9 research outputs found

    Total atmospheric absorption of fixed satellite communication signal due to oxygen and water vapor in Nigeria

    Get PDF
    Total atmospheric absorption values due to oxygen and water vapor on terrestrial and Earth-space paths at frequencies between 1 GHz and 50 GHz were evaluated for 1% unavailability of an average year at two elevation angles of 5° and 55°, which are typical for terrestrial and Earth-space links, respectively. Practical links to the Nigerian communication satellite (NigComsat1) uplink/downlink in the Ku (12/14 GHz), Ka (20/30 GHz), and V (40/50 GHz) bands for 1% unavailability of an average year were also investigated. The basic input climatic data used included monthly and yearly mean meteorological parameters for each station, such as surface and vertical profiles of pressure, temperature, and relative humidity, obtained from the Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua spacecraft for seven years (2002 to 2009). The International Telecommunication Union Radio Propagation Recommendation (2009) procedure was used for the computation of gaseous attenuation for each of the 37 stations in Nigeria. The results obtained at various elevation angles (of 44° to 55°) for Earth-space links to NigComsat-1 showed that in the absence of rain, 99% availability was possible at Ku, Ka, and V bands for uplink and downlink at all of the 37 stations in Nigeria, as the gaseous attenuation values obtained were between 0.05 dB to 4.81 dB. For low elevation angles of 5°(terrestrial link) at V band, 99% availability was not practical, as atmospheric loss was between 15.30 dB to 17.62 dB in Nigeria. The results consistently showed that gaseous attenuation was very high at six stations across Nigeria; Calabar (South-South regions), followed, in descending order, by the Ikeja (South-West), Abakaliki (South-East), Abuja (Middle-Belt), Dutse (North-East), and Kastina (North-West) regions. The present results of gaseous attenuation will be very useful for satellite communication-system design engineers across the six regions in Nigeria

    Identification and Detection of Gaseous Effluents from Hyperspectral Imagery Using Invariant Algorithms

    Get PDF
    The ability to detect and identify effluent gases is, and will continue to be, of great importance. This would not only aid in the regulation of pollutants but also in treaty enforcement and monitoring the production of weapons. Considering these applications, finding a way to remotely investigate a gaseous emission is highly desirable. This research utilizes hyperspectral imagery in the infrared region of the electromagnetic spectrum to evaluate an invariant method of detecting and identifying gases within a scene. The image is evaluated on a pixel-by-pixel basis and is studied at the subpixel level. A library of target gas spectra is generated using a simple slab radiance model. This results in a more robust description of gas spectra which are representative of real-world observations. This library is the subspace utilized by the detection and identification algorithms. The subspace will be evaluated for the set of basis vectors that best span the subspace. The Lee algorithm will be used to determine the set of basis vectors, which implements the Maximum Distance Method (MaxD). A Generalized Likelihood Ratio Test (GLRT) determines whether or not the pixel contains the target. The target can be either a single species or a combination of gases. Synthetically generated scenes will be used for this research. This work evaluates whether the Lee invariant algorithm will be effective in the gas detection and identification problem

    Randomized SVD Methods in Hyperspectral Imaging

    Get PDF

    A Review of Unsupervised Spectral Target Analysis for Hyperspectral Imagery

    Get PDF
    One of great challenges in unsupervised hyperspectral target analysis is how to obtain desired knowledge in an unsupervised means directly from the data for image analysis. This paper provides a review of unsupervised target analysis by first addressing two fundamental issues, "what are material substances of interest, referred to as targets?" and "how can these targets be extracted from the data?" and then further developing least squares (LS)-based unsupervised algorithms for finding spectral targets for analysis. In order to validate and substantiate the proposed unsupervised hyperspectral target analysis, three applications in endmember extraction, target detection and linear spectral unmixing are considered where custom-designed synthetic images and real image scenes are used to conduct experiments

    Spectral Textile Detection in the VNIR/SWIR Band

    Get PDF
    Dismount detection, the detection of persons on the ground and outside of a vehicle, has applications in search and rescue, security, and surveillance. Spatial dismount detection methods lose e effectiveness at long ranges, and spectral dismount detection currently relies on detecting skin pixels. In scenarios where skin is not exposed, spectral textile detection is a more effective means of detecting dismounts. This thesis demonstrates the effectiveness of spectral textile detectors on both real and simulated hyperspectral remotely sensed data. Feature selection methods determine sets of wavebands relevant to spectral textile detection. Classifiers are trained on hyperspectral contact data with the selected wavebands, and classifier parameters are optimized to improve performance on a training set. Classifiers with optimized parameters are used to classify contact data with artificially added noise and remotely-sensed hyperspectral data. The performance of optimized classifiers on hyperspectral data is measured with Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve. The best performances on the contact data are 0.892 and 0.872 for Multilayer Perceptrons (MLPs) and Support Vector Machines (SVMs), respectively. The best performances on the remotely-sensed data are AUC = 0.947 and AUC = 0.970 for MLPs and SVMs, respectively. The difference in classifier performance between the contact and remotely-sensed data is due to the greater variety of textiles represented in the contact data. Spectral textile detection is more reliable in scenarios with a small variety of textiles

    Detection algorithms for spatial data

    Get PDF
    This dissertation addresses the problem of anomaly detection in spatial data. The problem of landmine detection in airborne spatial data is chosen as the specific detection scenario. The first part of the dissertation deals with the development of a fast algorithm for kernel-based non-linear anomaly detection in the airborne spatial data. The original Kernel RX algorithm, proposed by Kwon et al. [2005a], suffers from the problem of high computational complexity, and has seen limited application. With the aim to reduce the computational complexity, a reformulated version of the Kernel RX, termed the Spatially Weighted Kernel RX (SW-KRX), is presented. It is shown that under this reformulation, the detector statistics can be obtained directly as a function of the centered kernel Gram matrix. Subsequently, a methodology for the fast computation of the centered kernel Gram matrix is proposed. The key idea behind the proposed methodology is to decompose the set of image pixels into clusters, and expediting the computations by approximating the effect of each cluster as a whole. The SW-KRX algorithm is implemented for a special case, and comparative results are compiled for the SW-KRX vis-à-vis the RX anomaly detector. In the second part of the dissertation, a detection methodology for buried mine detection is presented. The methodology is based on extraction of color texture information using cross-co-occurrence features. A feature selection methodology based on Bhattacharya coefficients and principal feature analysis is proposed and detection results with different feature-based detectors are presented, to demonstrate the effectiveness of the proposed methodology in the extraction of useful discriminatory information --Abstract, page iii

    Using Lidar to geometrically-constrain signature spaces for physics-based target detection

    Get PDF
    A fundamental task when performing target detection on spectral imagery is ensuring that a target signature is in the same metric domain as the measured spectral data set. Remotely sensed data are typically collected in digital counts and calibrated to radiance. That is, calibrated data have units of spectral radiance, while target signatures in the visible regime are commonly characterized in units of re°ectance. A necessary precursor to running a target detection algorithm is converting the measured scene data and target signature to the same domain. Atmospheric inversion or compensation is a well-known method for transforming mea- sured scene radiance values into the re°ectance domain. While this method may be math- ematically trivial, it is computationally attractive and is most e®ective when illumination conditions are constant across a scene. However, when illumination conditions are not con- stant for a given scene, signi¯cant error may be introduced when applying the same linear inversion globally. In contrast to the inversion methodology, physics-based forward modeling approaches aim to predict the possible ways that a target might appear in a scene using atmospheric and radiometric models. To fully encompass possible target variability due to changing illumination levels, a target vector space is created. In addition to accounting for varying illumination, physics-based model approaches have a distinct advantage in that they can also incorporate target variability due to a variety of other sources, to include adjacency target orientation, and mixed pixels. Increasing the variability of the target vector space may be beneficial in a global sense in that it may allow for the detection of difficult targets, such as shadowed or partially concealed targets. However, it should also be noted that expansion of the target space may introduce unnecessary confusion for a given pixel. Furthermore, traditional physics-based approaches make certain assumptions which may be prudent only when passive, spectral data for a scene are available. Common examples include the assumption of a °at ground plane and pure target pixels. Many of these assumptions may be attributed to the lack of three-dimensional (3D) spatial information for the scene. In the event that 3D spatial information were available, certain assumptions could be levied, allowing accurate geometric information to be fed to the physics-based model on a pixel- by-pixel basis. Doing so may e®ectively constrain the physics-based model, resulting in a pixel-specific target space with optimized variability and minimized confusion. This body of work explores using spatial information from a topographic Light Detection and Ranging (Lidar) system as a means to enhance the delity of physics-based models for spectral target detection. The incorporation of subpixel spatial information, relative to a hyperspectral image (HSI) pixel, provides valuable insight about plausible geometric con¯gurations of a target, background, and illumination sources within a scene. Methods for estimating local geometry on a per-pixel basis are introduced; this spatial information is then fed into a physics-based model to the forward prediction of a target in radiance space. The target detection performance based on this spatially-enhanced, spectral target space is assessed relative to current state-of-the-art spectral algorithms

    Physics-Based Detection of Subpixel Targets in Hyperspectral Imagery

    Get PDF
    Hyperspectral imagery provides the ability to detect targets that are smaller than the size of a pixel. They provide this ability by measuring the reflection and absorption of light at different wavelengths creating a spectral signature for each pixel in the image. This spectral signature contains information about the different materials within the pixel; therefore, the challenge in subpixel target detection lies in separating the target's spectral signature from competing background signatures. Most research has approached this problem in a purely statistical manner. Our approach fuses statistical signal processing techniques with the physics of reflectance spectroscopy and radiative transfer theory. Using this approach, we provide novel algorithms for all aspects of subpixel detection from parameter estimation to threshold determination. Characterization of the target and background spectral signatures is a key part of subpixel detection. We develop an algorithm to generate target signatures based on radiative transfer theory using only the image and a reference signature without the need for calibration, weather information, or source-target-receiver geometries. For background signatures, our work identifies that even slight estimation errors in the number of background signatures can severely degrade detection performance. To this end, we present a new method to estimate the number of background signatures specifically for subpixel target detection. At the core of the dissertation is the development of two hybrid detectors which fuse spectroscopy with statistical hypothesis testing. Our results show that the hybrid detectors provide improved performance in three different ways: insensitivity to the number of background signatures, improved detection performance, and consistent performance across multiple images leading to improved receiver operating characteristic curves. Lastly, we present a novel adaptive threshold estimate via extreme value theory. The method can be used on any detector type - not just those that are constant false alarm rate (CFAR) detectors. Even on CFAR detectors our proposed method can estimate thresholds that are better than theoretical predictions due to the inherent mismatch between the CFAR model assumptions and real data. Additionally, our method works in the presence of target detections while still estimating an accurate threshold for a desired false alarm rate

    Hyperspectral Imagery Target Detection Using Improved Anomaly Detection and Signature Matching Methods

    Get PDF
    This research extends the field of hyperspectral target detection by developing autonomous anomaly detection and signature matching methodologies that reduce false alarms relative to existing benchmark detectors, and are practical for use in an operational environment. The proposed anomaly detection methodology adapts multivariate outlier detection algorithms for use with hyperspectral datasets containing tens of thousands of non-homogeneous, high-dimensional spectral signatures. In so doing, the limitations of existing, non-robust, anomaly detectors are identified, an autonomous clustering methodology is developed to divide an image into homogeneous background materials, and competing multivariate outlier detection methods are evaluated for their ability to uncover hyperspectral anomalies. To arrive at a final detection algorithm, robust parameter design methods are employed to determine parameter settings that achieve good detection performance over a range of hyperspectral images and targets, thereby removing the burden of these decisions from the user. The final anomaly detection algorithm is tested against existing local and global anomaly detectors, and is shown to achieve superior detection accuracy when applied to a diverse set of hyperspectral images. The proposed signature matching methodology employs image-based atmospheric correction techniques in an automated process to transform a target reflectance signature library into a set of image signatures. This set of signatures is combined with an existing linear filter to form a target detector that is shown to perform as well or better relative to detectors that rely on complicated, information-intensive, atmospheric correction schemes. The performance of the proposed methodology is assessed using a range of target materials in both woodland and desert hyperspectral scenes
    corecore