97,274 research outputs found

    On two-echelon inventory systems with Poisson demand and lost sales

    Get PDF
    We derive approximations for the service levels of two-echelon inventory systems with lost sales and Poisson demand. Our method is simple and accurate for a very broad range of problem instances, including cases with both high and low service levels. In contrast, existing methods only perform well for limited problem settings, or under restrictive assumptions.\u

    An integrated shipment planning and storage capacity decision under uncertainty: a simulation study

    Get PDF
    Purpose – In transportation and distribution systems, the shipment decisions, fleet capacity, and storage capacity are interrelated in a complex way, especially when the authors take into account uncertainty of the demand rate and shipment lead time. While shipment planning is tactical or operational in nature, increasing storage capacity often requires top management’s authority. The purpose of this paper is to present a new method to integrate both operational and strategic decision parameters, namely shipment planning and storage capacity decision under uncertainty. The ultimate goal is to provide a near optimal solution that leads to a striking balance between the total logistics costs and product availability, critical in maritime logistics of bulk shipment of commodity items. Design/methodology/approach – The authors use simulation as research method. The authors develop a simulation model to investigate the effects of various factors on costs and service levels of a distribution system. The model mimics the transportation and distribution problems of bulk cement in a major cement company in Indonesia consisting of a silo at the port of origin, two silos at two ports of destination, and a number of ships that transport the bulk cement. The authors develop a number of “what-if” scenarios by varying the storage capacity at the port of origin as well as at the ports of destinations, number of ships operated, operating hours of ports, and dispatching rules for the ships. Each scenario is evaluated in terms of costs and service level. A full factorial experiment has been conducted and analysis of variance has been used to analyze the results. Findings – The results suggest that the number of ships deployed, silo capacity, working hours of ports, and the dispatching rules of ships significantly affect both total costs and service level. Interestingly, operating fewer ships enables the company to achieve almost the same service level and gaining substantial cost savings if constraints in other part of the system are alleviated, i.e., storage capacities and working hours of ports are extended. Practical implications – Cost is a competitive factor for bulk items like cement, and thus the proposed scenarios could be implemented by the company to substantially reduce the transportation and distribution costs. Alleviating storage capacity constraint is obviously an idea that needs to be considered when optimizing shipment planning alone could not give significant improvements. Originality/value – Existing research has so far focussed on the optimization of shipment planning/scheduling, and considers shipment planning/scheduling as the objective function while treating the storage capacity as constraints. The simulation model enables “what-if” analyses to be performed and has overcome the difficulties and impracticalities of analytical methods especially when the system incorporates stochastic variables exhibited in the case example. The use of efficient frontier analysis for analyzing the simulation results is a novel idea which has been proven to be effective in screening non-dominated solutions. This has provided the authors with near optimal solutions to trade-off logistics costs and service levels (availability), with minimal experimentation times

    Inventory control for a non-stationary demand perishable product: comparing policies and solution methods

    Get PDF
    This paper summarizes our findings with respect to order policies for an inventory control problem for a perishable product with a maximum fixed shelf life in a periodic review system, where chance constraints play a role. A Stochastic Programming (SP) problem is presented which models a practical production planning problem over a finite horizon. Perishability, non-stationary demand, fixed ordering cost and a service level (chance) constraint make this problem complex. Inventory control handles this type of models with so-called order policies. We compare three different policies: a) production timing is fixed in advance combined with an order up-to level, b) production timing is fixed in advance and the production quantity takes the age distribution into account and c) the decision of the order quantity depends on the age-distribution of the items in stock. Several theoretical properties for the optimal solutions of the policies are presented. In this paper, four different solution approaches from earlier studies are used to derive parameter values for the order policies. For policy a), we use MILP approximations and alternatively the so-called Smoothed Monte Carlo method with sampled demand to optimize values. For policy b), we outline a sample based approach to determine the order quantities. The flexible policy c) is derived by SDP. All policies are compared on feasibility regarding the α-service level, computation time and ease of implementation to support management in the choice for an order policy.National project TIN2015-66680-C2-2-R, in part financed by the European Regional Development Fund (ERDF)

    DEBT DEPRECIATION, CONGLOMERATION, AND CREDIT CONSTRAINTS: EVIDENCE FROM CATTLE CYCLES

    Get PDF
    We search for evidence consistent with the notion that endogenous credit constraints play a role in cattle cycles. Beef cow inventories are found to be more sensitive to credit constraints during periods of falling than rising asset values. Inventories of heifer replacements exhibit only weak sensitivity to credit constraints during periods of falling asset values.Financial Economics, Livestock Production/Industries,
    • 

    corecore