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Abstract. This paper summarizes our findings with respect to order policies for an inventory control 
problem for a perishable product with a maximum fixed shelf life in a periodic review system, where 
chance constraints play a role. A Stochastic Programming (SP) problem is presented which models a 
practical production planning problem over a finite horizon. Perishability, non-stationary demand, fixed 
ordering cost and a service level (chance) constraint make this problem complex. Inventory control 
handles this type of models with so-called order policies.  
We compare three different policies: a) production timing is fixed in advance combined with an order-
up-to level, b) production timing is fixed in advance and the production quantity takes the age-
distribution into account and c) the decision of the order quantity depends on the age-distribution of the 
items in stock. Several theoretical properties for the optimal solutions of the policies are presented. In 
this paper, four different solution approaches from earlier studies are used to derive parameter values 
for the order policies. For policy a), we use MILP approximations and alternatively the so-called 
Smoothed Monte Carlo method with sampled demand to optimize values. For policy b), we outline a 
sample based approach to determine the order quantities. The flexible policy c) is derived by SDP. All 
policies are compared on feasibility regarding the α-service level, computation time and ease of 
implementation to support management in the choice for an order policy.   

 
Keywords: Inventory · Perishable product · MINLP · Chance constraint · Monte Carlo 
 
1  Introduction 
Although in Inventory Control literature, focus is often on infinite horizons with stationary demand, in 
the reality of retail, demand of perishable food products is typically non-stationary, i.e. uncertain and 
also fluctuating, partly due to promotions. In this case, we can consider the planning problem as a finite 
horizon problem with non-stationary demand. The contribution of this paper is to outline a practical 
inventory control problem of perishable products as a Stochastic Programming (SP) model  with a finite 
horizon and evaluate several solution approaches from earlier studies to handle it. 
  
We focus on perishable products that are processed and get a best-before-date on their package, such as 
packed cheese, cut and packed lettuce, yoghurt, etc. Those products have a fixed maximum shelf life. 
Producers and retail organisations have arrangements regarding delivery performance, including  the 
necessary available shelf life for the consumer and the service level. After the maximum shelf life M, 
the product cannot be used anymore for the intended purpose and is considered waste. An α-service 

level requirement refers to the probability to be out of stock, i.e. it should be smaller than 1  α. This 
implies we are dealing with a chance constraint for each period. For every period (day, week, ...) the 
producer has to decide whether or not to order and how much, considering a fixed ordering cost, holding 
cost and disposal cost. This results in replenishment cycle lengths of a varying number of periods. The 
producer has control over the issuing of products, so in order to minimise waste, a First-in-First-Out 
(FIFO) policy is used. Excess demand is backlogged. The question is what are the most appropriate 
inventory policies to handle the inventory control problem in practice.   
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For products with non-stationary demand, order decisions and production planning will fluctuate, 
especially for perishable products where smoothing of ordering or production is impossible, because the 
older items in stock can perish. The fluctuations in demand ask for a specific strategy. Bookbinder and 
Tan (1988) distinguish three strategies to deal with ordering of non-perishable products with non-
stationary demand in a periodic review. The first strategy is called the static uncertainty strategy; the 
timing and size of the orders are set at the beginning of the time horizon. The replenishment schedule 
defines when to order beforehand, denoted by Yt = 1 when an order is placed and Yt = 0 if not. This 
results in replenishment cycles Rt of different length. In case of long lead time, adaptation of the order 
quantity just before demand is not possible, so also the production quantity is determined at the 
beginning of the planning horizon. We call this a YQ policy. We use the variable Y in the policy name 
instead of R to make clear that for every period a decision is made.  This policy is appropriate when 
there is considerable lead time and is investigated in (Pauls-Worm et al., 2016). The second strategy to 
deal with non-stationary demand is the static-dynamic uncertainty strategy, where timing of the orders 
is set at the beginning of the time horizon, but the order quantity may be adapted in response of the 
inventory levels observed during the time horizon. We call this a YS policy. In a heuristic approach, 
Bookbinder and Tan (1988) split the problem in two stages. The first stage determines the timing and  
the second the quantity. Tarim and Kingsman (2004) considered this approach as a basis for an MILP 
model formulation for non-stationary stochastic demand for the simultaneous determination of the 
timing and size of the replenishment orders. The third strategy to deal with non-stationary demand is 
the dynamic uncertainty strategy where the order quantity is decided at the beginning of every period. 
We call this a Q(X) policy, where X is the inventory level at the beginning of the period.  
 
A policy according to the dynamic uncertainty strategy is discussed already in the 1960s. Karlin (1960a) 
shows that a critical number policy is optimal, were the critical numbers are a reorder level st, and an 
order-up-to level St, resulting in an (R,st,St) policy. Karlin (1960b) and Veinott Jr (1963, 1965) developed 
optimal myopic policies for certain cases.  Morton (1978) shows that near myopic bounds are close to 
optimal, under the assumption of disposal of excess stock. Morton and Pentico (1995) derive near-
myopic bounds for the more general case. Zipkin (1989) developed optimal critical number policies for 
a cyclic demand pattern. He shows that the critical numbers in the optimal policy smooth the fluctuation 
in the demand data. This “wait-and-see” approach in the critical number policies following the dynamic 
uncertainty strategy could require an order with setup cost in almost every period. This might be 
undesirable for the production planning of a company, but in case of large setup cost relative to the 
holding cost, this is neither optimal (Bookbinder and Tan, 1988). 
 
Bookbinder and Tan (1988) formulated their strategies for non-perishable products. Perishable products 
require special attention with respect to order policies taking non-stationary demand into account. Order 
policies for perishable products with a fixed lifetime are reviewed by Nahmias (1982), Goyal and Giri 
(2001), and Karaesmen et al. (2011). Almost all papers assume stationary demand. Fries (1975) shows 
that with a maximum shelf life of M ≥ 2, neither an (R,S) nor an (R,s,S) policy is optimal. Nahmias 
(1975) and Fries (1975) observe that in general an optimal order policy for perishable products with a 
fixed life time should take the age-distribution of the products in stock into account. Even when all 
perishable items are of the same age, base stock (order-up-to level) policies are not optimal, as argued 
by Tekin et al. (2001) and Haijema et al. (2007). Some papers, e.g. (Haijema et al., 2007), (Broekmeulen 
and van Donselaar, 2009), (Minner and Transchel, 2010) assume a cyclic demand pattern, with a weekly 
demand pattern per day, but stationary expected demand per week. They assume negligible setup cost 
and follow a dynamic uncertainty strategy, which might not be optimal in case of fixed setup cost.  
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Food producers often have contracts with their customers, regarding service level. From the above 
mentioned papers, only Bookbinder and Tan (1988), Tarim and Kingsman (2004) and Minner and 
Transchel (2010) consider service level constraints. The other papers use penalty cost for each 
backlogged item. Unfortunately, the size of a penalty to guarantee a desired service level is not 
straightforward to determine as in general when dealing with chance constraints. 
 
Pauls-Worm et al. (2014) presented an SP inventory model that minimises the expected total costs, 
including setup cost, unit procurement cost, holding cost and cost of waste, for a perishable product with 
non-stationary stochastic demand with an α-service level constraint under a FIFO issuing policy. A YS 
policy is convenient in practical planning for a food producer; one knows beforehand in which periods 
to produce. Using an order-up-to level S defines a practical rule to determine the order quantity taking 
uncertainty into account. In Pauls-Worm et al. (2014), we used an MILP approximation to derive values 
for a YS system, based on the cumulative distribution function (cdf) for the demand during the 
replenishment cycle and the expected age-distribution of the inventory during the replenishment cycle. 
However, we know that this approach may fail in meeting service level requirements because the 
approximated amount of waste is underestimated and the amount of fresh items is overestimated, due to 
Jensen Inequality. Therefore, we presented in (Hendrix et al., 2015) a computational method based on 
the so-called Smoothed Monte Carlo method with sampled demand to optimise values for a YS system. 
The resulting MINLP approach uses enumeration, bounding and iterative nonlinear optimisation. The 
order quantity is determined by order-up-to level S minus the total inventory in stock. However, it could 
be more cost-efficient to consider the age-distribution of all items in stock in determining the order 
quantity. Let X denote the inventory age-distribution at the beginning of a period. Using a sample based 
YQ(X) policy, one can take the age-distribution into account. Finally, we can consider a more flexible 
Q(X) policy according to a dynamic uncertainty strategy, derived by SDP. A Q(X) policy determines the 
order quantity at the start of every period based on the age-distribution of the items in stock. Besides 
variation in uncertainty strategy, the presented policies vary in ease of implementation in practice. An 
order-up-to level policy requires only information about the total available inventory and a set of order-
up-to levels St. When the age-distribution is considered in the policy, information is required about the 
age-distribution of items in stock, and an order quantity has to be determined applying a table or 
computation process. With the extra information required, also the calculation time to find a solution 
may increase.  
 
To summarise, we evaluate three different policies: YS policies (production timing is fixed, order-up-to 
level), a YQ(X) policy (production timing is fixed, production quantity takes age-distribution into 
account)  and an Q(X) policy (decides every period on order quantity depending on age-distribution). 
An overview of investigated strategies and policies is presented in Table 1. We compare the policies for 
81 instances and investigate in which situations in practice which policy is most suitable. Section 2 gives 
the SP model of the practical problem. Section 3 exposes several theoretical properties YS and YQ(X) 
policy solutions. Section 4 outlines the Smoothed Monte Carlo MINLP approach to determine 
parameters for a YS policy. The YQ(X) policy is depicted in Section 5 and Section 6 presents the flexible 
Q(X) policy. Section 7 compares the policies and Section 8 concludes.   

 
Table 1  Overview of investigated strategies and policies 
Uncertainty strategy Policy Solution Method Paper Instances reported 
Static-dynamic  YS MILP (Pauls-Worm et al., 2014) 81+5 instances 
Static-dynamic  YS SMC-MINLP (Hendrix et al., 2015) 1 instance  
Static-dynamic  YQ(X) Sample Based Method (Hendrix et al., 2015) 1 instance 
Dynamic  Q(X) SDP (Hendrix et al., 2012)  1 instance 
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2  Stochastic Programming model 
The practical inventory control problem formulated as an SP model in (Pauls-Worm et al., 2014) is 
described below. Due to stochastic demand dt, the inventory levels Ibt (except the starting inventory Ib0) 
and the order quantities Qt are random variables. We assume a lead time of zero. The probability in the 
chance constraints is notated as P(.), and E(.) denotes the expected value operator. We use (x)+ to express 
max {x, 0}. Table 2 provides a list of symbols. 

 
Table 2  List of symbols  

Indices 

t period index , t = 1,..,T with T the time horizon 

b age index, b = 1,..,M , with M the fixed maximum (internal) shelf life 

Data 

dt Normally distributed demand with expectation µt > 0 and variance (CV x µt )2 where CV is a given 
coefficient of variation  

k fixed ordering or setup cost, k > 0  

c unit procurement cost, c > 0  

h unit holding cost, for items that are carried over from one period to the next, h > 0 

w unit disposal cost (w > 0) or salvage value (w < 0) for items becoming waste 

α required service level, 0 < α < 1  

Variables 

Qt ordered and delivered quantity at the beginning of period t   

Ibt inventory level of items with age b at the end of period t, initial inventory fixed  

Ib0 = 0, I1tℝ, Ibt ≥ 0 for b = 2,.., M. Inventory  of age M  at the end of period t is considered waste      

 
The expected total costs over the time horizon T are minimized. 
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where the procurement costs are given by the function  
g(x) = k + cx if  x > 0 and g(0) = 0.        (2) 

The chance constraint requiring the α-service level is expressed by   
 P(I1t  ≥ 0) ≥ α     Tt ,..,1     (3) 

meaning that the probability of not being out-of-stock at the end of period t should be greater than or 

equal to α. The probability of a stock-out is 1  α. Because of a FIFO issuing policy, the inventory levels 
of the older items are zero in case of a shortage, so only the inventory of the freshest items can be 
negative. The inventory dynamics for the FIFO issuing is described by 
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and for the freshest items 
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Items of age M become waste at the end of the period and cannot be used in the next period. The 
inventory of the freshest items can be negative. The unmet demand will be backlogged.  
The inventory at the beginning of a period is defined by 

X = (I1,t1, ..., IM1,t1)       .  (6)  
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As described in Section 1, several order policies can be defined as solutions of the SP model. One way 
is to define order-up-to levels St. The decision maker replenishes in period t the inventory up-to the level 
St, where the order quantity Qt is defined by    
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In Section 3 we discuss properties of policy solutions according to the static-dynamic uncertainty 
strategy for this SP model. In Section 4 we develop a YS policy and in Section 5 a YQ(X) policy, both 
following a static-dynamic uncertainty strategy. In Section 6 we present a more flexible Q(X) policy 
according to the dynamic uncertainty strategy to obtain parameters for the SP model.  
 
3  Properties of a solution of the static-dynamic uncertainty strategy  
Theoretical properties about the optimal solution of specific cases help to limit their solution space. 
Therefore, we first focus on the properties of feasible solutions. In Section 3.1, the concept of 
replenishment cycles and timing are discussed. Section 3.2 shows in which cases the so-called basic 
order-up-to level is the optimal quantity. For the other order moments we study the mathematical 
implications of estimating the service level by a Monte Carlo sampling approach in Section 3.3. 
 
3.1  Replenishment cycles and limits on order timing vector Y 
A replenishment cycle is the number of periods R the order quantity Qt aims to fulfil. For non-stationary 
demand, replenishment cycle length R depends on order moment t. When Yt = 1, then Yt+R+1 = 1 and no 
orders take place in between. In case of perishable items with maximum shelf life M, the replenishment 
cycle cannot be longer than the shelf life M, so R ≤ M. So, 
 
Property 1. Let Y be an order timing vector of the SP model, i.e. Yt  = 0 ⇒ Qt = 0. Y provides an 
infeasible solution of the SP model, if it contains more than M − 1 consecutive zeros. 
 
Let FT be the set of all feasible order timing vectors Y of length T. The number of elements |FT| of horizon 
T and shelf life of M < T − 1 follows recursive rule |FT+1| = 2|FT |− |FT−M | with the initial terms |Ft| = 2t−1 
for t < M + 1 and |FM+1| = 2M – 1; see (Alcoba et al., 2015). FT is exponential in the horizon T. However, 
in practice (Pauls-Worm et al., 2014), it is sufficient to plan ahead for T = 12 periods. 
 
3.2  Basic order-up-to level and optimal order quantities 

For a certain replenishment cycle length R = 1,.., M we can define a basic order-up-to level RtŜ as the 

inventory that should be available at the beginning of period t to cover demand of R periods. 
 
Definition 1. Let dt + .. + dt+R−1 be the stochastic demand during a replenishment cycle of length R with 

cumulative distribution function (cdf) GRt. The basic order-up-to level RtŜ with probability α to fulfil 

demand is defined by )ˆ( RtRt SG such that )(ˆ 1  RtRt GS . 

For some replenishment cycles, RtŜ  may be not enough, so Rtt

M

b
bt SQX ˆ

1

1






, because products in 

stock can become waste during the replenishment cycle. Nevertheless, for some replenishment cycles, 
the basic order-up-to level is sufficient and specifies the optimal order quantity. The following bounds 
can be derived. For the proofs, see (Hendrix et al., 2015). 
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Property 2. Let Y be an order timing vector of the SP model with corresponding cycle length R and X 

defined by (6). For order moment t having Yt−M  = 1, R = M, the optimal order quantity is Qt = RtŜ . 

 
Second, a replenishment cycle may be of just one period; during the cycle no waste occurs. 
 
Property 3. Let Y be an order timing vector of the SP model and X defined by (6). For an order moment 

t having Yt+1  = Yt  = 1 the optimal order quantity is 
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1
1
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b
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The best order quantity at a negative stock level is of an order-up-to type. 
 
Property 4. Let Y be an order timing vector of the SP model and X defined by (6), Yt = 1 with 

replenishment cycle length R. If X1t ≤ 0, the optimal order quantity is tRtt XSQ 1
ˆ  . 

 
3.3  Sample based Monte Carlo estimation of the service level 
If theoretical properties of  Sections 3.1 and 3.2 do not apply, one can try to find the order quantities 
fulfilling  the chance constraints using samples of the demand series. Let d be the stochastic demand 
vector (dt,..., dt+R−1) from t, during replenishment cycle length R, X the starting inventory and Q the order 
quantity. Let f (Q, X, d) = I1,t+R−1 define the end inventory of items with an age of one period given a 
realisation d of d following the inventory dynamics with possible perishing according to (4) and (5). 

Consider indicator function δ : ℝ × ℝR → {0, 1} 



 


otherwise0

0),,(if1
),(

dXQf
dQ           (8) 

that translates the service level in constraint (3) for period t + R − 1 to 

),()0()( 1,1 dQEIPQa dRt            (9) 

The idea is that given N sample paths d1,.., dN of d, the probability (service level) (9) is estimated by 
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r
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As is know from handbooks on statistics (e.g. (Lyman Ott and Longnecker, 2001)), given a set of 
independent random samples dr , (10) is an unbiased estimator of a(Q) with standard deviation 

))()(())(ˆ( 21 QaQaQa N  ,       (11) 

which is used in Monte Carlo approaches to determine the number N of samples to reach a desired 
probabilistic accuracy. A rule of thumb is to have an accuracy of 2σ. Aiming at α = 90%, 95%, 98%, a 

sample size of N = 5000 gives a rule of thumb accuracy of about 0.005 for the estimator )(ˆ Qa . 

 
4  YS policy: sample based SMC-MINLP approach 
Consider a YS policy, i.e. the decision maker is provided an order timing vector Y, i.e. Yt = 0 ⇒ Qt = 0. 
The question is to generate values for St such that the α-service level constraints are fulfilled for all 

instances and expected costs are minimized. Properties 2 and 3 can be used to order-up-to level St = RtŜ  

for specific moments. Sample-based estimation can be used for other service levels. Following the 
tradition of using scenarios (sample paths), one can write the problem of finding discrete timing Y and 
continuous order-up-to levels S as a Monte Carlo based Mixed Integer Linear Programming (MC-MILP) 
model as specified in Section 4.1. Such sample-based model for most instances cannot be solved in 
reasonable time, e.g. (Rijpkema et al., 2016). Therefore, in Section 4.2 we sketch the use of an equivalent 
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MINLP model based on the Smoothed Monte Carlo method, see (Hendrix and Olieman, 2008). A 
specific algorithm is designed that uses enumeration and bounding for the integer part Y of the problem 
leaving us with iteratively solving an NLP problem in the continuous variables S. This algorithm has 
been described earlier in (Hendrix et al., 2015).  
 
4.1    Traditional scenario based MC-MILP optimisation of the YS policy 
The sample-based approach for the YS policy can be handled by adding to the SP model a sample 
(scenario) index r = 1, .., N to the variables Ibtr and Qtr . The objective (1) is extended towards 
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and the conventional order relation  

tt YS M      Tt ,..,1     (14) 

with a big-M value. The constraints (4) and (5) are extended to each sample 
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and for the freshest items 
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Notice that due to the nonnegativity of the variables, the function (x)+ = max{0, x} can be rewritten by 
additional variables and inequalities in order for (13), (15) and (16) to be linear, as described in (Pauls-
Worm et al., 2014). Furthermore, for the chance constraints one adds a binary variable δtr ∈ {0, 1} 
representing the indicator value that specifies whether demand is fulfilled in period t in sample r 

)1(1 trttr mI      TtNr ,..,1;,..,1     (17) 

with mt an upper bound on the out of stock −I1t. This defines )(ˆ Sat : ℝT → }1,..,,,0{ 21
NN  giving the 

reached service level under the set of samples. The corresponding chance constraints are   

  


N

r
trt N

Sa
1

1
:)(ˆ     Tt ,..,1     (18) 

The variables of the model are Yt , δtr ∈ {0, 1}, St , Ibtr, Qtr ≥ 0 . Notice that Yt and St do not depend on 
sample r and the other variables Qrt, Ibtr and δtr that describe the simulation or evaluation part, do so. 
Solving MC-MILP is in most cases practically impossible due to the large number of binary variables δ 
and many solutions δ that represent the same obtained service levels a(S). The number of samples N = 
5000 mentioned in Section 3.3, implies defining for each period N = 5000 binary variables δtr.  
 
4.2  Smoothed Monte Carlo MINLP approach to the YS policy 
Considering MC-MILP from the point of view of an NLP problem in the continuous variables S given 

Y, the function )(ˆ Sat :  T → }1,..,,,0{ 21
NN  in (18) is piecewise constant, i.e. changing the values of S 

a bit may not change the evaluated value of )(ˆ Sat . According to Hendrix and Olieman (2008), the 
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reached service level can be made practically a continuous function by following the MC smoothing 

approach. Let 


M

b btrrt Iz
1

 be the total amount of product left over at the end of period t in sample r. 

Measuring how close )(ˆ Sat  is to change value using the least nonnegative total inventory  

}0|{min)(][  rtrtr
in

t zzSp and the least negative inventory }0|{min)(][  rtrtr
out

t zzSp . The 

suggested smoothing function ot(S) is  
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Fig. 1. Illustration of Smoothed MC from (Hendrix and Olieman, 2008), where the estimated probability on the y-
axis depends on varying one parameter on the x-axis, in our case the order-up-to level S 

 

Hendrix and Olieman (2008) show that )()(ˆ SoSa tt  is continuous in interesting values of S, as illus-

trated in Figure 1 and the function )()(ˆ SoSa tt  deviates at most N2
1 from the reached service level 

)(ˆ Sat which is much smaller than the possible estimation error. Problem NLPS(Y) is defined as MC-

MILP replacing constraint (18) by 

 )()(ˆ SoSa tt      Tt ,..,1    (20) 

as a smooth optimization problem that in principle can be solved by a nonlinear optimisation routine. 
This can be used in enumeration routine Algorithm 1. 
 

Algorithm 1. YSsmooth in: samples dtr, cost data, α, RtŜ , out: Y*, S* 

Set the best function value CU := ∞ 
Generate the set of feasible order timing Y 
for  all Y 
       if for the lower bound on cost LBc(Y) < CU 

           solve NLPS(Y) using RtŜ values → S and cost C 

           if  C < CU 
                save the best found values CU := C, S* := S, Y* = Y 
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5  YQ(X ) policy: sample based algorithm 
In policy YQ(X), the decision maker is provided a replenishment schedule Y, i.e. Yt = 0 ⇒ Qt = 0.  The 
order quantity depends on the age distribution X of the items in stock. Practically, this is more complex 
than an order-up-to level as the decision maker requires an information system advising the order 
quantity given the actual age composition of inventory. The results of Section 3 also hold for the YQ(X) 
policy. Quantities of order moments fulfilling Properties 2, 3 or 4, can be set to basic order-up-to level 

RtŜ . Otherwise, for a positive inventory X, the sample-based estimation of Section 3.3 can be used. At 

an order moment, i.e. Yt = 1 where the inventory position is positive and R > 1, the order quantity may 
be larger than the basic order-up-to level 
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due to the occurrence of expected waste during the replenishment cycle. To compute the optimal order 
quantity for this case, we focus on the total inventory at the end of the replenishment cycle as function 
of the starting inventory X, the order quantity Q and the demand dt,.., dt+R−1. 
 
Definition 2. The function Z :   × M × R  →  is defined as the transformation  z = Z(Q, X, d) giving 

the total inventory   
M

b RtbIz
1 1,  following the dynamics (4), (5) with starting inventory X, order 

quantity Q and demand vector (d1,.., dt+R−1). 
 
Actually, we are looking for the minimum value Qt for which the chance constraint holds; this is the 
value of Qt for which P(Z(Qt, Xt, dt,.., dt+R−1) ≥ 0) = α. We can use the following property. 
 
Property 5. Let function Z be defined by Definition 2, R ≤ M, starting inventory X and z = Z(0, X, dt,.., 
dt+R−1) with cdf Γ. The optimal order quantity in period t is Qt = (−Γ −1(1 − α))+. 
 

The cases where  




1

1
ˆ M

b bttRt XSQ  is the optimal solution are given by Properties 2 and 3. The 

value may deviate in other cases due to the waste during the replenishment cycle. Taking this value as 
benchmark provides a corollary which follows directly from the former properties. 
 

Corollary 1. Let Z be given by Definition 2, R ≤ M,  

 
1

1 1),..,,,ˆ(
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b RttbttR ddXXSZz  with cdf   Γ 

and starting inventory X. The optimal order quantity is   
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1

1 )1(ˆ M

b bttRt ΓXSQ  . 

 
This means that for cases following Properties 2 and 3 and if X1t ≤ 0 (no waste occurs during the cycle), 

the optimal choice is  
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ˆ M

b bttRt XSQ as Γ −1(1 − α) = 0. In other cases, waste can be generated and 

Γ −1(1 − α) < 0. To estimate the quantile Γ −1(1 − α), Monte Carlo simulation can be used as discussed in 
Section 3.3. Let D be an N × T matrix with samples dtr. For a starting inventory X, giving the order 

quantity  
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b btRtt XSQ , one can evaluate zr  = Z(Q, X, dtr,.., dt+R−1,r) being the total inventory of 

sample r at the end of the cycle. The adjusting amount −Γ −1(1 − α) is estimated by 
 ))1},,..,1,({quantile()( NrzXA rt ,      (22) 

where quantile ({}, α) is the α sample quantile of set {}. So the order quantity for any starting inventory 
according to Corollary 1, can be approximated by 
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)(ˆ)(
1

1
XAXSXQ t

M

b bttRt   


.       (23) 

It should be noted that the order quantity is in fact based on a conditional chance constraint and may 
lead to unnecessarily high service levels, i.e. given the age distribution, (23) can only focus on fulfilling 
the chance constraint in the future, no matter how likely the current age distribution  X is, see (Rossi et 
al., 2008). To provide some intuition, consider a discrete demand and inventory age-distribution  Xt at 
the beginning of the period and It the inventory age-distribution at the end of the period, or alternatively 
replenishment cycle. Then we have P(I1t  ≥ 0) = ΣX P(Xt  = X )· P(I1t  ≥ 0 | X ). Having a policy that assures 
for all possible situations X the conditional probability P(I1t  ≥ 0 | X ) ≥ α is sufficient to imply 
P(I1t  ≥ 0) ≥ α, but not necessary.  
 
The order quantities for the YQ(X) policy are now defined either by the theoretical results, or by the 
sample-based estimation in (22) and (23).  The next question is to generate the best advice for the order 
timing Y. Algorithm (2) enumerates the possible replenishment schedules replenishment schedules Y. 
Property 1 can be used to leave out those with too large periods between two orders. For each vector Y, 
the average cost is evaluated for a large simulation run that uses different random numbers than the ones 
in matrix D used to determine the order quantities by (22) and (23). 
 

Algorithm 2. YQ in: samples dtr, cost data, α, RtŜ , out: Y* 

Set the best function value CU := ∞ 
Generate the set of feasible order timing Y 
for  all Y 
       if for the lower bound on cost LBc(Y) < CU 
           Determine C by simulating N sample paths  
           During the simulation 
           if  Yt = 1  

                   if starting inventory X not positive or Rt = 1 take  




1

1
ˆ M

b btRtt XSQ  

                   else simulate the replenishment cycle with N paths from X 
                   Determine the order quantity Qt from (23) 
           if  C < CU 
                save the best found values CU := C, Y* = Y 

 
The YQ(X) policy takes the age-distribution into account. For the decision maker the required use of 
sampling and possibly interpolation is more inconvenient than using a simple order-up-to strategy with 
a list of order-up-to levels of the YS policy. The question arises in which cases the policy YQ(X) performs 
significantly better than the YS policy.  
 
6  Flexible Q(X) policy according to the dynamic uncertainty strategy 
In this policy, at the beginning of every period t, the order quantity is determined, based on the age-
distribution of the available inventory. We obtain this policy by Stochastic Dynamic Programming 
(SDP), an appropriate technique to solve the SP model, as it is clearly separable in t. The SDP approach 
to solve the SP model has been described in (Hendrix et al., 2012). The state values are given by X, the 
transition is provided by equations (4) and (5), so we have transition function Φ:  

),,( tttt dQXΦI       Tt ,..,1    (24) 
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The chance constraints can be written as 




 







 

1

1

1 )(
M

b
bttt XΓQ      Tt ,..,1    (25) 

The waste IMt at the end of period t is a function of the inventory at the beginning of the period and the 
demand: IMt = f (Xt,dt). We can write the expected contribution to the objective function in period t as 
function of state Xt and decision Qt: 

)},,(1),({)(),( ttt
T

ttttt dQXΦhdXwfEQgQXEC      (26) 

where 1 is the all-ones vector. The SDP objective function can be written down via the Bellmann 
equation using a value function V:  

 ))],,(([),(min)( 1 tt
Q

t dQXΦVEXQECXV       (27) 

subject to fulling (25). The argmin of (27) represents the optimal policy Q(X ). To implement this policy, 
at the beginning of every period, the decision maker needs an information system with the optimal 
strategy in tables, advising on the order quantity given the actual age composition of the inventory.  
 
7  Comparison of policies 
To compare the different policies, we use the erratic demand pattern and the design of experiments used 
in (Pauls-Worm et al., 2014). The demand pattern is depicted in Table 3. In 81 experiments, we 
systematically vary fixed setup cost k = 1500, 500, 2000, disposal cost w = -0.5, 0, 0.5, α-service level 
= 90%, 95%, 98%, CV = 0.1, 0.25, 0.333. The other values are kept constant: the product has a shelf 
life of M = 3, unit production cost c = 2 and unit holding cost h = 0.5. Negative disposal cost means the 
product has a salvage value, which is usually much less than the unit production cost c, zero disposal 
cost means that only the unit production cost is lost in case of waste, and positive disposal cost means 
that there is a cost to discard the wasted items.  
  
Table 3  Erratic demand pattern 
  t 1 2 3 4 5 6 7 8 9 10 11 12 
Data E(dt) 800 950 200 900 800 150 650 800 900 300 150 600 

 
We compare the policies of Table 1, i.e. the YSMILP policy with parameters generated by MILP (Pauls-
Worm et al., 2014), a YSSMC-MINLP policy with parameters generated by the smoothed Monte Carlo 
MINLP approach described in Section 4, a YQ(X) policy according to the sample based algorithm 
presented in Section 5, and the flexible Q(X) policy generated by SDP as discussed in Section 6. The 
inventory system is simulated for all policies using the same (pseudo) random number series of 10,000 
runs and compared on expected total costs with the reference value for the YSSMC-MINLP policy set to 
100, as reported in Table 4. 
The calculation time to generate parameter values for the policies differs significantly. Values for the 
YSMILP policy are calculated within a second, while values for the YSSMC-MINLP policy take about 100 
seconds. Calculations for the YQ(X ) policy use about 274 seconds, and for the Q(X ) policy about 150 
seconds in Matlab on an Intel 7 processor. The calculation time is determined based on instances with a 
setup cost k = 1500, where the replenishment cycles vary in length, resulting in the longest computation 
time.   
 
Table 4 shows that in most instances the expected total costs are very close. The YSMILP policy provides 
often the lowest costs, but does not always meet the service level requirements. However, this is mostly 
in the last period T = 12 due to end-of-horizon effects. Simulation shows that in 96.4% of the periods 
the service level requirements are met, with an error tolerance of 1%. The other policies are designed 
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such that they always meet the service level requirements. The YSMC-MINLP policy is in general the policy 
that meets the service level best at lowest costs. The shaded cells show the instances where a more 
complex policy is preferred regarding the costs.  
 
Table 4. Simulated cost results of four order policies relative to YSSMC-MINLP costs = 100, shaded cells highlight 
the instances where a more complex policy is preferred regarding the costs  

 

 
In case of low setup cost (k = 500), one orders almost every period. The expected total costs of the 
different order policies are almost equal. Only with increasing uncertainty and higher service levels, the 
Q(X)SDP might significantly save costs. However, the dynamic uncertainty strategy Q(X)SDP policy may 
raise the expense on planning, which is not part of this model. In case of high setup cost (k = 2000), the 
static-dynamic uncertainty YS and YQ(X) policies have mostly the same production plans based on the 

CV = 0.10 CV = 0.25 CV = 0.33
k  = 1500 Instance YS MILP YQ (X ) Q (X )SDP Instance YS MILP YQ (X ) Q (X )SDP Instance YS MILP YQ (X ) Q (X )SDP

Service level 90%
w  = -0.5 1 100.03 100.12 102.56 10 99.86 100.28 103.01 19 99.13 100.34 102.83
w  = 0 2 100.04 100.14 102.12 11 99.51 99.86 102.18 20 98.80 99.57 101.82
w  = 0.5 3 99.74 100.16 101.59 12 99.31 99.99 101.66 21 98.49 99.35 101.24
Service level 95%
w  = -0.5 4 100.02 100.13 101.61 13 99.24 99.68 101.22 22 98.76 97.20 100.77
w  = 0 5 100.02 100.15 100.96 14 99.12 99.90 100.82 23 98.23 98.88 99.76
w  = 0.5 6 99.40 99.83 100.27 15 98.81 99.39 100.41 24 97.13 97.84 98.40
Service level 98%
w  = -0.5 7 100.04 100.18 100.61 16 98.79 96.98 99.51 25 98.70 98.64 98.66
w  = 0 8 99.93 100.21 99.72 17 98.23 98.89 99.11 26 98.51 98.41 98.02
w  = 0.5 9 99.55 99.80 99.03 18 97.99 98.72 98.72 27 98.44 98.29 97.43

CV = 0.10 CV = 0.25 CV = 0.33
k  = 500 Instance YS MILP YQ (X ) Q (X )SDP Instance YS MILP YQ (X ) Q (X )SDP Instance YS MILP YQ (X ) Q (X )SDP

Service level 90%
w  = -0.5 28 99.95 99.99 100.95 37 99.66 99.91 100.17 46 99.33 99.88 99.28
w  = 0 29 99.55 99.99 100.76 38 99.65 99.90 100.15 47 99.32 99.86 99.20
w  = 0.5 30 99.63 99.98 100.90 39 99.65 99.89 100.11 48 99.30 99.84 99.10
Service level 95%
w  = -0.5 31 99.56 100.00 100.30 40 99.56 99.94 99.27 49 99.18 99.88 98.39
w  = 0 32 99.67 99.98 100.46 41 99.56 99.94 99.23 50 99.17 99.87 98.27
w  = 0.5 33 99.77 99.98 100.59 42 99.55 99.92 99.18 51 99.16 99.86 98.15
Service level 98%
w  = -0.5 34 99.96 100.02 99.89 43 99.50 100.03 98.43 52 99.14 100.04 97.60
w  = 0 35 99.96 100.01 100.06 44 99.49 100.02 98.36 53 99.13 100.03 97.44
w  = 0.5 36 99.96 100.01 100.21 45 99.48 100.01 98.29 54 99.13 100.02 97.29

CV = 0.10 CV = 0.25 CV = 0.33
k  = 2000 Instance YS MILP YQ (X ) Q (X )SDP Instance YS MILP YQ (X ) Q (X )SDP Instance YS MILP YQ (X ) Q (X )SDP

Service level 90%
w  = -0.5 55 100.03 100.11 103.34 64 100.02 100.26 105.04 73 100.01 100.32 105.15
w  = 0 56 100.03 100.13 103.49 65 100.03 100.30 104.16 74 99.92 100.37 103.93
w  = 0.5 57 100.04 100.15 103.45 66 100.21 100.52 103.34 75 99.09 100.42 102.55
Service level 95%
w  = -0.5 58 100.02 100.12 102.46 67 100.02 100.27 103.41 76 100.01 100.34 103.14
w  = 0 59 100.02 100.14 102.46 68 100.02 100.31 102.15 77 99.41 99.95 101.54
w  = 0.5 60 100.02 100.16 102.23 69 99.19 100.35 100.83 78 98.76 99.10 100.05
Service level 98%
w  = -0.5 61 100.04 100.16 101.66 70 99.97 100.32 101.78 79 100.02 100.44 101.22
w  = 0 62 100.04 100.20 101.50 71 99.31 100.37 100.08 80 99.31 98.71 98.78
w  = 0.5 63 100.05 100.23 100.86 72 98.68 99.11 99.04 81 98.55 98.42 97.99
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derived basic order-up-to levels and therefore, the costs show no significant differences. The Q(X)SDP 
policy has in most cases significantly higher costs. This is due to overachievement of the service level, 
as an SDP policy meets a conditional service level requirement as is illustrated in (Rossi, 2013) and 
(Pauls-Worm and Hendrix, 2015). Moreover, the Q(X)SDP policy is allowed to order every period, which 
is very costly in case of high setup cost. The YQ(X) policy meets a conditional service level requirement, 
but here the production moments are fixed, which results in a less “nervous” system (Tunc et al., 2013). 
The so-called setup-oriented system nervousness can be prevented against a minor cost increase in case 
of a non-perishable product (Tunc et al., 2013). The results in this paper give a similar indication for a 
perishable product. Due to this behaviour, in instances 80 and 81 the YQ(X) policy has lower costs, 
comparable to the costs of Q(X )SDP. This means the YQ(X) policy might be preferred in practice as it 
fixes the order timing.  
 
As also shown in (Pauls-Worm et al., 2014), an intermediate level of setup cost is the most interesting 
situation. The replenishment cycles are varying in length, resulting in waste during the replenishment 
cycles. Finding the optimal order timing is more difficult as discussed in Section 3, and considering the 
age-distribution of the items in stock becomes more important. This is confirmed by the costs of the 
different order policies, in the instances with higher uncertainty and higher service levels (16 − 18, 22 
− 27). The YQ(X ) policy, taking the age-distribution of the items in stock into account, gives clearly 
lower costs, as expected.  
 
8  Conclusion 
We studied a practical inventory control problem with non-stationary demand for a perishable product, 
investigating the question which order policies might be appropriate for this problem. We evaluated two 
different strategies to deal with the uncertainty in the practical problem, resulting in three different 
policies.  
 
The inventory control can be handled according to a static-dynamic uncertainty strategy, where we 
distinguish a YS policy and a YQ(X ) policy. In inventory literature of perishable products this strategy 
is little studied. We first looked at possible bounds of the solution space discussing properties of the 
policies. Next we sketched several solution methods for the control policies. First a computational 
method based on the Smoothed Monte Carlo method with sampled demand, called the YSSMC-MINLP policy 
has been outlined and a sample based method to calculate values for the YQ(X ) policy. These policies 
were compared to an YSMILP policy and a more flexible Q(X ) policy generated by SDP, according to a 
dynamic uncertainty strategy. The experimental evaluation comprises 81 instances with the same erratic 
demand pattern, but with varying setup cost, service level, cost of waste and uncertainty measured in 
the Coefficient of Variation. Table 5 presents an overview of the compared policies and solution 
methods. 
 
For most instances, the expected total costs of the policies are very close, and a YS policy gives a cost 
efficient and easy to implement solution. From a production planning perspective, the static-dynamic 
uncertainty strategy is the most convenient strategy to follow. In situations of relatively low setup cost, 
(production takes place every period), or high setup cost (each M periods a production takes place), 
MILP generates appropriate parameter values. In situations of intermediate setup cost, were the 
replenishment cycles are highly varying, the optimized SMC-MINLP parameters might be more 
suitable, although more calculation time is needed; about 100 seconds compared to less than 1 second.  
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Table 5.  Comparing policies and solution methods for 81 instances with horizon T = 12 
Uncertainty 
Strategy 

Policy Solution 
Method 

Minimal α-service level Comp 
Time 

At Implementation Average 
tot. costs  

Type Feasibility  Pre-det. 
ordering 

Info needed (indexed) 

Static-
dynamic 

YS MILP Expected 
α-SL 

96.4% <1s Yes Order-up-to level 
Total Inventory 

99.45 

Static-
dynamic 

YS SMC-
MINLP 

Expected 
α-SL 

100% ≈100s* Yes Order-up-to level 
Total Inventory 

100 

Static-
dynamic 

YQ(X) Sample 
Based 
Method 

Conditional 
α-SL 

100% ≈274s* Yes Inventory distr. 
Computer program 
to determine Q 
based on sampling 

99.79 

Dynamic Q(X) SDP Conditional 
α-SL 

100% ≈150s* No Inventory distr. 
Find Q in table 
based on inventory 
distribution 

100.64 

* In Matlab on an Intel 7 processor 

 
When also the required service level is high or the CV is 0.25 or more, a YQ(X ) policy, where the age-
distribution of the inventory is taken into account, might have less inventory costs. However, for the 
decision maker the required use of samples and possibly interpolation is more inconvenient than using 
a simple order-up-to strategy with a list of order-up-to levels of the YS policy. Also the computation 
time of about 274 seconds might be a disadvantage. The dynamic uncertainty strategy Q(X ) policy is 
only appropriate in situations with relatively low setup cost, a CV of 0.33 and a high service level of 
98%. The same implementation drawback as for the YQ(X ) policy applies, with a computation time of 
around 150 seconds. Based on the findings of this paper, it is up to management to decide which 
uncertainty strategy and which order policy is most appropriate.       
 
 
Acknowledgments. This paper has been supported by The Spanish Ministry (TIN2015-66680-C2-2-
R), in part financed by the European Regional Development Fund (ERDF).  
 
 
References  
Alcoba, A.G., Hendrix, E.M.T., García, I., Ortega, G., Pauls-Worm, K.G.J., Haijema, R., 2015. On 

Computing Order Quantities for Perishable Inventory Control with Non-stationary Demand, in: 
Gervasi, O. et al. (Eds.), Computational Science and Its Applications -- ICCSA 2015. Springer 
International Publishing, pp. 429-444. 

Bookbinder, J.H., Tan, J.Y., 1988. Strategies for the probabilistic lot-sizing problem with service-level 
constraints. Manage. Sci. 34, 1096-1108. 

Broekmeulen, R., van Donselaar, K.H., 2009. A heuristic to manage perishable inventory with batch 
ordering, positive lead-times, and time-varying demand. Comput. Oper. Res. 36, 3013-3018. 

Fries, B.E., 1975. Optimal Ordering Policy for a Perishable Commodity with Fixed Lifetime. Operations 
Research 23, 46-61. 

Goyal, S.K., Giri, B.C., 2001. Recent trends in modeling of deteriorating inventory. Eur. J. Oper. Res. 
134, 1-16. 

Haijema, R., van der Wal, J., van Dijk, N.M., 2007. Blood platelet production: Optimization by dynamic 
programming and simulation. Comput. Oper. Res. 34, 760-779. 

Hendrix, E.M.T., Haijema, R., Rossi, R., Pauls-Worm, K.G.J., 2012. On Solving a Stochastic 
Programming Model for Perishable Inventory Control, in: Murgante, B. et al. (Eds.), Computational 
Science and Its Applications – ICCSA 2012. Springer Berlin Heidelberg, pp. 45-56. 



15 
 

Hendrix, E.M.T., Olieman, N.J., 2008. The smoothed Monte Carlo method in robustness optimization. 
Optimization Methods and Software 23, 717-729. 

Hendrix, E.M.T., Pauls-Worm, K.G.J., Rossi, R., Alcoba, A.G., Haijema, R., 2015. A Sample-Based 
Method for Perishable Good Inventory Control with a Service Level Constraint, in: Corman, F., Voß, 
S., Negenborn, R.R. (Eds.), Computational Logistics. Springer International Publishing, pp. 526-540. 

Karaesmen, I.Z., Scheller-Wolf, A., Deniz, B., 2011. Managing Perishable and Aging Inventories: 
Review and Future Research Directions, in: Kempf, K.G., Keskinocak, P., Uzsoy, R. (Eds.), Planning 
Production and Inventories in the Extended Enterprise Springer, pp. 393-436. 

Karlin, S., 1960a. Dynamic Inventory Policy with Varying Stochastic Demands. Manage. Sci. 6, 231-
258. 

Karlin, S.C.F.p.d.D., 1960b. Optimal Policy for Dynamic Inventory Process with Stochastic Demands 
Subject to Seasonal Variations. Journal of the Society for Industrial and Applied Mathematics 8, 611-
629. 

Lyman Ott, R., Longnecker, M.T., 2001. An Introduction to Statistical Methods and Data Analysis  5ed. 
Duxburry, Pacific Grove. 

Minner, S., Transchel, S., 2010. Periodic review inventory-control for perishable products under service-
level constraints. Or Spectrum 32, 979-996. 

Morton, T.E., 1978. The Nonstationary Infinite Horizon Inventory Problem. Manage. Sci. 24, 1474-
1482. 

Morton, T.E., Pentico, D.W., 1995. The Finite Horizon Nonstationary Stochastic Inventory Problem: 
Near-Myopic Bounds, Heuristics, Testing. Manage. Sci. 41, 334-343. 

Nahmias, S., 1975. Optimal Ordering Policies for Perishable Inventory-II. Operations Research 23, 735-
749. 

Nahmias, S., 1982. Perishable inventory-theory - a review. Operations Research 30, 680-708. 
Pauls-Worm, K.G.J., Hendrix, E.M.T., 2015. SDP in Inventory Control: Non-stationary Demand and 

Service Level Constraints, in: Gervasi, O. et al. (Eds.), Computational Science and Its Applications 
-- ICCSA 2015. Springer International Publishing, pp. 397-412. 

Pauls-Worm, K.G.J., Hendrix, E.M.T., Alcoba, A.G., Haijema, R., 2016. Order quantities for perishable 
inventory control with non-stationary demand and a fill rate constraint. Int. J. Prod. Econ. 181, 238-
246 

Pauls-Worm, K.G.J., Hendrix, E.M.T., Haijema, R., van der Vorst, J.G.A.J., 2014. An MILP 
approximation for ordering perishable products with non-stationary demand and service level 
constraints. Int. J. Prod. Econ. 157, 133-146. 

Rijpkema, W.A., Hendrix, E.M.T., Rossi, R., van der Vorst, J.G.A.J., 2016. Application of stochastic 
programming to reduce uncertainty in quality-based supply planning of slaughterhouses. Annals of 
Operations Research, 239, 2, 613-624. 

Rossi, R., 2013. On Service Level Measures in Stochastic Inventory Control, in: Natalia, B., Kirill, C., 
Alexandre, D., Vladimir, L. (Eds.), Proceedings of the IFAC Conference on Manufacturing 
Modeling, Management and Control, MIM 2013, June 19-21. International Federation of Automatic 
Control, Manufacturing Modelling, Management, and Control, Saint Petersburg, Russia, pp. 1991-
1996. 

Rossi, R., Tarim, S.A., Hnich, B., Prestwich, S., 2008. A global chance-constraint for stochastic 
inventory systems under service level constraints. Constraints 13, 490-517. 

Tarim, S.A., Kingsman, B.G., 2004. The stochastic dynamic production/inventory lot-sizing problem 
with service-level constraints. Int. J. Prod. Econ. 88, 105-119. 

Tekin, E., Gurler, U., Berk, E., 2001. Age-based vs. stock level control policies for a perishable 
inventory system. Eur. J. Oper. Res. 134, 309-329. 

Tunc, H., Kilic, O.A., Tarim, S.A., Eksioglu, B., 2013. A simple approach for assessing the cost of 
system nervousness. Int. J. Prod. Econ. 141, 619-625. 

Veinott Jr, A.F., 1963. Optimal stockage policies with non-stationary stochastic demands. Multistage 
Inventory Models and Techniques, Stanford University Press, Stanford, CA, 85-115. 

Veinott Jr., A.F., 1965. Optimal Policy for a Multi-Product, Dynamic, Nonstationary Inventory Problem. 
Manage. Sci. 12, 206-222. 

Zipkin, P., 1989. Critical Number Policies for Inventory Models with Periodic Data. Manage. Sci. 35, 
71-80. 


