the work injury cost could be significant in those manual-intensive assembly 

systems, especially with high production rates; (3) the careful design of the worker‘s postures 

can significantly reduce the work injury cost and thus the total cost of production. 

The significant contributions of this thesis are: (1) the development of a mathematical model for 

the total production cost including the work injury cost and (2) the finding that the work injury 
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cost may be a significant portion in the total cost of production in the assembly system that has 

intensive manual works.  
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CHAPTER 1 INTRODUCTION 

 

1.1 Research Background and Motivation 

 

Traditionally, production planning is primarily about materials resource planning. The materials 

include both the material for parts and the machine tools for production of the parts (Krajewski et 

al., 2005). Many techniques have been developed to improve the effectiveness of production 

planning, namely to make a plan which meets the customer demand in terms of the quality, 

quantity, lead time, and cost with additional features such as robustness, sustainability and 

resilience. The concept of resilience is referred to Zhang and Lin (2010).  

Advancement of computing technology (both in hardware and software) allows us to model 

production situations in a more realistic manner. For instance, the set-up cost of a machine was 

considered in the production planning model (Atmani, 1995) to allocate a variety of parts to 

different machines with a minimum production cost. A hierarchical production distribution 

planning approach (Ozdamar and Yazgac, 1999) was proposed to achieve the total cost 

minimization, considering multi-time periods and penalty costs. There have been also studies on 

the production planning for multi-objects that are in conflict (Gramani et al., 2011). 

It is worth mentioning that workers are an important participant in production especially for 

manual-intensive assembly systems. In other words, the production system almost always 

involves human factors such as human decision-making, qualification of employees, 
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stakeholders‘ interests, as well as work injuries. However, these aforementioned human factors, 

especially work injury, have not been considered in the design of a production system and in 

production planning (Wiendahl et al., 2005). 

The report from Human Resources and Skills Development Canada shows that over the period 

from 1996 to 2008, the compensation payments to injured workers, after adjusting for inflation, 

have generally shown an increasing trend; the total cost of occupational injuries to the Canadian 

economy is estimated to be more than $19 billion annually (Labour Canada, 2011). It is being 

realized that the cost incurred by work injuries contributes a large portion to the total production 

cost, and strategies are urgently required to tackle the problem of work injury. 

 

1.2 Research Questions and Related studies 

 

A new technique is needed for incorporating work injury into production planning especially 

establishing a total production cost model which includes work injury cost. With this 

understanding, the following research questions were proposed in the context of manual 

intensive assembly line production scenario (e.g., CNH Saskatoon): 

Question 1: how significant is the work injury cost in the total production cost? 

Question 2: how significant is the cost effect of assembly system design with the minimization of 

work injury on the total production cost? 

There have been studies concerning the aforementioned research questions in the existing 

literatures. Jensen (2002) put forward the point of view that human factors and ergonomics 

should be considered in production planning and drew the organizational attention to it. The 
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study performed an overview on the existing approaches for integrating ergonomics (working 

environment) into production planning. Some ergonomic assessment tools and design processes 

were reviewed; however no manufacturing case was illustrated to demonstrate the effect of 

human factors or ergonomics in the production planning process. Othman et al. (2012) developed 

a new approach to integrate human factors (worker‘s difference) with workforce planning. 

Human factors in the study referred to as skills, training as well as workers‘ personalities and 

motivation. A multi-objective model was built, which could assist a manufacturing planner to 

determine the required work levels for each position, the number of trained workers as well as 

overtime hours. 

To conclude, neither of the aforementioned approaches has included the impact of work injury. 

Therefore, it is in urgent need of a new technique for production planning that includes work 

injury factor and to study the effect of work injury cost on the total production cost. 

 

1.3 Research Objective and Scope 

 

To address the above questions, there were two research objectives proposed for this thesis study 

and they are: 

o Objective 1. Develop a production planning model to incorporate work injury cost into 

the total production planning cost model. 

o Objective 2. Study the significance of the work injury factor to the production planning 

in terms of production cost. 
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It is noted that for the first objective, a linear model was tailored for use, as the purpose of this 

thesis was not in the pursuit of accuracy of the model but the sufficiency to study the effect of 

work injury on the cost of production planning. Besides, a linear production planning model has 

been widely used in both academia and practice. The linear production planning model has an 

excellent solver, which can thus facilitate the analysis of the model. In particular, LINDO
TM

 

software (which is a solver to linear programming model) was applied in this thesis for its wide 

availability of the software.  

For the second objective, different designs of worker postures were tried for finding their work 

injury level and cost incurred. The work injury analysis was performed by a software system 

called Delmia, and the work injury cost was calculated by a program developed in our research 

group in the past (Lin, 2008). 

 

1.4 Organization of the Thesis 

 

This thesis consists of five chapters. The remaining four chapters are outlined as follows: 

Chapter 2 presents a literature review to summarize the significance of the existing literature 

work and the need of the proposed research objectives in Chapter 1. The literature review 

covered both material and human factors in production planning and methods to evaluate them. 

Further, in this chapter, the computer system that will be applied to analyze work injury and 

calculate the cost of work injury will also be described to give a background for the total 

production model, including the work injury cost in the next chapter. 
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Chapter 3 describes the mathematical models of production planning in three different scenarios. 

First, the traditional production planning model was written in a linear programming model with 

the demand, labor and inventory constraints. The model was based on an assembly line 

production where repetitive manual assembly operations are intensive. Second, the foregoing 

model was extended by incorporating the working injury cost into the model, and at this point, 

the work injury level was pretty high. Third, the design of the worker posture was modified such 

that the work injury level was pretty low, and accordingly a new production planning model was 

implied. Further, four cases of assembly line production (including worker posture) are described, 

drawn from the literature, for further analysis of them. 

Chapter 4 performs an analysis of the four assembly lines based on the production planning 

models (three model scenarios: traditional production planning, production planning of the 

assembly system with high level of work injury, production planning of the assembly system 

with low level of work injury). 

Chapter 5 draws the conclusions from this thesis study and discusses the research contributions 

of the study and future work. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Introduction 

 

This chapter provides a literature review that is expected to help to further understand the 

motivation and proposed research objectives of this study. The review was also expected to give 

a further background for the remaining parts of the thesis. Section 2.2 reviews typical production 

planning methods and cost models, including their applications, advantages and disadvantages. 

Section 2.3 introduces the basic idea of work injury as well as the measurements and 

mathematical models. Section 2.4 discusses the linear programming technique. Section 2.5 

revisits the proposed research objectives of the thesis in light of their necessity and urgency. 

 

2.2 Production Planning 

 

2.2.1 Production planning concept 

Production planning does not act alone, rather it usually comes with other production activities, 

such as aggregate production planning, production scheduling and production control (Laperrière 

et al., 2014). The relationship among these various activities is shown in Fig. 2.1.  

According to Vallmann et al. (1997), ―Production planning and control system (PPC) is usually 

introduced first in order to shape an explicit understanding of core operations inside an industry 
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organization. Production planning and control is the hub that ties up with product design and 

manufacturing engineering. It addresses the process that translates business plans into reality.‖  

In the production planning and control system, the production activities are carried out through a 

series of decisions. The process can be described in a hierarchical way according to Pinedo 

(2005). The aggregate production planning covers the first stage, which determines the quantity 

of each product for a long-term planning period. It is based on the demand of customer, 

considering the work force level, production rate and inventory status, and it is the start of the 

detailed plans. The second stage considers the sequence of production for planned products on 

weekly or daily basis, which is the objective of production scheduling. In the next stage, 

production control monitors the real-time information in production processes such as the 

inventory and work force level to make decisions for adjustment. 

Since the focus of this thesis is production planning, not production scheduling, it is worth to 

clarify the difference between them. First, the main function of production planning is to 

determine the quantities and product mix, while production scheduling is to sort out the priorities 

of the products to be finished. Second, they can be distinguished from the amount of decisions 

and value involved (Mönch et al., 2013).  

The term ‗production planning‘ in this thesis is referred to as an aggregate production planning. 

It is concerned with ―determination of production, inventory and work force level to meet the 

demands over a planning horizon that ranges from six months to one year‖ (Gallego, 2001). 

Production planning is a management tool in determining the quantity of products, allocating 

material, manpower, machine and financial resources. The production activities are conducted 

based on the pre-determined demand and within a certain period of time. 

http://link.springer.com.cyber.usask.ca/search?facet-author=%22Lars+M%C3%B6nch%22
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Figure 2.1 Production planning and control framework  

(Vallmann et al., 1997) 

 

2.2.2 State of arts of production planning 

In the real world manufacturing scenario, the various production planning settings such as 

product mix, inventory status and work force level are so complex that the optimization 

technique is usually employed to tackle the complexity in determining these settings. There are 

two categories of effective techniques according to the current literature: they are the analytical 

techniques (Jordan et al., 2002; Chinneck, 2004) and genetic algorithm (GA) or evolutionary 

algorithm (Park et al., 2007, Chan et al., 2005 and Elahipanah et al., 2008).  

The analytical techniques include linear programming (LP) and mixed integer programming 

(MIP), and they are relatively matured. Most of them have proved that optimal or near optimal 
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solutions can be achieved for certain types of problems (Lair, 2008). Haq et al. (1991) discussed 

the MIP method in dealing with the planning problem of multiple plants over multiple time-

periods, considering the inventory costs and penalty costs. A mixed integer linear programming 

(MILP) coded method was developed by Hamedi et al. (2009) to solve the similar production 

planning model but without inventory costs included, and LINGO is a software system to solve 

the linear optimization model. Additionally, these two studies (Haq et al., 1991; Hamedi et al., 

2009) limit the manufacturing to the production of a single product. Dhaenens-Flipo and Finke 

(2001) created a MILP formulation which is solved with CPLEX to cope with the production 

planning model of multiple product types and plants over multiple time-periods without penalty 

costs. 

Chen and Wang (1997) applied the linear programming technique to solve the production 

planning model including different product types, multiple plants and time-periods. Kanyalkar 

and Adil (2008) presented a similar planning model along with inventory and penalty costs via a 

linear mathematical formulation and had it solved using GLPK solver. 

However, there are the challenges for the analytical techniques when solving complex realistic 

planning problems (Fahimnia et al., 2013). First, the increasing number of variables and 

constraints intensifies the complexities in building the mathematical models (Jordan et al., 2002). 

Consequently, the analytical techniques are only applicable to small or medium size planning 

problems according to Lair (2008) and Fahimnia et al. (2013). Second, even though the complex 

problems were interpreted into linear models, simplification of the model is inevitable and may 

incur oversimplification. On the other hand, Dantzig (2002) concluded that the significant 

increase of the complexity in the model will require a highly configured computer and long 

computing time to derive the solutions. 
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More efficient tools are urgently required to solve complex manufacturing problems. GA (or 

evolutionary algorithm) is such a useful technique that can be employed in the production 

planning optimization (Park et al., 2007). The basic idea of GA is to develop computer codes to 

mimic the evolution of natural systems in solving combinatorial optimization problems (Klein et 

al., 2015).  

A multi-objective GA was proposed by Chen et al. (2005), which was used to solve the 

production planning problem, minimizing the total flow time, machine workload unbalance, 

greatest machine workload and total tool cost. This approach obtained a set of solutions in a 

single run. Chakrabortty et al. (2013) employed a similar multi-objective GA approach to deal 

with the multi-period aggregate production planning. The objective was to minimize the total 

cost considering the inventory, labor, overtime, subcontracting and back-ordering levels, and the 

proposed method achieved a compromise solution to the planning problem. Yimer and Demirli 

(2010) proposed a GA based solution procedure in the planning problem of multiple product 

styles, multiple production distributions with penalty costs. It also provided a comparison with 

analytical techniques. Although GA techniques have the advantage in solving planning problems 

with a large number of variables, one challenge of the GAs in the optimization procedure is that 

it may be difficult to set up the constraints due to the large number of variables according to 

Fahimnia et al. (2012) and Klein (2015).  

Some hybrid methods have been proposed, which foster the merits of both the analytical 

techniques and GAs. Chan et al. (2005) developed a combined linear programming approach and 

a genetic algorithm and analytical hierarchy process to solve the multiple plants and multiple 

end-users planning model. The results indicated the hybrid algorithm is robust and reliable. 

Ganesh et al. (2005) proposed a hybrid genetic algorithm and simulated annealing (GA-SA) for 
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continuous time-based production planning problems. The results of GA-SA appeared to be the 

best compared to GA or SA. Such a combined algorithm is powerful in both the global search 

and local search. 

 

2.2.3 Human factors in production planning 

The concept of human factors refers to the role of humans in technical systems. Humans are 

always involved in any technical system at different levels. Humans are highly individualized, 

and therefore, there is certainly an issue of whether a human fits a technical system. The 

unfitness of humans to technical systems may even cause injuries in the humans, which is the 

main concern of human factors in this thesis.  

McKay et al. (2006) reviewed the positive and negative aspects of human factors in planning and 

scheduling, as well as the consequences when these aspects were ignored or overlooked. The 

concepts for better decision support mechanisms were proposed incorporating the individual and 

organizational aspects of planning and scheduling. The review was based on four elements:  

autonomy, transparency, level of support and presentation of information.  

A new approach was proposed by Othman et al. (2012) to integrate workers‘ differences with 

workforce planning in the aspects of skills, training as well as workers‘ personalities and 

motivation. A multi-objective optimization model was built and solved to determine the required 

work levels for each position, the number of trained workers and overtime hours. The results 

showed this approach could be employed in a manufacturing system to assist in decision-making. 
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2.2.4 Cost in production planning 

According to the comment of Phruksaphanrat et al. (2006), minimization of the production cost 

is one of the most important concerns in production planning. The costs in production planning 

are generally divided into three kinds according to Gallego (2001): (1) basic production costs, 

typically including the material cost, labor cost and overhead cost; note that the overhead cost is 

incurred indirectly in making the product, which includes the costs required in the areas such as 

electricity, gas, insurance of the facilities and so on (Swamidass, 2000); (2) costs associated with 

the production rate, including the costs of hiring and lay-off, training as well as overtime costs; 

(3) inventory related costs. 

Rasmussen (2013) concluded two principles for cost calculation: opportunity cost principle 

(implicit cost) and accounting principle (explicit cost). Opportunity costs are equal to the 

earnings lost and are the key basis for all economic planning. The accounting principle is used in 

the calculation of a financial profit and is, and as such, directed towards the past (―history 

writing‖). The accounting principle and its alternative versions are further discussed in 

(Rasmussen, 2013; P. 277-286). Note that the cost in production planning considered in this 

thesis includes the raw material costs, labor costs and inventory costs, which will be discussed in 

detail in Section 3.2.1. One of the new elements in this thesis is work injury cost, which will be 

discussed in detail in Section 3.4.1. 

 

2.3 Work Injury 

 

2.3.1 Motivation of work injury concern in production planning 
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Taking an insight into the recent report ―Occupational Injuries and Diseases in Canada 1996-

2008‖ (Labour Canada, 2010), several highlights might draw attention to the public. The 

incidence rate of time-loss injuries per 100 workers across all jurisdictions in Canada has steadily 

declined in all years since 1996 (with the exception of 2000 only).  

Yet, over the 2000 to 2012 period, compensation payments to injured workers, after adjusting for 

inflation, have shown a generally increasing trend (Fig. 2.2.). By factoring into direct and 

indirect costs, the total costs of occupational injuries to the Canadian economy can now be 

estimated to be more than $19 billion annually.  

In addition, up to ten percent Canadian adults had a repetitive strain injury (RSI) critical enough 

to limit their normal activities, reported in 2000/2001 (Cole et al., 2005). It has been found that 

most of the injuries resulting from excessive repetitive motion, over-exertion or improper 

production assembly design. Unfortunately, no work injury cost has yet to be incorporated in 

production planning and scheduling in literature, and as such, no knowledge available about 

whether the work injury cost may be a significant factor in the total production cost. Most studies 

on work injury have been focused on how to evaluate work injury given a product and assembly 

posture of a worker on the product. There are also studies on how to improve a workplace in a 

safe and healthy condition. 
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Figure 2.2 Current year benefit costs incurred by work injury 

O‘Sullivan and Gallwey (2005) proposed an assessment tool for the workplace injury and the 

potential risk for the electronic assembly work. This method provided a framework for both 

expert ergonomists and non-expert employers. Emodi (2007) proposed a general computer-based 

methodology for analysis of work injuries given an assembly line where human workers perform 

repetitive operations. The proposed methodology for analysis and synthesis was implemented in 

a real assembly line to understand the effects of different work activities on the human body. A 

new method for simulating manual work activities was introduced by Fritzsche et al. (2012), 

which was an assessment system to avoid the risk factor of the aging workforce. This simulation 

technique enabled modeling of worker‘s movements with consideration of the required skills and 

knowledge of the worker. Moreover, the technique could also help production planners analyze 

the ergonomic conditions of workers to avoid potential overloads. Hernandez et al. (2012) 

reviewed the current situation of work-related musculoskeletal disorders (WRMDs) in Handbook 
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of Occupational Health and Wellness. They provided a review of common work injuries, 

including those resulting from exposures in the work environment. For example, when 

assembling the products, workers are required to use hand tools along with vibrations for hours a 

day. Researchers found that the frequency and duration of these exertions increase the upper 

limb disorders (van Rijin et al., 2010). The review also indicated that further investigation and 

intervention are necessary to limit the work-related disorders and increased costs. 

 

2.3.2 Measurement of work injury 

National Institute of Occupational Safety and Health (NIOSH) published a practical guide for 

lifting task or operation (NIOSH, 1981; 1991). The recommended weight limit and limit index 

for lifting task were given to avoid back and forearm injury. Waters et al. (2011) evaluated the 

revised NIOSH lifting equation (RNLE) for the assessment of low back pain (LBP). The results 

indicated that the risk of LBP increases as the limit index grows. The Snook and Ciriello table 

was used quite often to find the maximum acceptable weight for a particular task (Snook and 

Ciriello, 1991). Rapid Upper Limb Assessment (RULA) database (McAtamney, 1993) is the 

experimental approach to evaluate the work injury level of upper limb. 

Computer-aided approaches to analyzing work injury have been proposed in the recent past years. 

In order to realize the approaches, a computer manikin modeling system (Lin, 2008) was 

employed. In this way, a set of parameters featuring a human‘s characters such as population, 

height, weight and gender are captured in the model. Alzuheri et al. (2010) reviewed the 

common ergonomics measuring techniques of manual assembly postures and pointed out the 

limitations of single ergonomic measure implementation. The paper further proposed a 

framework that combines individual measurements into a single objective function (e.g., 
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desirability function (Derringer et al., 1980), which simultaneously optimized several response 

variables). Then, a gradient search technique such as Response Surface Methodology (RSM) or 

GA was suggested to solve the function. As a result, the conflicting conclusions from individual 

measures might be avoided. 

Kinect (by Microsoft) is recently implemented in ergonomic assessment (Dutta, 2012) and pose 

estimation (Obdrzálek et al., 2012). The precision and accuracy of the Kinect system were 

determined by Bonnechère et al. (2014). Spector et al. (2014) proposed an error-correction 

Kinect-based tool to estimate the NIOSH lifting equation parameters automatically. The system 

combined the Kinect skeleton with an error-correction regression model to improve the accuracy 

of estimation. The results indicated the possibility to automate the calculation of task postures 

and task frequency. Additional force assessments were prompted to support the findings. 

 

2.3.3 Work injury cost 

The cost of work injury in this thesis is referred to as one incurred by repetitive motions in 

assembly operations, which is mentioned in Section 1.3. It is the indirect cost to the loss of 

production output (Currie et al., 2000). Thus, estimation of work injury cost is the prerequisite to 

evaluate the impact of work injury in a production system.  

Emodi (2007) developed a method for estimating the cost of work injury in an assembly line. 

The method was based on a large volume of historical data of the cost of worker‘s injury; 

particularly the database contains 20,000 injury claims and was owned by Saskatchewan 

Workers‘ Compensation Board (SWCB). However, his method only took a simple average of 
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individual cases, which could lead to large errors in the cost estimation in this particular 

application. 

Lin (2008) improved the method of Emodi (2007) and proposed with two methods to estimate 

the repetitive work injury cost. Lin‘s methods considered the age, gender and work injury levels 

as input. The first method of Line (2008) was based on the artificial neural network (ANN) 

technique which was a non-linear model. The second method was a linear function by linear 

regression (LR) technique. It is noted that this thesis employed the LR method for the cost 

estimation for repetitive work injury for the sake of simplicity but without loss of generality, as 

the methodology for incorporating the work injury cost is equally applied to any non-linear 

regression model. Details of the LR method will be presented in Chapter 3.  

 

2.4 Linear Programming and Its Application in Production Planning 

 

Linear programming is one of the optimization techniques widely used for production planning, 

particularly useful for optimal allocating of resources among competing demands. It possesses 

the following characteristics and assumptions: objective function, decision variables, constraints, 

feasible region, linearity, proportionality and additivity, non-negativity (Eiselt and Sandblom, 

2012). Linear here refers to the fact that both the objective and constraint have a linear relation 

with the decision variable. Applying linear programming to production planning is for example 

the work of planning a product family (Krajewski, 2005) and the work in planning mixed 

products (Onwubolu, 2002), respectively. 

Linear programming can also be used to solve the management problems such as distribution, 

inventory, scheduling, and so on. Spitter et al. (2005) developed the models for capacity 
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constrained Supply Chain Operations Planning (SCOP) with arbitrary supply chain structures. 

The SCOP problem was solved with linear programming (LP) and two LP approaches were 

discussed. A special case of the capacitated lot sizing problem (CLSP) was studied by Akbalik 

and Penz (2009). The aim was to achieve optimal production planning without backlogging. 

Three MILP formulations were given in the study to simplify the CLSP. Rasmussen (2013) 

provided a case of the application of LP to an agricultural operation planning. A combination of 

several methods was employed to develop a model for the total planning of an agricultural 

operation.  

Considering the above advantages, LP was selected to model production planning in this thesis. 

A further consideration of choosing LP was also that the focus of the thesis is to incorporate a 

new production cost (i.e., work injury cost) into the existing production planning model which is 

a LP model and to examine the effect of this new cost to the total cost. Therefore, accuracy of the 

model was considered as comparable with the accuracy of the model without including the work 

injury cost.  

LINDO
TM

 software is usually employed to solve the linear production planning model due to its 

wide use in industry as well as of efficiency in solving the model. In this software, the algorithm 

is Simplex method (LINDO System, Inc., 2003). Simplex method (algorithm) was proposed by 

George B. Dantzig and is an efficient algorithm for LP problem (Pan, 2014). As per Gass et al. 

(2013), ―The method starts with a known basic feasible solution or an artificial basic solution, 

and finds a sequence of basic feasible solutions (extreme-point solutions) such that the value of 

the objective function improves or does not degrade‖. In other words, the algorithm is the 

process that the starting vertex moves to the adjacent vertex until the maximum or minimum of 

the objective function is reached (Pan, 2014). 
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2.5 Conclusion 

 

A literature review on the problem of production planning and linear programming techniques to 

solve this problem was presented in this chapter. The review reveals that the work injury cost is 

not included in the cost for production planning, though there were few studies on other issues of 

human factors in the context of production planning, such as work force planning. As discussed 

before in Chapter 1, the work injury cost in Canada seems to be a considerable amount and work 

injury itself is not unpopular among Canadian adults. Therefore, the proposed research objectives 

as presented before in Chapter 1 are worthy of study, and the outcome of the study is expected to 

give a clear picture of how significant the work injury cost would be in the total production cost. 
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CHAPTER 3 PRODUCTION COST MODEL 

 

3.1 Introduction 

 

This chapter describes a mathematical model of production planning in terms of cost with 

consideration of work injury. Section 3.2 presents the model for production planning in terms of 

cost (not yet including the work injury cost), i.e., the specification of the objective function and 

constraints in the context of optimization model. In Section 3.3, four different production 

planning cases, drawn from the literature, are illustrated, and they serve as a test-bed for the 

study. Then, how the work injury cost is incorporated into the total production cost model is 

discussed, and an integrated production cost model (i.e., the model explicitly including the work 

injury cost and implicitly including the worker‘s posture for assembly of products) is presented 

in Section 3.4. There is a summary in the final section.  

 

3.2 Linear Production Planning Model 

 

Production planning model is an optimization model, which takes the total production cost as an 

objective function with constraints on the decision variable or variable to be determined in light 

of the optimum of the objective function subject to the constraint. The decision variable refers to 

production quantity, inventory quantity and outsourcing quantity. In many cases, costs and 

production quantities have a linear relation, and that is why linear model is called (also see the 



21 
 

discussion before in Chapter 2). The development of the model thus refers to the specification of 

the objective function and constraint function.  

 

3.2.1 Objective function 

The total production cost in traditional production planning consists of material costs, labor costs 

and inventory costs. Let C represent various costs. The model of production planning can be 

described by 

                                                                           (3.1) 

where, 

Cproduction  : the total production costs; 

Cmaterial  : the material costs; 

Clabor  : the labor cost; 

Cinventory        : the inventory cost. 

There were the following assumptions in the foregoing costs: 

 Material costs: the raw material costs that directly contribute to the finished products and 

the overhead costs that support the production process such as managerial cost and utility 

cost. 

 Labor cost:  the worker salary and pension. 

 Inventory cost: the holding cost of products left over in stock. 

Further considerations in the model are: (1) production planning is for single product, (2) the 

planning horizon is up to 12 months, and (3) the work force level is stable (i.e., no hiring or lay-

off during the production period). The objective function of the model is as follows: 
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                                                                               (3.2) 

and it can be further written into 

                                       
 
   

 
   

 
                        (3.3) 

where, 

t        : the time period (t=1, 2, 3, …, n, represents January, February, March, …, December); 

CM     : the unit production cost of product; 

Pt      : the units of product fabricated (assembled) during the regular working time in period t; 

Ot      : the units of product fabricated (assembled) during the overtime in period t; 

CR      : the unit labor cost during the regular working time; 

Ht      : the regular working time labor hours required in period t; 

CE      : the unit labor cost during overtime; 

Et       : the overtime labor hours required in period t; 

CI      : the unit inventory cost; 

It       : the units of product to be left over as an inventory during period t. 

The first part in the model, i.e. Equation 3.2, is the material cost over the planning period; the 

second part is the overall labor cost, including the regular working hour cost and overtime cost 

over the planning period; the third part is the inventory cost for over-produced products over the 

planning period. Further, the decision variables in the model are: Pt, Ot, It. 

 

3.2.2 Constraints 

There were four constraints on the decision variables, and they are described below: 
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 Demand satisfaction constraint: 

The units produced in the current production, including both the regular time and overtime 

production volume together with the previous period inventory, should be greater than or equal 

to the demand in the current period with or without leftover units (It=0). This constraint can be 

expressed as: 

                                                                    (3.4) 

where, 

It-1     : the units of left over products in the previous period of t; 

Dt     : the units of product demands in time period t. 

 Labor hour limit constraint: 

Regular working hours in period t should be less than 8 hours per day, monthly working days as 

well as employee numbers. Overtime working hours should not exceed the maximum allowable 

hours per month by law. This constraint can be expressed as: 

         ,                                                                (3.5) 

where, 

dt      : the number of working days in period t; 

W     : the number of employees; 

         : the maximum allowable overtime hours in period t. 

 production rate constraint: 

Assume that the unit time is one hour, and the relation between the produced units and labor hour 

can be expressed as: 

         ,                                                 (3.6) 

RH      : the production rate during regular working time; 
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RE       : the production rate during overtime 

 non-negative constraint: 

The number of planned products, the number of demands and the number of left-over products 

are non-negative, respectively, that is: 

                                                              (3.7) 

 

3.3 Four Cases 

 

To facilitate the study, four particular cases of single product production are established to serve 

as a test-bed. These cases are drawn from the literature and the author‘s own experience in 

industry. 

Case study 1: 

In the first case, the data are taken from Chopra et al. (2007). The company in the example is 

called ―Red Tomato Tool‖ which is a manufacturer of multi-purpose gardening tools. The 

production plan of this company is over a six-month horizon, which is given in Table 3.1. 

Table 3.1 Product demand for Case 1 

Period (t) January February March April May June 

Demand (Dt) 1600 3000 3200 3800 2200 2200 

 
Table 3.2 Cost data for Case 1 

Item Cost 

Material cost - CM $10 / unit 

Inventory cost - CI $2 / unit / month 

Regular time labor cost - CR $4 / hr 

Overtime labor cost - CE $6 / hr 
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In addition to the data given in Table 3.2, other initial settings and constraints are also considered. 

The company has a staring inventory of 1000 units, a workforce of 80 employees. There are 20 

working days in each month. The regular working time is eight hours a day and the overtime for 

each employee is limited to 10 hours monthly. A minimum of 500 units is required by the end of 

planning period (June). The production rate is 4 hours per unit. 

Table 3.3 Constraints data for Case 1 

Item Value 

Initial inventory – I0 1000 unit 

Period end inventory – I6 500 unit (minimum) 

Regular time labor hours - Ht ≤12800 hr 

Overtime labor hours - Et ≤800 hr 

Production rate 0.25 unit / hr 

Case study 2: 

In the second case, the practical data of Daya Technologies Corporation is used (Wang et al., 

2005). The company is a producer of precision machinery and transmission components. The 

production planning is regarding a standard ballscrew over a four month planning horizon. Table 

3.4 gives the monthly demand of product from May to August. 

Table 3.4 Product demand for Case 2 

Period (t) May June July August 

Demand (Dt) 1000 3000 5000 2000 

As shown in Table 3.5, the production cost includes the material cost and the labor cost to 

assemble one ballscrew. Additionally, the initial inventory in period 1 (May) is 400 units and the 

end inventory in period 4 (August) is 300 units. The initial labor level is 158 hours and the 

production rate is 0.05 hour per unit. All constraint parameters are listed in Table 3.6. 
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Table 3.5 Cost data for Case 2 

Item Cost 

Regular time production cost – CR $20 / unit 

Overtime production cost – CE $30 / unit 

Inventory cost – CI $0.3 / unit / month 

Table 3.6 Constraints data for Case 2 

Item Value 

Initial inventory – I0  400 unit 

Period end inventory – I4  300 unit 

labor hours – Ht + Et ≤ 158 hr 

Production rate  20 unit / hr 

Case study 3: 

The data of the third case is adapted from the study by Filho et al. (2007). The data in this 

production planning example are summarized in Table 3.7 – 3.9. The planning horizon is 12 

months and the demands are listed in Table 3.7. 

Table 3.7 Product demand for Case 3 

Period (t) Jan Feb Mar Apr May Jun 

Demand (Dt) 1200 1500 1250 1800 1350 2200 

Period (t) Jul Aug Sep Oct Nov Dec 

Demand (Dt) 2100 2300 1580 1470 1350 1100 

 

Table 3.8 Cost data for Case 3 

Item Cost 

Regular time production cost – CR $129 / unit 

Overtime production cost – CE $180 / unit 

Outsourcing cost – CS $219 / unit 

Inventory cost – CI $15.5 / unit / month 
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There is no initial inventory at the starting period (January), while the units in stock for each 

period should be kept under 1500. The capacity for each month is 900 units during regular time 

production and 300 units during overtime production. In this case, the outsourcing production is 

considered to complement the in-house production capacity. For each month, the outsourcing 

units should not exceed 600. The labor level is limited to 10 employees each month. Case 3 has 

different production rates during regular time and overtime (Table 3.9), while the production 

rates of the other cases in regular time and overtime are the same. 

Table 3.9 Constraint data for Case 3 

Item Value 

Initial inventory – I0  N/A 

Inventory – It 1500 unit (maximum) 

Outsourcing limit – St ≤ 600 unit 

labor hours – Ht ≤ 1600 hr 

Regular time production rate   0.5625 unit / hr 

Overtime production rate 0.1875 unit / hr 

 

Case study 4: 

The fourth case is based on the CNH Company‘s presentation of operations management 

overview (CNH, 2013) and the master thesis of Lin (2008). This company is a manufacturer of 

farm equipment and machinery, such as planters and harvesters. The production planning is for 

the component called ―row bar‖, which is a subassembly of the corn header system. There are 

two employees involved in this assembly station every day for 8 hours. Neither overtime nor 

inventory is considered in this example. All the data settings can be found in Table 3.10 – 3.12. 
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Table 3.10 Product demand for Case 4 

Period (t) Jan Feb Mar Apr May Jun 

Demand (Dt) 104 95 87 40 48 40 

Work days (Wt) 23 19 19 20 24 20 

 

Table 3.11 Cost data for Case 4 

Item Cost 

Material cost – CR $3,125 / unit 

Regular time labor cost – CR $15 / hr 

 

Table 3.12 Constraints data for Case 4 

Item Value 

labor hours – Ht ≤ (Wt x 8x 2) hr 

Regular time production rate   0.2 unit / hr 

 

3.4 Work Injury Cost Model 

 

3.4.1 Introduction 

A linear work injury cost model (Lin, 2008) was employed in this thesis to compute the cost for 

repetitive work injuries. The model (Lin, 2008) is re-visited here, which is: 

                                                            (3.8) 

where, 

CWI        : the cost of work injuries;  

             : the coefficient of multiplier associated with each variable X1 to X7;  
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X1             : the type of business M61; 1: Mills and Semi-medium Manufacturing;  

                   0: otherwise; 

X2             : the type of business M81; 1: Metal Foundries and Mills; 0: otherwise; 

X3             : the type of business M91; 1: Agricultural Equipment; 0: otherwise;  

X4             : the type of business M92; 1: if it is Machine Shops, Manufacturing;  

                  0: otherwise; 

X5            : worker‘s age;  

X6            : gender; 1: if it is male; 0: otherwise; 

X7            : the level of work injury; 

ε              : the error term. 

The work injury levels of different body parts are defined in Table 3.5 (Lin, 2008). 

Table 3.13 Work injury level range 

Part of Body Level of work injury 

Upper Arm 1-6 

Forearm 1-3 

Wrist 1-4 

Neck 1-6 

Trunk 1-6 

Leg 1-7 

In order to determine the coefficient of each independent variable in Equation 3.8, the statistics 

software SPSS
®
 was employed (Lin, 2008). At the very beginning of this process, all the 

historical data such as age, gender, level of work injury were redefined or normalized for a better 

convergence in linear regression. After that, an observation was performed to investigate the 
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relevancy between the independent and dependent variables. However, there was still a non-

linear relationship between them. Therefore, the dependent variable, namely work injury cost, 

was modified by power transformation and it was redefined as LnCost. Finally, the modified data 

of the input and output were solved by SPSS
®

; as such, the work injury cost model is expressed 

from the following equations: 

LnCost(neck) = 4.584+ (-0.460)X1+(-0.195)X2+(-0.546)X3+(-0.341)X4+0.004X5+(-0.116)X6  

+1.343X7                                                                                                               (3.9) 

LnCost(leg) = 3.428+ 0.017X1+ (-0.108)X2+ (-0.106)X3+ 0.027X4+ 0.008X5+ 0.202X6+1.841X7 

                                                                                                                                                   (3.10) 

LnCost(Trunk)=3.909+(-0.138)X1+(-0.257)X2+(-0.207)X3+(-0.259)X4+0.008X5+0.004X6+1.840X7 

                                                                                                                                                   (3.11) 

LnCost(Forearm)=2.478+(-0.144)X1+(-0.144)X2+(-0.147)X3+(-0.067)X4+0.004X5+(-0.027)X6 

+2.820X7                                                                                                            (3.12) 

LnCost(upper arm) =3.471+ 0.063X1+ 0.086X2+ 0.060X3+ 0.048X4+ 0.006X5+ (-0.022)X6 +1.723X7 

                                                                                                                                                   (3.13) 

LnCost(Wrist) = 3.961+ (-0.360)X1+ (-0.005)X2+ (-0.267)X3+ (-0.339)X4+ 0.016X5+ (-0.048)X6 

+1.558X7                                                                                                                                                                   (3.14) 

In order to simplify the calculation of the work injury cost, Equation 3.9 to Equation 3.14 were 

further modified as per the following parameter settings. The type of business here was 

manufacturing, and thus X1=X2=X3=0, X4=1. The coefficients of variable ‗Age‘ and ‗Gender‘ 

were small enough to be neglected, which means that the main contribution to the work injury 

cost was the work injury level of each body segment. The modified equations for work injury 

cost were described below: 
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LnCost(neck) = 4.243+1.343X7                                                  (3.15) 

LnCost(leg) = 3.455+1.841X7                                                  (3.16) 

LnCost(Trunk)=4.168+1.840X7                                                   (3.17) 

LnCost(Forearm)=2.545+2.820X7                                                  (3.18) 

LnCost(upper arm) =3.519+1.723X7                                                 (3.19) 

LnCost(Wrist) = 3.622+1.558X7                                                  (3.20) 

 

3.4.2 Assumption of the work injury level for the cases 

From the above discussion, it is clear that the key step to calculate the work injury cost was to 

get the work injury level for a particular assembly posture. The work injury cases varied among 

the four production cases as collected before, since they had different production processes. In 

another word, in order to get the cost of work injury, specified assembly postures of workers 

were required for each of the production cases.  

To derive the value of work injury level, the following steps were performed via a digital 

manufacturing and production software, DELMIA
®
 V5. First, the ―Human Builder‖ module was 

implemented to build a manikin model to visualize the assembly postures. Second, the postures 

of the involved body segments were elaborated by the ―Posture Editor‖ window to simulate the 

postures of assembly production. Finally, the build-in ergonomics analysis module, namely 

RULA (Hedge, 2001), was employed to obtain the work injury level of the evaluated assembly 

posture. The assembly postures for the four production cases were set up, as shown in Fig. 3.1 to 

Fig. 3.3. The RULA assessment results were discussed in the next chapter. 
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Figure 3.1 Posture in Case 1 

For Case 1, the product assembled was a gardening tool. The worker was standing to install the 

components that were placed on a work table. The legs were balanced but not supported during 

the assembly process. The worker used a screw driver to tighten the parts, which meant that the 

worker‘s trunk was tilted forward a little bit and the neck was tilted down to focus on the 

components. The neck may bend to get a better view of installation if necessary. The upper arms 

were raised and adjusted together with forearms to the height of the work table. Rotation was 

required to align the center of the parts (Fig. 3.1). 
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Figure 3.2 Posture in Case 2 

For Case 2, the assembly process was completed with a seating posture. The worker was sitting 

on a stool to assemble the ballscrew components, which means that the legs could be regarded as 

supported and balanced. The postures of other body parts were similar to the scenario of Case 1. 

The main difference is that the components in this assembly process were much smaller than 

those in Case 1, and thus the wrist did not require any bending motion (Fig. 3.2). 

For Case 3, the product type in this scenario was not given; therefore the assembly postures of 

worker were not possibly specified. The worker postures in Case 1 (Fig. 3.1) and Case 2 (Fig. 3.2) 

were assumed for Case 3, respectively, for the purpose that a relatively large range of products 
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can be covered. Note that the gardening tool in Case 1 was relatively large in size, while the 

ballscrew in Case 2 was relatively small. 

 

Figure 3.3 Posture in Case 4 

In Case 4, the design of the assembly process is a standing posture. The worker has to lift the 

component to a height at eye level and install it onto the base product. The worker has to look up 

45 degrees in this process. As shown in Fig. 3.3, the worker may get back injury in this assembly 

posture. 
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3.4.3 Integrated linear programming model 

Let CWI denote a total work injury cost caused by repetitive assembly production over an entire 

production period. The cost of production planning in Equation 3.1 can be rewritten as follows: 

                                                                          (3.21) 

In the above equation,              denotes the total cost considering work injury. Note that work 

injury in this thesis refers to the injury from long-term repetitive motions. The relevant cost is 

calculated on a yearly basis as per the study by Lin (2008), and the work days each month are 

assumed to be 21.74 on average. In addition, the work injury cost is calculated based on the 

assumption of an 8 hour period (which is the daily regular working time). Finally, the effective 

work injury cost in all four cases over time period t is, 

    
 

  
 

 

     
 

 

 
            

 

       
                            (3.22) 

Substituting Equation 3.22 into Equation 3.3 leads to: 

                                       
 
   

 
   

 
    

 

       
             (3.23) 

CWI denotes the work injury cost of specific assembly production in each case over one year 

period, which is calculated by Equation 3.15 to Equation 3.20. The cost of the work injury in 

each case can be estimated by multiplying the actual work hours in their production planning 

periods. All the other variables and constraints are exactly the same as those in Equation 3.3.  

The first part of Equation 3.23 is the overall material cost over the production period; the second 

part is the overall labor cost (worker‘s salary) and the third part is the overall inventory cost for 

over-produced products in the production period; the fourth part is the work injury cost incurred 



36 
 

in the planning period. It is noted that the foregoing model, i.e., Equation 3.23, implicitly include 

the worker‘s assembly posture, (which can be generalized to the design of an assembly system), 

because the work injury level and cost must be upon the known worker‘s posture. For this reason, 

the proposed model is also called integrated production planning model with consideration of 

work injury cost.  

  

3.5 Summary 

 

The cost model of production planning with consideration of work injury was developed and 

presented in this chapter, which is applicable to assembly lines in general. The assumptions and 

constraints were adapted from Chopra et al. (2007), Wang et al. (2005), Filho et al. (2007) and 

CNH (2013) to establish four cases (i.e., specific assembly lines). The mathematical model of 

repetitive work injury (Lin, 2008) was employed to calculate the work injury cost. Consequently, 

Objective 1 described in Section 1.3 has been achieved by the proposed model. More details 

regarding the effect of the work injury cost on the total production cost will be studied in the next 

chapter. 
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CHAPTER 4 RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

 

This chapter presents the study of the effect of the work injury cost on the total production cost 

through the integrated production planning model as developed in Chapter 3. The first step is to 

solve the model with the help of LINDO
TM

 software. Section 4.2 presents screen-shots of the 

LINDO
TM

 interface. Section 4.3 describes the execution of the LINDO program for three 

scenarios: (1) a general production planning model (PPC), (2) production planning with high 

level of work injury (PPCWI), (3) production planning with low level of work injury (PPCWIM). 

It is noted that the so called high level and low level of work injury refer to the following 

situations: the high level of work injury corresponds to the worker‘s assembly postures as 

described before in Chapter 3 for all the four cases, while the low level of work injury 

corresponds to the worker‘s assembly posture for Case 4 (this study was restricted to this case 

only due to the availability of the information) – particularly the modified worker‘s posture (to 

be discussed later). Section 4.4 presents an analysis of the results produced from the preceding 

section. A summary is given in Section 4.5. 
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4.2 LINDO
TM

 program 

 

To run the LINDO program, one needs to specify the program through LINDO interface.  In this 

thesis, LINDO
TM

 6.1 Educational version was employed. The interface of the software for output 

is explained in Fig. 4.1, which is drawn from Lindo User‘s Manual (LINDO System, Inc., 2003). 

A couple of parameters need to be specified through the interface in order to run the LINDO 

program, and they are given below. 

 

Figure 4.1 Lindo
TM

 software interface 

 

 

 



39 
 

(1) Slack or Surplus 

The information of slack and surplus describes the behavior of solutions relative to the constraint. 

Particularly, slack refers to the (≤) constraint, while the surplus refers to the (≥) constraint. If a 

constraint is exactly satisfied as equality, both Slack and Surplus values will be zero. 

(2) Dual price 

It is the amount that the objective function would be improved when given a unit of increase in 

the right-hand side of the constraint. In a minimization optimization problem (which is the case 

in this study), if the dual price is negative, this implies that the increase of the right-hand side of 

this constraint by one unit would cause the objective function increase by that amount. 

(3) Reduced cost 

The reduced cost refers to the amount of penalty one would have to pay by increasing one unit of 

decision variable. From Figure 4.1, the reduced cost of product B in February (X21) is 640, and 

this means that the production cost of product B will increase by that amount when one more 

unit of B is produced in February. 

 

4.3 Simulation-based Analysis 

 

The following scenarios are considered to generate knowledge on how significant the effect of 

the work injury cost would be on the total production cost. 

Scenario 1: Production planning without consideration of work injury; 

Scenario 2: Production planning with high level of work injury; 

Scenario 3: Production planning with low level of work injury. 
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Note that validity of the model is out of question; as a linear production model is widely used in 

production practice. Validation of the model for the work injury cost is assumed to be accurate 

enough, which is supported by the validation testing in (Lin, 2008) (though the model used in 

this thesis only took a linear part of the model in (Lin, 2008)). On a general note, inaccuracy of 

the work injury cost model due to neglecting non-linear components may be tolerable, just as the 

situation that non-linear components in the traditional production planning model are neglected. 

 

4.3.1 Traditional production planning cost model 

The traditional production planning cost model refers to the model without consideration of work 

injury. In this section, the result of solving the traditional production planning cost model is 

discussed. For details of the command scripts, refer to Appendix B. 

Step 1: Specify the mathematical model (Equation 3.3) as a LINDO
TM 

model.  

This LINDO
TM

 model is named as PPC and saved as LTX file. The objective function here 

describes a minimization problem. 

Step 2: Include all constraints (Table 3.3, 3.6 & 3.9). 

Use ―SUBJECT TO‖ or ―ST‖ to write the constraints, including the product demand, work force 

limit, production rate, and non-negative constraint. 

Step 3: Define types of the variables. 

The volume of products and inventory should be an integer. ―GIN‖ command can be used to 

specify decision variables as integer. 

Step 4: Solve the model and record results. 
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Click on the ―SOLVE‖ button to run the LINDO
TM

 program. The values of all variables are easy 

to be read from the ―Report‖ window. In addition, the potential improvement of the objective 

function and constraint boundary are also recorded in the calculation result of the program output. 

In the following, the results of PPC for the four cases as introduced before in Chapter 3 are 

presented. 

PPC model for Case 1: 

 

Figure 4.2 Solver status window of C1_PPC.ltx 

Table 4.1 Output of model C1_PPC.ltx 

Period Jan Feb Mar Apr May Jun 

Pt (unit) 1000 3200 3200 3200 2200 2700 

Ot (unit) 0 0 0 0 0 0 

Ht (hr) 4000 12800 12800 12800 8800 10800 

Et (hr) 0 0 0 0 0 0 

It (unit) 400 600 600 0 0 500 
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As per Figure 4.2, the running time for solving model is less than a second. After 23 iterations, 

the overall production planning cost is $407,200 CAD (Appendix C (a)). From the data in Table 

4.1 and Table 3.1 & 3.2, it can be found that the raw material cost adds up to $155,000 CAD, 

taking 38.06 % of the overall production cost. The labor cost is $248,000 CAD, which takes 

60.90 % of the overall production cost. The inventory cost is $4,200 CAD, taking only 1.03 % of 

the overall production cost. The result is close to that of the literature (Chopra et al., 2007). This 

also provided a proof of the accuracy of the proposed model in Chapter 3. For the integrated 

production planning model, the accuracy of the model may also be implied, though the added 

work injury cost may cause some change. 

PPC model for Case 2: 

As shown in Figure 4.3, after 7 iterations, the overall production planning cost is $219,146 CAD, 

which is also available from the status window or from the output summarization (Appendix C 

(b)). Combining the data from Table 4.2 and Table 3.4 & 3.5, the production cost amounts to 

$218,000 CAD, including the raw material cost and labor cost. There is no overtime labor hour, 

so the overtime cost is zero. The inventory cost comes to $1,146 CAD, taking 0.52 % of the 

overall production planning cost. The result is close to that in the work of Wang et al. (2005). 
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Figure 4.3 Solver status window of C2_PPC.ltx 

Table 4.2 Output of model C2_PPC.ltx 

Period May Jun Jul Aug 

Pt (unit) 2280 3160 3160 2300 

Ot (unit) 0 0 0 0 

Ht (hr) 114 158 158 100 

Et (hr) 0 0 0 0 

It (unit) 1680 1840 0 300 

 

PPC model for Case 3: 

As per the report window Figure 4.4, the result (i.e., the minimal objective function) is 

$3,161,400 CAD after 51 iterations. The running time is nearly zero. Gathering the data from 

Table 4.3 and Table 3.7 & 3.8, the production cost, including material cost and labor cost, adds 

up to $3,096,300 CAD, which accounts for 97.94 % of the total production planning cost. This 

includes the regular time labor cost $1,393,200 CAD, the overtime labor cost $630,000 CAD and 
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outsourcing cost $1,073,100 CAD. The inventory cost is $65,100 CAD, taking 2.06 % of the 

overall production planning cost. The result reported is close to that in the study of Filho et al. 

(2007). 

 

Figure 4.4 Solver status window of C3_PPC.ltx 

Table 4.3 Output of model C3_PPC.ltx 

Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Pt (unit) 900 900 900 900 900 900 900 900 900 900 900 900 

Ot (unit) 300 300 300 300 300 300 300 300 300 300 300 300 

St (unit) 500 600 600 600 600 600 600 600 380 270 150 0 

Ht (hr) 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 

Et (hr) 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1067 

 

PPC model for Case 4: 

Figure 4.5 shows that the process terminated after 13 iterations. The overall production planning 

cost in Case 4 comes to $1,572,200 CAD. It is noted that overtime labor hour and inventory were 
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not considered in this case. The material cost comes to $1,534,375 CAD (97.66 %) by referring 

to Table 4.4 and Table 3.10 & 3.11. The labor cost ($36,825 CAD) accounts to 2.4 % of the 

overall production planning cost. The result is close to that of CNH‘s presentation (CNH, 2013). 

 

Figure 4.5 Solver status window of C4_PPC.ltx 

Table 4.4 Output of model C4_PPC.ltx 

Period Jan Feb Mar Apr May Jun 

Pt (unit) 104 95 87 64 77 64 

Ht (hr) 520 475 435 320 385 320 

 

4.3.2 Production planning cost model with high level of work injury 

The three assembly postures (Fig. 3.1 to Fig. 3.3), as discussed in Chapter 3, were analyzed, and 

their respective work injury levels are given in Table 4.5 as per RULA worksheet (Appendix A). 
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Table 4.5 Work injury levels for different assembly products 

Body Part 
Case 1 
(C1_WI) 

Case 2 
(C2_WI) 

Case 4 
(C4_WI) 

Neck 2 3 4 

Leg 2 1 1 

Trunk 1 2 2 

Forearm 1 2 1 

Upper Arm 2 2 2 

Wrist 2 1 3 

Table 4.6 Work injury cost for each case 

Work injury cost 
Case 1 
(C1_WI) 

Case 2 
(C2_WI) 

Case 3 
(C3_WI) 

Case 4 
(C4_WI) 

dollar / yr $4,610 $10,010 $4,610 $10,010 $21,966 

dollar / hr 2.2 4.8 2.2 4.8 10.5 

 

Note that the work injury cost, calculated before in Section 3.3.1, Equations 3.15 to Equation 

3.20 in particular, is in the context that the length of production is one year. There is a need to 

convert it to the equivalent hourly cost. From Equation 3.22, the yearly work injury costs and 

equivalent hourly costs are derived (Table 4.6). After that, production planning cost model with 

high level of work injury can be derived from Equation 3.23. The model of this scenario can be 

applied to the four cases in the same procedure in Section 4.3.1, and the corresponding 

LINDO
TM

 command scripts can be found in Appendix B (e) - (i). The program files are named as 

‗PPCWI for work injury integrated model‘. 

It is noted that the results for the decision variables (Pt, Qt, It) for the two scenarios, i.e., PPC and 

PPCWI, are the same (Appendix C (e) – (i)). From Equation 3.22, the work injury cost in each 

case can be concluded as follows: (1) for Case 1, the work injury cost accounts to 25.09 % of the 

overall production planning cost, that is $136,400 CAD during 6 month period; (2) for Case 2, 
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the work injury cost is $2,616 CAD taking 1.18 % of the overall planning cost; (3) for Case 3, 

the working postures are adapted from Case 1 and Case 2, therefore the work injury costs result 

in $79,083 CAD (2.44 %) and $172,544 CAD (5.18 %); (4) the work injury cost in Case 4 takes 

1.61 % of the overall production planning cost, that is $25,778 CAD. The work injury costs in 

four cases can be found in Table 4.7. 

Table 4.7 Costs of production planning with high level work injury 

Cost Case 1 Case 2 Case 3 Case 4 

Material $155,000 
$218,000 $3,096,300 

$1,534,375 

Labor $248,000 $36,825 

Inventory $4,200 $1,146 $65,100 n/a 

Work injury $136,400 $2,616 $79,083 $172,544 $25,778 

Total $543,600 $221,762 $3,240,483 $3,333,944 $1,596,978 

 

4.3.3 Production planning cost model with low level of work injury 

Take Case 4 as example (i.e., CNH case). The posture of the worker was shown in Fig. 3.3, 

which has high level of work injury. The modified posture is shown in Fig. 4.6, which has low 

level of work injury. In the modified posture, the workers are now sitting on a stool, and the 

object to be assembled is accordingly lowered down so that the worker does not need to look up. 

The upperarms are lowered down as well. The work injury levels of modified posture are listed 

in Table 4.8. The cost of the low level work injury (i.e., modified posture) can be calculated from 

Equation 3.15 to Equation 3.20, and the result is shown in Table 4.10. It is worth to note that the 

costs were still calculated based on the situation of every eight hour. 
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Table 4.8 Work injury levels of optimized assembly postures 

Body Part Case 4 

Neck 2 

Leg 1 

Trunk 2 

Forearm 2 

Upper Arm 1 

Wrist 1 

 

 

Figure 4.6 Modified posture for Case 4 

Table 4.9 Work injury cost for the modified posture for Case 4 

Work injury cost Case 4 

dollar / yr $6,250 

dollar / hr 3 
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Next, the similar procedure in Section 4.3.2 can be followed for this modified posture. The 

results can be generated by running the LINDO program. The output can be found in Appendix 

B (j). 

According to the program report, the structure of the production plan is the same as the output of 

the production planning with high level work injury (Appendix C (j)). From Equation 3.22, the 

costs of the low level work injury production planning are derived, and the result is shown in 

Table 4.10. As shown, the work injury cost of the modified posture has been reduced by 71.43 %, 

compared with high level of work injury. The work injury cost of the modified posture merely 

takes 0.47 % of the overall production planning cost, which is $7,365 CAD. 

Table 4.10 Costs of reduced work injury production planning for Case 4 

Cost Case 4 

Material $1,534,375 

Labor $36,825 

Inventory n/a 

Work injury $7,365 

Total $1,578,565 

 

4.4 Discussions 

 

4.4.1 Production planning cost analysis 

In the PPC model, the material cost occupied the majority of the overall production cost, as high 

as 99.48 % in Case 2 (Fig. 4.7). The PPC model only considered the material cost, labor cost and 

inventory cost over a period up to 12 month. However, in the real world, work injury is a hidden 
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cost existing in manufacturing industries especially to those job positions requiring repetitive 

movements and postures, such as installing parts and tighten movements on assembly line. 

The potential compensation cost of work injury is a very important factor that cannot be avoided 

as per Lin‘s research work (2008). In the second production planning model with high level of 

work injury, the overall cost has an obvious increase in all cases. Comparing the results in Table 

4.7 with that of Section 4.3.1, the overall production planning costs are raised by 33.50 %, 

1.19 %, 5.26 % (2.37 %) and 1.64 %, respectively. It can be easily found that work injury is the 

main cause of the higher production expenses. The portion of the work injury cost in production 

planning varies from 1.18 % to 25.09 % (Fig. 4.8). It might be negligible when the cost of work 

injury takes 1 % or less against the overall production cost, while it might be noticeable when it 

goes up to 25 % or more. From the employer‘s interests, actions must be taken to eliminate or 

relieve the unwanted cost in production planning.  

 

Figure 4.7 Cost distributions of traditional production planning 

Fortunately, a methodology was developed recently to optimize the work injury cost according to 

the assembly requirement of products. A Design Knowledge base (Emodi, 2007) and linear 

98.97% 99.48% 97.94% 97.66% 

1.03% 0.52% 2.06% 2.40% 

50% 

55% 

60% 

65% 

70% 

75% 

80% 

85% 

90% 

95% 

100% 

Case 1 Case 2 Case 3 Case 4 

Inventory 

Production 



51 
 

regression cost model (Lin, 2008) were implemented in this methodology. The work injury 

integrated production planning model in CNH case was further optimized by employing this 

methodology. As a result, the work injury cost was significantly decreased to less than one-third 

of that in the initial model (C4_WI), which yielded a 1.15 % less than the overall production cost 

(Table 4.11). 

 

Figure 4.8 Cost distributions of work injury integrated production planning 

Table 4.11 Cost distributions of Case 4 

Case 4 C4_PPC C4_WI C4_WIM 

Material 
$1,534,375 

(97.88%) 
$1,534,375 

(96.08%) 
$1,534,375 

(97.20%) 

Labor 
$37,785 
(2.34%) 

$36,825 
(2.31%) 

$36,825 
(2.33%) 

Work injury n/a 
$25,778 
(1.61%) 

$7,365 
(0.47%) 

Total $1,571,200 $1,596,978 $1,578,565 
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4.4.2 Effect of work injury cost 

The effect of work injury on the total production cost varies depending on (1) production rate, (2) 

working hours, and (3) work force. Revisiting the results in Table 4.6, the equivalent hourly 

work injury cost of Case 1 is less than half of that in Case 2. However, the total work injury cost 

of Case 1 accounts for 25 % of the overall cost, while the percentage in Case 2 only takes 1.18 %. 

One reason for this situation is that the production rates in these two cases are quite different, 

which were determined by the manufacturing process of the products. 20 units of product were 

done per hour in Case 2, while 4 hours were required to produce one unit in Case 1. Another 

reason is that the necessary working labor levels are different and the work injury cost is closely 

relevant to the working hours as mention in Lin‘s work (2008). Therefore, the greater the labor 

hour it lasts, the higher the work injury cost. 

The methodology to redesign the working postures might be a solution to lower the production 

planning cost. As listed in Table 4.11, the work injury cost decreased more than 70 % when the 

redesign of the worker‘s assembly posture for reducing work injury was applied, which is about 

$18,000‘s saving in the overall cost. Extra expenses must be charged to implement the solution, 

such as the costs of special fixtures and ergonomic stools.  

There might be another option to improve the situation, that is, to employ more workers in order 

to downgrade the work injury level on each worker. However, this will cause the increase of 

hiring cost. 
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4.5 Summary 

 

In this chapter, LINDO
TM

 software was employed to solve the production planning models 

developed in Chapter 3. The three production cost models are: (1) traditional planning model, (2) 

the production planning model considering work injury cost and (3) the model with improved 

design of the worker postures. The models were written into LINDO
TM

 command scripts and 

their outputs were worked out by the built-in solver. The results were discussed in terms of the 

production cost distribution amongst the three models. The percentage range of the work injury 

cost against overall the production cost was calculated for the four cases or test-beds. The 

simulation-based analysis was also performed for the modified worker‘s posture for Case 4, 

which shows that the modified posture with low level of work injury is significant to make the 

work injury cost nearly negligible in the total production planning in terms of cost. 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

 

5.1 Overview 

 

This thesis was focused on the study of production planning with consideration of repetitive 

work injury. The work injury cost has been largely ignored in literature when production 

planning is considered. This thesis has the following objectives (re-visited): 

Objective 1. To develop a production planning cost model by considering work injury cost. 

Objective 2. To study the effect of work injury on production planning in terms of cost. 

These objectives have been achieved by this study. An overview of the work conducted in this 

study is given as follows.  

A literature review was conducted on different approaches of building production planning 

models, which include linear programming, mixed integer programming and genetic algorithm, 

in Chapter 2. Chapter 2 also includes a state of art review of human in production planning in 

recent years (Hernandez, 2012). A finding was made that though a number of techniques have 

been developed to measure the level of work injuries, the effect of repetitive work injury on the 

cost in production planning has not been known. This thus justified the need of the research 

conducted in this thesis study.  
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In Chapter 3, a linear production planning model was developed to estimate the general 

production cost for an assembly line. The model was extended to include the work injury cost in 

the total model. Both models are a linear programming model to facilitate the model solving 

process, which is conducive to the application of the model and analysis of the model. Four cases 

of production planning were drawn from the literature for further examining the effect of work 

injury on production planning. In fact, these cases served as the test-bed for this thesis study, as 

the real time measurement of the production practices with consideration of work injury seems to 

be difficult.  

In Chapter 4, the four cases of production planning were run on the model as developed in the 

LINDO
TM

 software environment. Basically, three scenarios were compared, which are: (1) 

production planning without work injury considered, (2) production planning with high level of 

work injury, and (3) production planning with low level of work injury (which was achieved by 

redesign of the worker posture). The result shows that the work injury can increase the total 

production cost from 0.47 % to 25 %. 

 

5.2 Conclusions 

 

The following conclusions can be drawn from this, with respect to the research objectives of the 

thesis: 

(1) A linear programming model for production planning with consideration of work injury cost 

can be built with a tolerable inaccuracy. This model can be used in practice to improve the 

accuracy of production planning in terms of cost. 
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(2) The repetitive work injury may affect the production cost significantly, which could be up to 

25 % increase of the production cost without consideration of work injury. 

 

5.3 Contributions 

 

The contributions of this thesis to the field of production engineering are: 

(1) Providing the new knowledge that the cost of work injury may be quite significant in the total 

production cost, particularly the work injury cost may imply about 25 % increase of the 

production cost as opposed to the cost without consideration of work injury. The importance 

of this knowledge is that design of a work injury production system is necessary not only for 

improvement of human worker health and well being but also production cost reduction. 

(2) Advancing the modeling technology for production planning, enabling to model the work 

injury cost in production planning in terms of cost. This is helpful to project management in 

terms of cost and budget control. 

 

5.4 Future Work 

 

There are some works worthy of future effort. First, the production planning model in this thesis 

was limited to inclusion of the human work injury cost only. Other human factors such as work 

rotation and variable work force are worthy to be studied in future together with the work injury 

problem. 
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Second, the cost considered in this thesis has not included back order cost, penalty cost and other 

relevant costs. It is worthy of study of a more complete model for production planning by 

including them together with the work injury cost.  

Third, work injury may affect the product delivery time, and this factor needs to be studied in 

production planning in future.  

Finally, the mathematical model used in this study is a linear programming model, which leaves 

the model to be desired for more accuracy. A non-linear model may be worthy of study and a 

genetic algorithm could be applied to solving the non-linear model. 
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APPENDIX A 

RULA ASSESSMENT WORK SHEET 

Retrieved from http://ergo.human.cornell.edu/Pub/AHquest/RULAworksheet.pdf 

http://ergo.human.cornell.edu/Pub/AHquest/RULAworksheet.pdf


67 
 

APPENDIX B 

COMMAND SCRIPTS OF PRODUCTION PLANNING MODEL 

(a) Production planning model without work injury considered (Case 1) 

(b) Production planning model without work injury considered (Case 2) 

(c) Production planning model without work injury considered (Case 3) 

(d) Production planning model without work injury considered (Case 4) 

(e) Production planning model with high level of work injury (Case 1) 

(f) Production planning model with high level of work injury (Case 2) 

(g)  Production planning model with high level of work injury (Case 3 -1) 

(h) Production planning model with high level of work injury (Case 3 -2) 

(i) Production planning model with high level of work injury (Case 4) 

(j) Production planning model with low level of work injury (Case 4) 

 

Refer to the following link for details: 

https://owncloud.usask.ca/public.php?service=files&t=2f02d4c1223a56f50fbd3319ff54974d  

https://owncloud.usask.ca/public.php?service=files&t=2f02d4c1223a56f50fbd3319ff54974d
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APPENDIX C 

LINDO
TM

 PROGRAM REPORTS OF PRODUCTION PLANNING MODELS 

(a) Production planning model without work injury considered (Case 1) 

(b) Production planning model without work injury considered (Case 2) 

(c) Production planning model without work injury considered (Case 3) 

(d) Production planning model without work injury considered (Case 4) 

(e) Production planning model with high level of work injury (Case 1) 

(f) Production planning model with high level of work injury (Case 2) 

(g)  Production planning model with high level of work injury (Case 3 -1) 

(h) Production planning model with high level of work injury (Case 3 -2) 

(i) Production planning model with high level of work injury (Case 4) 

(j) Production planning model with low level of work injury (Case 4) 

 

Refer to the following link for details: 

https://owncloud.usask.ca/public.php?service=files&t=1c61019ee0382df856543c83ef990b3d 

 

https://owncloud.usask.ca/public.php?service=files&t=1c61019ee0382df856543c83ef990b3d

