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ABSTRACT 
 

This dissertation addresses the problem of anomaly detection in spatial data. The 

problem of landmine detection in airborne spatial data is chosen as the specific detection 

scenario. The first part of the dissertation deals with the development of a fast algorithm 

for kernel-based non-linear anomaly detection in the airborne spatial data. The original 

Kernel RX algorithm, proposed by Kwon et al. [2005a], suffers from the problem of high 

computational complexity, and has seen limited application. With the aim to reduce the 

computational complexity, a reformulated version of the Kernel RX, termed the Spatially 

Weighted Kernel RX (SW-KRX), is presented. It is shown that under this reformulation, 

the detector statistics can be obtained directly as a function of the centered kernel Gram 

matrix. Subsequently, a methodology for the fast computation of the centered kernel 

Gram matrix is proposed. The key idea behind the proposed methodology is to 

decompose the set of image pixels into clusters, and expediting the computations by 

approximating the effect of each cluster as a whole. The SW-KRX algorithm is 

implemented for a special case, and comparative results are compiled for the SW-KRX 

vis-à-vis the RX anomaly detector. In the second part of the dissertation, a detection 

methodology for buried mine detection is presented. The methodology is based on 

extraction of color texture information using cross-co-occurrence features. A feature 

selection methodology based on Bhattacharya coefficients and principal feature analysis 

is proposed and detection results with different feature-based detectors are presented, to 

demonstrate the effectiveness of the proposed methodology in the extraction of useful 

discriminatory information.  
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1. INTRODUCTION 

The rapid advances in the science and spur of technological innovations has 

enabled us to collect massive amounts of data, like never before in the history of 

humankind. Technology has not only enabled us to collect large amounts of data, 

relatively cheaply, in the traditional fields like geology, astronomy and remote sensing; 

but it has also fostered unconventional data driven fields like genomics, bioinformatics, 

biometrics and hyperspectral image processing. Especially, the advent of low cost sensor 

technology has revolutionized the way data is thought about and utilized. The ever 

burgeoning amounts of data have opened up opportunities for innovation and novel 

applications, which could not be fathomed fifty years ago. At the same time, it has also 

brought with it, new challenges related to its meaningful handling, storage and 

processing. David Donoho in his lecture during the AMS conference on Math Challenges 

in the 21st Century (held in celebration of the historic Hilbert’s lecture in 1900) 

reverberated Tukey’s views from sixty years ago, and stressed the need of utilizing 

mathematics for data analysis [Donoho, 2000]. He emphasized the need for new 

mathematical ideas and techniques for data analysis in light of the fact that most of the 

current techniques for data analysis were developed sixty years ago, and the incredible 

improvements in computation speeds have already pushed these to their limits.   

Data can be classified based on the independent variable(s) in the data like time-

series, spatial, spatio-temporal and others. In this work, spatial data, and processing 

techniques thereof, are considered. Spatial data or signals can be defined broadly as the 

data where the independent variables are the spatial dimensions. Spatial data has been 

gathered and used since centuries, with the earliest manifestations appearing in the form 

of data maps giving information regarding the geography, landforms and weather. In the 

modern world, spatial data can be seen in several classical fields like geology, soil 

science, mining, meteorology, and material science. For example, in mining, ore grade 

samples are collected over a mining block and analyzed so as to estimate the ore grade. 

Similarly, in meteorology, temperature, pressure and precipitation data is collected over a 

region to predict short term and long term weather trends. Soil scientists try to map the 

soil properties of a region based on a small number of soil samples at known locations 
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throughout the region. For instance, soil pH in water, mineral content, and soil-water 

infiltration are of particular interest to agriculturalists, who are interested in issues like 

fertility and water top-soil runoff. Note that in the fields mentioned above, the data is 

typically irregularly sampled.  

Another important field where spatial data is used extensively is remote sensing. 

In remote sensing, earth orbiting satellites typically gather reflectance data for the 

electromagnetic waves at different frequencies like visible frequencies and infrared. It is 

an efficient means for collecting large amounts of spatial data in a relatively short time. 

This data is typically gathered in the form of regular sampled images, where each pixel 

essentially depicts the reflectance, or some other property, integrated over a small 

rectangle on the earth. Remote sensing data is used for numerous applications like 

predicting weather patterns, agriculture, land cover and mineral distribution. With long 

strides being taken in the area of sensor development, remote sensing is growing at a fast 

pace, with ever new spatial datasets coming up for analysis. Along with the conventional 

applications, remote sensing is increasingly being used for military applications, 

especially with the advent of high resolution multispectral and hyperspectral imaging 

sensors. 

 

1.1. SPATIAL DATA 
A generic data location in an n-dimensional Euclidean space can be defined as 

nℜ∈x , and the corresponding datum at location x  as )(xF . Then varying the location 

over an indexed set nX ℜ⊂  and collecting the data in a set gives us a multivariate 

random field:  

{ }X∈xxF |)(                                                            (1.1) 

A specific realization of the random field from Eqn. (1.1) gives us a spatial 

dataset, and is denoted as: X∈∀ xxf ),( . In this dissertation, two-dimensional spatial 

data, i.e., n = 2, is considered. Note that although this model is termed random field data 

model, the dataset itself does not have to be random and can be deterministic (or sampled 

from a deterministic function).  
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Spatial data can be classified broadly into three categories based on the 

underlying spatial location model used to define the random field [Cressie, 1991], as 

follows.  

Geostatistical Data: In terms of spatial location, the spatial index x   can vary 

continuously over the subset nX ℜ⊂ , i.e., the locations at which the data is collected can 

be continuously varying and randomly scattered (in no specific order). This category of 

spatial data is most commonly seen in areas like mining, geology and soil science, where 

the soil samples are collected at random (but known) locations and then used for 

estimation and prediction of various properties like ore grade, soil pH, and composition.  

Lattice Data: In case of lattice data, the spatial index x can vary over a countable 

set of spatial sites at which data is observed. Although the term lattice gives rise to a 

picture of regularly spaced points in space, Cressie [1991] includes irregularly spaced 

lattice data into the same category. Thus, there are two types of lattice data: regular lattice 

data and irregular lattice data. However, the common factor between the two is that both 

models are supplemented with neighborhood information, i.e., each spatial site is 

connected to a countable set of sites called neighbors. The neighborhood of a site can be 

defined differently for different problems. Once the neighborhood is defined for the 

lattice, it becomes a graph with each site being a node, connected to its neighbors by 

edges. This graph theoretic formalism has given rise to several models and processing 

based thereon, for lattice data. One of the most common example of lattice data is that of 

an image, where every pixel is a spatial site with an intensity (or color) value, connected 

to say its four nearest neighbors. The image itself can come from different sources, like 

remote sensing (large scale) data, where each pixel is assumed to represent the center of 

the rectangle on the earth it covers; or medical imaging (small scale) where each pixel 

may represent the transmission property of a small area of the body.  

Point Patterns: Point patterns are spatial data where the important variable is the 

spatial location of the “event” itself, and not the data recorded at the spatial location. In 

other words, the random field is completely defined by the set of spatial locations itself 

}|{ nX ℜ⊂∈xx  and the value of the function )(xf  may be secondary (or can be 

assumed to be a constant over the entire set). The set X  is a random set or more 

specifically a spatial point process and its realization is called a spatial point pattern. 
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Spatial point patterns are good models for “events” occurring at random locations, where 

the goal is to model or predict the location of the event itself. Some major areas for point 

pattern data are seismology (modeling and prediction of earthquakes) and plant 

population studies. It is noted that the third category of spatial data can sometimes be 

converted to one of the other two categories, by associating a feature or property, like 

number of neighbors, or mean distance from neighbors, as the value of the function )(xf .  

The first two categories of spatial data are of particular interest to us. This 

dissertation presents algorithms for detection in spatial data. It considers the problem of 

detection of landmines in airborne multispectral image data. These spatial datasets fall 

broadly into the second category of lattice data. However, in general, problems in mine 

and minefield detection use concepts from the third category of point patterns, and entail 

the treatment of the data in a similar fashion. 

 

1.2. LANDMINE DETECTION AND AIRBORNE SPATIAL DATA 
Detection and remediation of landmines and minefields has been an area of 

intensive research owing to its significance from the humanitarian demining and tactical 

countermine perspectives. Effective detection of these landmines, which are typically 

spread over wide areas, is a challenging problem due to the inherent variability in the 

nature of the mines (shape, size, material) and terrain (vegetation, soil type, geography). 

Several data acquisition and detection systems have been proposed for this problem. 

These systems can be broadly classified into two categories: ground-based and airborne 

systems. Ground-based systems are based on technologies such as metal detectors 

[Brown, 2002], ground-penetrating radar [Amazeen, 1996; Witten, 1998; Kaskett, 1999; 

Sato, 2003; Sun, 2005], pulsed magnetic induction [Sower, 2001], forward looking radar 

(FLIR) [Zhao, 1998], nuclear quadropole resonance (NQR) [Garroway, 2001; Tan, 

2002], and acoustic sensing [Xiang, 2001]. However, the ground-based systems are 

typically restricted in their search rate, and consequently have limited coverage area.  

Moreover, due to the close proximity to the ordnance, they may have a higher degree of 

hazard to the operator and equipment. Airborne systems, on the other hand, do not have 

the aforementioned limitations and offer low-risk standoff detection and a quick 

turnaround time. As a result of these advantages, airborne systems have gained popularity 
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in recent years. Some of the recent airborne minefield detection research programs are the 

Airborne Far IR Minefield Imaging System (AFIRMIS) [Simrad, 1998], Remote 

Minefield Detection System (REMIDS) [Bishop, 1998; Poulter, 2001], Cobra 

Reconnaissance and Analysis System (COBRA) [Witherspoon, 1995], and Lightweight 

Airborne Multi-spectral Minefield Detection System (LAMD) [Haskett, 2001].  

Figure 1.1 shows a typical airborne minefield detection scenario. Similar to 

remote sensing applications, airborne landmine detection systems typically use electro-

optical sensors (usually operating in the visual and infrared wavelengths) mounted on an 

aerial platform. The sensors are typically arranged in an 2-D rectangular array. Each 

sensor in the array records the IR, MWIR or multispectral reflectance intensity integrated 

over a rectangular area of the ground below. The data from the sensor array is arranged 

on a two-dimensional regular lattice in R2 to form two-dimensional images, with each 

pixel representing some finite area on the ground. The scale of the data is specified in 

terms of the Ground Sample Distance (GSD) of the data, which essentially conveys the 

resolution of the airborne imagery. The aerial platform transmits the captured data to the 

base station on the ground, where the data is processed with an aim to detect the presence 

of landmines. The idea is that the reflectance properties of the landmines in the various 

bands of the electromagnetic spectrum are different from that of the background like soil, 

vegetation and rocks. Then the problem of landmine detection essentially is to distinguish 

the spectral-spatial signature of the landmines from that of the background.  

The data used in this dissertation is the airborne multispectral image dataset, 

collected as part of the airborne landmine detection program at Night Vision and 

Electronic Sensors Directorate (NVESD). The aim of the program is to develop and 

evaluate fast and accurate mine and minefield detection algorithms for the airborne 

spatial imagery. The data is captured in the form of a sequence of image frames from the 

sensor mounted on an aerial platform flying over simulated minefields, at various times 

of day and terrain conditions. The aerial platform is flown over the minefield area at a 

predefined altitude and speed, with a gimbal to collect frames of images in a specified 

pattern. A specified number of image frames create a segment/field of regard (FoR). The 

set of segments collected from one flight constitute a run. As depicted in Figure 1.1, the 

geo-locations of each frame along with other information is collected using onboard 
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Global Positioning System (GPS) and Inertial Measurement Unit (IMU), which 

constitutes the Meta data (data of data). The Meta data and any available image overlap 

are used to reconstruct the ground image for the FoR.  

Figure 1.2 shows a typical segment of airborne multispectral data used in the 

dissertation. The 21 frames of the segment are co-registered to give a consolidated view 

of the FoR. 

 

 

 
 

Figure 1.1.  Airborne Mine and Minefield Detection Scenario 
 

 

1.3. OVERVIEW OF THE DISSERTATION 
In this dissertation, two different algorithms are presented for the problem of 

detection in spatial data. As mentioned earlier, the spatial dataset used in this work is the 

airborne multispectral image data collected as part of the airborne landmine detection 

effort. In the first part of the dissertation, a fast algorithm for kernel-based non-linear 
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anomaly detection in the airborne spatial data is presented. The kernel-based non-linear 

version of the RX anomaly detector, Kernel-RX, was introduced by Kwon et al. [Kwon, 

2005a]. However, due to the high computational complexity of the kernelized version, its 

application is limited to problems with small sample sizes for target signature and 

background estimation. First, a reformulation of the Kernel-RX algorithm is presented 

which is termed Spatially Weighted Kernel-RX (SW-KRX). It is shown that under this 

reformulation, the detector statistics can be obtained as a function of the centered kernel 

Gram matrix calculated over the entire image. Finally, a methodology for the fast 

computation of the centered kernel Gram matrix is proposed in Section 4. The key idea 

behind the proposed methodology is to decompose the set of image pixels into clusters, 

and expediting the computations by approximating the effect of each cluster as a whole. 

The SW-KRX algorithm is implemented for a special case, and comparative results are 

compiled for the SW-KRX vis-à-vis the RX anomaly detector.    

 

 

 
 

Figure 1.2. Typical Multispectral Segment 
 

 

The second part of the dissertation deals with the problem of detection of buried 

mines in multi-spectral airborne imagery. Buried mine detection is a difficult problem 

because the spectral signature of the target pixels is very similar to spectral signature of 

the background constituents. The primary goal behind this work is to develop a 

methodology to extract the information in the spatial distribution of the spectral vectors 
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in the airborne imagery for the purposes of effective detection. This is achieved using 

cross-co-occurrence features from the imagery to capture the color texture information. 

As part of this work, a methodology for extraction, and subsequent selection of 

discriminatory features based on Bhattacharya coefficients and principal feature analysis 

of the raw features, is also presented. 

It should be noted that although the two algorithms are tested on the airborne 

multispectral image data, the algorithms are not limited to any specific spatial dataset, 

and are applicable to a broad class of spatial data.  

A brief overview of the organization of this dissertation is as follows. In Section 

2, the problem of detection and classification in airborne landmine imagery is introduced, 

followed by a review of the previous work done in the area of detection in spatial data for 

both uniformly and non-uniformly sampled data. A detailed discussion of non-uniformly 

sampled data with its various advantages and disadvantages, and the methods is 

presented. 

In Sections 3, 4 and 5, the development and details of the fast implementation of 

the non-linear anomaly detector, Kernel-RX, are presented. Section 3 begins by 

introducing the RX anomaly detector, followed by a detailed development of the Kernel-

RX algorithm. The detailed development of the proposed Spatially Weighted Kernel-RX 

(SW-KRX) is presented, followed by the comparative results for a special case of SW-

KRX on a simulated dataset.  

Section 4 presents the theory behind the fast implementation of the Spatially 

Weighted Kernel-RX. Since the proposed methodology is based on cluster-based 

presentation of the data, first, a brief review of the spectral-spatial clustering methods is 

presented. Next, the details of the multivariate Taylor series-based methodology for fast 

computation of the centered kernel Gram matrix are presented. Finally, a comparative 

analysis of the complexity of the proposed algorithm as compared to the original Kernel-

RX is presented.  

Section 5 essentially compiles the various results on the proposed SW-KRX 

algorithm on various datasets. The results for SW-KRX are generated for a special case 

of the detector, details of which are explained in Section 4. The results are presented in 

two categories. First, the results on the detection performance of the proposed algorithm 
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vis-à-vis the RX anomaly detector are presented. Next, the results on the computational 

gains achieved by the proposed method over the original Kernel-RX are depicted.  

Section 6 presents the algorithm for detection of buried mines in multi-spectral 

airborne imagery in detail. First, the problem of buried mine detection is introduced, 

followed by a brief description of the data that is used for presenting the performance 

results of the proposed algorithm. Then, the details of the methodology for feature 

extraction and discriminatory feature selection are presented. Next, detailed description 

of the various feature-based detectors is presented. Finally, comparative results on 

detection performance of the proposed algorithm vis-à-vis RX detector are presented, for 

various datasets.  

Finally, this dissertation is concluded in Section 7 followed by a discussion on the 

possible directions of research in the future.  
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2. RELATED WORK 

The problem of target detection in multispectral and IR spatial data is a long 

standing one. There are several sources of spatial data for which detection methods have 

been proposed. Some of the major sources are ground-penetrating radar [Amazeen, 1996; 

Witten, 1998; Kaskett, 1999; Sato, 2003], forward looking radar (FLIR) [Zhao, 1998], 

pulsed magnetic induction [Sower, 2001], acoustic sensing [Xiang, 2001], terahertz 

imaging [Hwu, 2004], and airborne IR and multispectral/hyperspectral imaging 

[Schweizer, 2001; Thai, 2002; Bowman, 1998] systems. A lot of research effort has been 

devoted to the detection problem, and there exists a huge body of literature on the 

subject. In Section 2.1, the detection problem specifically from the viewpoint of airborne 

spatial data is presented. Some of the detectors that have been proposed in the past, both 

for uniformly and non-uniformly sampled spatial data are also reviewed in the same 

section. Almost all of the detectors that have been proposed are for regular lattice spatial 

data (uniformly sampled images), and very little work has been done specifically on 

detection in non–uniformly sampled spatial data. A detailed discussion on the relative 

merits and demerits of non-uniformly sampled data is presented in section 2.2. Some of 

the basic tools and techniques that have been developed for non-uniformly sampled data 

processing are also reviewed. 

 

2.1. DETECTION IN AIRBORNE SPATIAL DATA: REVIEW 
In recent years, airborne spatial data has increasingly been explored for various 

detection applications due to its capability for low-risk standoff detection and quick 

turnaround time [Agarwal, 2001; Bishop, 1998; Engel, 1998; Grosch, 1995; 

Maksymonko, 1997; Simrad, 1998; Suzukawa, 1995; Tiwari, 2007; Witherspoon, 1995]. 

Accurate target detection in various forms of airborne data like hyperspectral (HSI) 

[Harsanyi, 1994a, 1994b; Manolakis, 2001, 2003; Kwon, 2005a], multispectral (MSI) 

[Clark, 2000; Tiwari, 2007] and infra-red (IR) image data [Agarwal, 2001; Bowman, 

1998] is a challenging problem. The goal behind a detection problem is to distinguish 

whether a given spectral data vector (in case of MSI/HSI data) belongs to the target class 

or not. In mathematical terms, the problem of target detection is usually posed as a 
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statistical binary hypothesis test [VanTrees, 1968]. Although there are several methods of 

systematic design of detection algorithms, the likelihood ratio (LR) test is particularly 

popular. This is because LR test allows us to assign a specific cost to the risk associated 

with an incorrect decision and also produces detectors which are optimum for several 

performance criteria [Manolakis, 2003]. The LR test based target detectors can be 

classified broadly into two classes, based on the information available about the target: 

matched filter approaches and anomaly detection approaches.  

In the matched filter approach, it is assumed that the statistics of the target and the 

background are known. The distributions of the spectra of the two classes are typically 

modeled as multivariate normal distributions. The detector statistic is then calculated as 

an appropriate distance of the observed vector from the means of the target and 

background classes. The matched filter is a constant false alarm rate (CFAR) detector, 

i.e., an exact threshold, which would give the desired false alarm probability, can be 

determined. In case the covariance matrices of the two classes are the same, the matched 

filter detector is just the Fisher’s Linear Discriminant for the two class problem, [Fisher, 

1936]. In the case when the different spectral vectors for both classes have uncorrelated 

components with equal variance, this detector is equivalent to the popular minimum 

variance distortionless-response beamformer [Haykin, 2001]. Several detection 

methodologies have been proposed which are based on this approach [Manolakis, 2000; 

Robey, 1992]. 

However, there are some problems in accurate target detection using the matched 

filter approach. One of the major problems is that of target signature variability, which 

arises due to variations in atmospheric conditions, sensor noise, material composition and 

terrain. Due to this, complete unique characterization of target signature in spatial data is 

practically impossible. Although it is possible to generate a library of possible target 

spectral signatures, the configuration space of the possible signatures is typically large 

and it limits the performance of the detector to the space of the signatures in the library. 

Also, in a typical data, there are relatively few targets as compared to the background, 

and consequently, sufficient information is not available to reliably estimate the statistics 

of the target class. This limitation brings out the major difference between detection and 

classification problems. Although theoretically detection and classification problems are 
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the same (detection is essentially a binary classification problem), in practice they pose 

different challenges. Typically, for classification there are enough data points to estimate 

the statistics of either class. But in detection problems the data points belonging to the 

target class are much fewer, which poses robust estimation problems. Also, in certain 

scenarios, the signature of the potential target is completely unknown and the system has 

to detect the target based on what it has “seen” previously. In such situations where there 

is not enough statistical information regarding the target, the anomaly detector approach 

is adopted.  

In the anomaly detection approach, it is assumed that there is not sufficient 

apriori information regarding the target class. In such a case, the only option is to 

somehow measure how different (hence the word “anomaly”) a given spectral vector is 

from the background. The detector statistic in case of anomaly detection is just the 

Mahalanobis distance of the spectral vector from the mean of the background class 

[VanTrees, 1968]. The statistics of the background class can be reliably estimated from 

the data itself, in light of the fact that very few of the spectral vectors in the data actually 

belong to the target class. Such a LR test based anomaly detector is optimal for the 

Neyman-Pearson criterion. However, in almost all practical situations the conditional 

densities in the LR test depend on some unknown background parameters. In such a case, 

the maximum-likelihood estimates of the unknown parameters are used for the 

conditional densities. The LR test based on the estimated densities is then called a 

Generalized Likelihood Ratio Test (GLRT). Moreover, if the unknown parameters are 

estimated adaptively over the data (spatially varying), then such a detector is called an 

adaptive anomaly detector. Reed and Yu [Reed, 1990] proposed one of the first adaptive 

anomaly detectors based on GLRT, called the RX anomaly detector. Although, such an 

adaptive anomaly detector does not have the optimality property in the Neyman-Pearson 

sense, it has been found to be effective in practice [Yu, 1993].  

Recently, a kernel-based nonlinear version of the RX anomaly detector was 

proposed by Kwon and Nasrabadi (2005a), and termed Kernel-RX. The essential idea in 

the Kernel RX detector is that the data vectors are first transformed to a feature space by 

non-linear feature transformation. The detector statistics are calculated in the feature 

space, instead of original data space. The computations can be devised in terms of the 
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“kernel function” associated with the feature transformation, which makes the non-linear 

computations tractable. Early studies comparing RX and Kernel-RX have shown that the 

latter can give better performance on some spatial datasets [Kwon, 2005a]. In the 

preliminary results shown in Section 6, it is also found that Kernel RX performs at par or 

better, for simulated spatial data.  Kernel RX is particularly useful in cases where the 

background is non-homogeneous, in which case Kernel RX gives significantly better 

performance than the RX detector. 

It is noted that in the above description of the two classes of detectors only the 

spectral information in the data was exploited. The detection was “non-literal” in the 

sense that no shape information was utilized. However, it is possible to have spatial-

spectral versions of both the detectors (i.e., spatial-spectral matched filter and spatial 

spectral anomaly detector). It differs from the non-literal version only in that the test 

spectral vector is not just the current vector under consideration, but is obtained as a 

function of spectral vectors in the spatial region corresponding to the target shape, around 

the test pixel vector.  

Another major problem in target detection in airborne imagery arises with the 

finite spatial resolution of the data. Consider the case when the target actually occupies 

only part of the area on the ground which is captured in a pixel. Since the rest of the area 

is covered by background, the pixel records a mixture of the spectral signature of the 

target and background. This problem is sometimes referred to as spatial mixing. As can 

be seen, the detectors mentioned above are not designed for the case of sub-pixel targets 

and spatially mixed signatures. In fact the aforementioned detectors can be classified as 

full-pixel target detectors, and detectors designed specifically for the spatial mixing 

problem, as sub-pixel target detectors [Manolakis, 2001; Keshava, 2003].  

In case of spatial mixing, it is reasonable to assume that the spectral vector is a 

linear combination of the target and background spectra. Therefore, the basic difference 

in this case is that the variability of the target model is represented using a subspace 

model, i.e. the target vector aSr = , where columns of S  are the “endmembers” or 

representative signatures and the vector a  provides their relatives proportions. The 

variability of the background is modeled mathematically using either a statistical model 

or a structural model. Use of different models for the background leads to different 
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detection techniques. For instance, in the case of the statistical models, the background is 

modeled as multivariate normal distribution and this led to different algorithms like 

adaptive coherence/cosine estimator (ACE) [Kraut, 1999, 2001] and adaptive matched 

filter (AMF) [Chen, 1991; Robey 1992]. For the case of the subspace model for 

background, techniques like Orthogonal Subspace Projection (OSP) [Harsanyi, 1994b] 

and matched subspace detector [Scharf, 1994] have been proposed. A detailed 

comparison on the detection performance of the subspace background models can be 

found in [Manolakis, 2001]. Recently, kernel-based non-linear versions of these various 

sub-pixel target detectors have been proposed, which the authors argue improve the 

detection performance on hyper-spectral imagery (HSI) datasets [Kwon, 2005a, 2005b, 

2006a, 2006b].  

Few techniques exist that address the problem of detection in irregularly sampled 

spatial data. One of the important techniques has been proposed by Carlotto [2005]. They 

proposed a new unified approach for anomaly and change detection in hyperspectral 

imagery. Their technique, called the Cluster Based Anomaly Detection (CBAD) and 

Cluster Based Change Detection (CBCD), as a first step involves clustering of the 

spectral vectors in the image into disjoint clusters. Statistics on the distribution of the 

clusters are retained, which are then used for detecting anomalies and changes. This work 

is unique in the sense that it obtains a non-uniformly sampled representation from 

uniformly sampled data, so as to improve the robustness and performance of the 

algorithm. Other work on similar lines i.e., cluster-based detection, has also shown 

improvements in the computational efficiency of the algorithms using the cluster-based 

representation [Stein, 2002; Carlotto, 2002]. 

 

2.2. NON-UNIFORMLY SAMPLED SPATIAL DATA: COMPARISON AND 
REVIEW 

Although, several algorithms have been proposed for regular grid data, very few 

have addressed the detection problem in non-uniformly sampled spatial data. There are 

several advantages of working with non-uniformly sampled data like prevention of 

oversampling, compression and anti-aliasing. Also, in certain scenarios, the data naturally 

occurs in non-uniformly sampled form. It is desirable that the detection and other 

algorithms can be applied directly on the non-uniformly sampled data, instead of 
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converting it into uniformly sampled data by interpolation of some kind, as is usually 

done in such situations. In this section, a detailed discussion on non-uniform sampling 

and a review of techniques and methods for working with non-uniformly sampled data is 

presented. 

Uniformly sampled data has some definite advantages over non-uniformly 

sampled data. That is the reason why significant research and development effort has 

been devoted to the field of uniformly sampled data analysis and processing. However, 

with the challenges brought on with the advent of the age of data, there has been a 

resurgence of interest in the development of analysis and processing tools and techniques 

for the non-uniformly sampled data. For instance, there are situations where non-

uniformly sampled data is all that is available. Conventional methods go around this 

problem by first converting the non-uniformly sampled data into uniformly sampled data, 

by some form of interpolation. However, research in the area of non-uniform sampling 

over the past few decades has suggested that non-uniformly sampled representation of 

data has certain advantages, and it is not always desirable to work with uniform samples. 

In this section, some advantages and disadvantages of working with non-uniformly 

sampled spatial data are presented. This is followed by a brief review of some of the tools 

and techniques that have been proposed for non-uniformly sampled data.  

Shannon with his presentation of the sampling theorem in 1948 [Shannon, 1948] 

gave a tremendous boost to the area of digital signals. Although he did not claim this 

theory to be his own, he is largely credited with formalizing the sampling theorem and 

introducing it to the fields of communications and signal processing. With the sampling 

theorem, Shannon laid down the foundation for a coherent and sound mathematical 

theory for uniformly sampled signals1. With the solid mathematical foundations coming 

from the sampling theorem and the linear systems theory, the use of uniformly sampled 

signals became tremendously popular. With the well-defined notion of frequency and a 

general mechanism for converting analog signals into a string of numbers, the world of 

science and engineering was quick to adopt uniformly sampled signals as the standard for 

                                                 
1 In this section, the terms regular grid signals and uniformly sampled signals are used interchangeably. 
Typically, the former is used more in context of two or higher dimension signals, and the latter, more for 
one dimensional temporal signals, as seen in communications and signal processing.  
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representing real world signals. Although the sampling theorem has undoubtedly 

revolutionized the field of modern engineering and signal processing, there were practical 

problems with the basic premise of the theorem: the uniform sampling of signals. The 

one major problem with uniform sampling is the requirement that the signals should be 

bandlimited (to decide the sampling rate). Real-world signals are rarely bandlimited, and 

this leads to the problem of aliasing, since the frequency spectrum of the uniformly 

sampled signals repeats itself outside the interval [–fs/2, fs/2], where fs is the sampling 

frequency. Also, the ideal low-pass filters which are needed as anti-aliasing (or also 

during signal reconstruction) do not exist in practice, so it becomes difficult to remove 

aliasing in the reconstructed signal entirely.  

Another related problem with the uniform sampling is that of oversampling. In 

most of the real-world signals, the high frequencies are irregularly distributed i.e., they 

are sporadic and occur in spurts. This phenomenon can be observed in several real-world 

signals of natural scene images, speech and music. In the slowly varying part of such 

signals (low-frequencies), there is a strong correlation amongst neighboring samples. 

Uniform sampling at a rate based on the highest frequency in the signal will typically 

result in oversampling. Although, oversampling does not produce distortion, it can lead to 

significant waste of computational and storage resources.  

Besides aforementioned problems, there are scenarios in which it is not even 

possible to obtain uniformly sampled signals or data. For instance in very high rate signal 

processing, special instrumentation (analog-to-digital converter) is needed to ensure that 

the sampling is accurate, and even then there are formidable hardware issues. Also, in 

certain applications it is fairly frequent that one or more of the samples are “missing” 

from the recorded data [Goodsill, 1993], due to problems like data corruption or 

transmission loss. In certain fields like geology and geophysics, owing to the limited 

accessibility of the terrain and other reasons, it is not possible to take samples of 

geophysical data (electrical conductivity, soil composition, magnetic potential etc.) at 

regularly spaced locations. Thus, the data samples are inherently irregularly spaced and 

typically, highly clustered. Besides these, there are several other fields and applications 

where use of non-uniformly sampled data is widespread, like astronomy, computer 

tomography and seismology. 
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The primary challenge in working with non-uniformly sampled data comes from 

the lack of unified and coherent mathematical theory and tools for the same. Although, 

the field has seen strong resurgence since the late eighties [Strohmer, 1995, 2006; 

Gröchenig, 1992; Yellott, 1982; Tarczynski, 2004; Bilinskis, 1992], it is still in the 

nascent stages and there are several open fundamental questions [Summers, 1988]. For 

instance, the notion of frequency for non-uniformly sampled data is hard to define. Also, 

standard signal processing tools like the fast Fourier transform (FFT), fast convolution 

and filtering are no longer directly applicable. 

 However, there are certain significant fundamental advantages in working with 

non-uniformly sampled data. It is possible to adopt intelligent sampling schemes and 

avoid oversampling. As a result, there is a broader scope for designing computationally 

efficient algorithms for non-uniformly sampled data. For instance, Greitans [1997] 

showed that non-uniform sampling allows the processing of signals employing fewer 

signal samples as compared to what is required by the Nyquist sampling criterion.  

Another major advantage of working with non-uniformly samples signals is the 

possibility to eliminate the aliasing effects, i.e., it is possible to exceed the Nyquist limit. 

In other words, in the case of regular sampling, by definition the highest possible 

frequency that can be distinguished unambiguously is fs/2. If there exist frequencies 

higher than this limit they get folded back into the interval [–fs/2, fs/2]. With irregular 

sampling this restriction is removed and spectral information from outside this band can 

also be analyzed [Yellott, 1982; Tarczynski, 2004; Bilinskis, 1992]. Several methods for 

spectral analysis for non-uniformly sampled signals have been proposed [Tarczynski, 

2002, 2004; Mednieks, 1999]. In fact, owing to this property of non-uniformly sampled 

signals, a whole new area of research called Digital Alias-free Signal Processing (DASP) 

has emerged, which already is seeing some interesting applications in instrumentation 

[Artyukh, 1997] and Digital Radio [Wojtiuk, 2000]. The interested reader is referred to 

some early fundamental papers in the DASP area [Shapiro, 1960; Masry, 1978], and 

some review papers on the various techniques proposed in the field [Bilinskis, 1992; 

Wojtiuk, 2000; Martin, 1998]. While on the topic of spectral analysis, it is important to 

note that methods exist for the Fourier transform of non-uniformly sampled signals (Non-

uniform Discrete Fourier Transform, NDFT) [Bagchi, 1999], and its fast calculation 
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[Dutt, 1995; Potts, 2001]. However, it should be noted that although the forward Fourier 

transform for non-uniformly sampled data exists, it is not always invertible. Also, 

filtering techniques have also been proposed for non-uniformly sampled data, like the fast 

multipole method based filtering proposed by Gumerov and Duraiswami [2004].  

 Although several methods have been proposed for spectral analysis of non-

uniformly sampled signals, the problem of signal reconstruction is still very much open. 

Most of the signal reconstruction methods for non-uniformly sampled signals that have 

been proposed are for bandlimited signals [Feichtinger, 1992a, 1992b; Gröchenig, 1992; 

SaySong, 1995; Seip, 1987; Strohmer 1995]. A few techniques have also been proposed 

for fast reconstruction [Feichtinger, 1995; Strohmer 2006]. Although a few spline based 

reconstruction techniques have been proposed which do not have a strict requirement of 

“bandlimitedness”, they too are not readily applicable to arbitrary signals due to the 

regularization condition they enforce [Vazquez, 2005; Arigovindan, 2005].   

Another advantage that comes with non-uniform sampling is that of compression. 

As mentioned earlier, relating the sampling rate with the signal rate can reduce storage 

and processing requirements [Irvine, 2002; Arigovindan, 2005]. Recently, Arigovindan et 

al. [2005] proposed a variational method using multi-resolution splines, for 

reconstructing an image from few randomly selected pixels. Their work clearly 

demonstrates that most of the information in a uniformly sampled representation of an 

image is largely redundant, and it can almost completely be captured in fewer irregularly 

spaced samples.  

Non-uniform sampling can also be seen in natural systems like the human retina. 

In the human retina the photoreceptors are distributed in a non-uniform fashion, which 

research has shown, allows the human visual resolution limit to beat the Nyquist rate, and 

discern fine patterns with spatial frequencies as high as 1.5 times higher than the nominal 

Nyquist rate [Williams, 1987]. Vision scientists have repeatedly conjectured that besides 

getting an alias-free representation [Yellott, 1982], compression is another major goal of 

the photoreceptor distribution and signal coding in the retina [Olhausen, 1997]. 
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3. SPATIALLY WEIGHTED KERNEL-RX (SW-KRX) 

Anomaly detectors have been used extensively in the past for various applications 

like image analysis and target detection. Recently with the rapid advances in infrared (IR) 

sensor technology, there has been an explosion in the availability of sensors in the form 

of visible band, multispectral (MSI) and hyperspectral imagery (HSI) for analysis. 

Accurate detection and classification of targets of interest in this realm of sensor image 

data has been a long standing problem and extensive research has been done. Since the 

target signatures are spectrally and spatially different from the local background, most 

well-known frameworks developed for target detection in spectral imagery data employ 

anomaly detectors in the initial stages of processing [Agarwal, 2001; Chang, 2002]. One 

of the most widely used anomaly detectors is the RX (Reed-Xiao) algorithm, which was 

first proposed by Reed and Yu [Reed, 1990]. Recently a kernel-based nonlinear version 

of the RX anomaly detector was proposed by Kwon and Nasrabadi [Kwon, 2005a], and 

termed Kernel-RX. Owing to its non-linear nature, the proposed Kernel-RX algorithm 

takes into account spatial correlation and higher-order interactions amongst various 

spectral bands of the data in the original image space. This is unlike the original RX, 

which had a set of restrictive assumptions like zero mean, uncorrelated and Gaussian 

distributed data. With the non-linear model, improved target detection performance of 

Kernel-RX vis-à-vis linear RX was reported by Kwon et al. (Kwon, 2005a) for HSI data.  

However, like other kernel-based methods, Kernel-RX has a major drawback of 

high computational complexity.  There exist fast implementations of the conventional RX 

which exploit its linear nature to do the computations in the Fourier domain, greatly 

reducing the computation time [Holmes, 1995]. However, no technique has been 

proposed for fast computation of the Kernel-RX algorithm. Thus, in spite of improved 

detection performance, the Kernel-RX has seen limited applications, especially for real-

time detection scenarios like detection of military targets in an incoming HSI data stream. 

In this section, the problem of the high computational load of Kernel-RX is addressed. A 

reformulated version of the Kernel-RX algorithm is proposed, termed the Spatially 

Weighted Kernel RX (SW-KRX). As will be demonstrated in the next section, the 

proposed version is more malleable for faster implementation.  
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3.1. RX ANOMALY DETECTOR 
Since the target signatures are typically statistically different from the local 

background, a statistical likelihood ratio test can be used to identify such “anomalies” in 

the local background. A detector based on such a test is called an anomaly detector. The 

RX anomaly detector described here was first proposed by Reed and Yu [Reed, 1990]. 

The RX detector assumes the input image to be uncorrelated and Gaussian distributed, 

with a zero mean. The assumption of Gaussian distribution of gray values is true of most 

of the images captured using electro-optical sensors, but most images are not zero mean, 

although they can be assumed to be slow-varying in most cases. Therefore, as a pre-

processing step to RX anomaly detection, a locally zero mean image is obtained from the 

raw input image. This is done by subtracting a non-stationary local mean from the 

original image. For the work in this dissertation, a specific implementation of the RX 

anomaly detector, proposed by Holmes et al. [1995], is used. This particular 

implementation uses three masks namely, target mask, blanking mask and demeaning 

mask. The target mask is taken to be circular, with a specific radius called the target 

radius, and it defines the shape of the targets expected in the image. The demeaning mask 

is also taken to be circular with a radius called the demeaning radius. The demeaning 

circle is used to estimate local mean of the background and is also used for the 

demeaning the original image. Finally, the annular region (since the masks are circular) 

between the blanking and the demeaning masks is used for estimation of the background 

statistics. Blanking radius, which is always less than the demeaning radius, is used to 

prevent any pixels of the target from being used in background estimation. The relative 

mask shape and sizes are shown in Figure 3.1.  

As the first step, the original image is demeaned by subtracting the estimated local 

mean from each pixel. The RX anomaly detector takes the zero-mean image as input and 

gives an “RX image” as output, which is of the same size as the input image. The input 

image is convolved with the set of masks, and this computation is done in the frequency 

domain (multiplication of FFTs) for efficiency. 

The RX anomaly detector can be used for multi-band images in general. Consider 

a J band demeaned image I. Let the pth pixel in the image be at location (i,j).  
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Figure 3.1. Relative Sizes and Shapes of Various Masks Used in RX Detector. 
 

 

Then, for the pth pixel, pjiI y=),( ,  the RX statistic ),( jiRX  is given by: 
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where C is the locally estimated J x J covariance matrix given by: 
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Also, Sμ  is the mean target signature given by: 
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where CW  and TW  are the set of clutter pixels and target pixels around location (i,j) used 

in estimating the background and target statistics, respectively, and CN  and TN  are the 

number of number of clutter and target pixels used in estimating C  and Sμ , i.e., 

||,|| TTCC WNWN ==                                                (3.4) 

where |.| denotes cardinality of a set. The RX detector statistics is the Mahalanobis 

distance of the target spectral vector from the sample distribution of the background as 

estimated from the spectral vectors in the clutter mask.   

Once the RX output is obtained from the raw image data it is usually followed by 

some post-processing steps like thresholding at a pre-specified value called the RX 
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threshold, and a non-max suppression (on the thresholded RX image) to suppress 

multiple points for the same target from showing up. 

 

3.2. KERNEL-RX ANOMALY DETECTOR 
Kernel-RX is fundamentally very similar to the conventional RX algorithm in that 

both calculate a test statistic for a generalized likelihood ratio test (GLRT) which tests the 

presence of a target at a pixel. The same concept of the estimation of the background and 

target over the background and clutter masks is used for the kernel detector. However, 

unlike the conventional RX algorithm which is based on the statistics of the input image 

data, Kernel-RX’s GLRT is based on the statistics on the non-linear transformation of the 

image pixels. Let us denote the data space of the original image by Γ  i.e. Jℜ⊆Γ , where 

J is the dimensionality of the MSI/HSI data. This data is mapped into a feature space F 

through a nonlinear mapping denoted by F→ΓΦ : . The individual pixel vectors are 

then mapped into potentially higher (possibly infinite) dimensional feature space: 

)(yy Φ→ . The key idea behind kernel-based algorithms is that reformulating any linear 

algorithm in the feature space gives a non–linear algorithm on the original data space. 

Kernel-RX is also a direct re-formulation of the conventional RX in the feature space. 

The feature set mapped from the set of clutter pixels Y  is denoted as:  

 ))}(()),......2(()),1(({ CNyyyY ΦΦΦ≡Φ                                     (3.5) 

The mapped target pixel ry is denoted as )( ryΦ . For the Kernel RX algorithm, 

the RX test statistic given in Eqn. 1 in the feature space can be re-written as follows:  

))((ˆ))(()( 1 Φ−
Φ

Φ −Φ−Φ= Cr
T

CrrKRX μyCμyy                                         (3.6) 

where,  

                                   ∑
∈

Φ Φ=
Ck Y

k
C

C N y
yμ )(1                                                         (3.7) 

Let us denote the centered feature vectors as: Φ−Φ=Φ Ciic μ)()( yy , and the set 

of centered feature vectors as: })((,......)2((,)1(({ ΦΦΦΦ −Φ−Φ−Φ≡ CCCCC N μμμ yyyY . 
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Then, the estimate of background sample covariance matrix in the feature space can be 

given as: 
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Direct computations in the non-linear feature space are often not feasible due to 

the higher dimensionality of the data. For instance, the matrix ΦĈ can be too large 

(potentially infinite) to compute. However, with the use of the “kernel trick”, the dot 

products of vectors in the feature space can be computed using a kernel function ‘k’ as: 

)()(),( baba Φ⋅Φ=k                                                    (3.9) 

Note that the kernel function k inherently determines the non-linear mappingΦ . 

Commonly used examples of kernel functions are the polynomial kernel and Gaussian 

kernel. In this work, the popular Gaussian kernel function is adopted. The Gaussian 

kernel of width 0>σ is given by: 

⎟
⎠
⎞⎜

⎝
⎛ −−= 22 /exp),( σbabak                                         (3.10) 

where ||.|| denotes the L2 Euclidean norm. The CC NN ×  kernel Gram matrix is defined 

for the feature vector set ΦY  as: 

Cjijiij Njik ....2,1,),,()()(][ ==Φ⋅Φ= yyyyK                           (3.11) 

Then, the Kernel RX statistic is given as (detailed derivation in Appendix A):  

r
TT

rrKRX kααΛky ˆ)(ˆ)( 2−=                                      (3.12) 

where, 

 ),(ˆ
rC

T
Cr yYk Φ= Φ                                               (3.13) 

α  is the matrix containing the eigenvectors of matrix centered kernel Gram matrix 

K̂ along its columns, and Λ  is the diagonal matrix containing the eigenvalues of matrix 

K̂ . The centered kernel Gram matrix K̂ can be obtained from the original Gram matrix 

K , defined in Eqn. (3.11) as (see Appendix C for the detailed derivation): 

CCCC NNNN 1K11KK1KK +−−=ˆ  
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where, CijN NC /1][ =1  is a CC NN × matrix. Note that the second and the third terms 

are the column and row means of the original Gram matrix. The fourth term is the mean 

of the entire matrix.                                            

 

3.3. SPATIALLY WEIGHTED KERNEL-RX 
As mentioned earlier, the Kernel RX algorithm has high computational 

complexity. The algorithm has primarily two computational bottlenecks. The first 

bottleneck is the expensive computation of the Gram matrix for each pixel of the image, 

which takes )( 2 JNO C  computations, where NC is the number of background samples and 

J is the dimensionality of the data. Secondly, the computation of the Kernel-RX value 

involves the inversion of the Gram matrix, which is a )( 3
CNO  process, followed by a 

matrix vector multiplication. The number of background samples NC is governed by the 

image resolution and the target size. For large value mask sizes and high resolution, the 

computational complexity of the Kernel-RX algorithm becomes prohibitively large. In 

this section, the details of a modified version of the Kernel RX algorithm, called Spatially 

Weighted Kernel RX (SW-KRX), are presented. The proposed version is more amenable 

to faster implementation, the details of which are presented in the next section.  

3.3.1. Modified Detector Statistics.  Consider again, a J band image with 

dimensions MxM, and total N = M2 pixels. In the original Kernel RX algorithm, the 

background set Y is defined by the clutter mask (the annular region between blanking 

and demeaning radii). In the proposed SW-KRX method, the concept of masks is 

eliminated, and the neighborhood of a given pixel is defined as the entire image domain, 

i.e., the set of background pixels of a given target pixel is the set of all the pixels in the 

image, i.e., }...2,1|{ Nii == yY . The mapped feature vector set is denoted as ΦY  in 

Eqn. (3.5) defined for all the N pixels in the image, and not just the Nc pixels falling 

within the clutter mask area.  

 The adaptivity of the anomaly detector is effectuated by the use of weights. The 

exact selection of the weights is described in detail in Section 3.3.2. Let the target pixel 

under consideration be denoted by ry . A weight iw  is associated with each feature vector 
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)( iyΦ of the image. These weights are with respect to the current target pixel under 

consideration. A weighted version of the Kernel RX is now developed using these 

weights. A similar reformulation for the RX anomaly detector was proposed by [Ren, 

2005]. It should be noted that the set ΦY comprises all the pixel feature vectors in the 

image including the target pixel under consideration, assuming that the detector statistic 

is being calculated for all the pixels in the image. This is unlike other anomaly detectors 

including the original version of the Kernel RX, where the set of target feature vectors 

and the background feature vectors are disjoint. Although the goal of the anomaly 

detector is to “distinguish” the target pixel from the background data, it can be safely 

assumed that one data sample in the background set does not significantly alter the 

detector statistic.  

Given the target pixel under consideration, the weighted background mean and 

the weighted background covariance matrix can be written as: 

                                 ∑
=

Φ Φ=
N

i
iiCW w

1
)(yμ                                                          (3.14) 

∑
=

ΦΦ
Φ −Φ−Φ=

N

i

T
CWiiCWiW w

1

))(())((ˆ μyμyC                       (3.15) 

If the centered feature vectors is denoted as: Φ−Φ=Φ CWiic μyy )()( , and the set of 

centered feature vectors as: })((,......)2((,)1(({ ΦΦΦΦ −Φ−Φ−Φ≡ CWCCWCWCW N μyμyμyY , 

then the weighted covariance matrix is given by:  

T
CWCWW
ΦΦ

Φ = YWYC 0
ˆ                                                (3.16) 

where, 0W  is a diagonal matrix with the various weights on its diagonal, i.e. 

iii w=][ 0W  and jiij ≠∀= 0][ 0W . Let us assume that the covariance matrix ΦĈ  has 

an eigen-decomposition: 

 T
WWWW ΦΦΦΦ = UΛUĈ                                                (3.17) 

where ],.....,[ 21 N
WWWW ΦΦΦΦ = uuuU  is the matrix containing the eigenvectors along its 

columns, WΦΛ  is a diagonal matrix and IUUUU == ΦΦΦΦ
T

WWW
T

W .   
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The pseudo inverse of the covariance matrix is given as:  

 T
WWW Φ

−
ΦΦΦ = UΛUC 1#ˆ                                                     (3.18) 

Then, multiplying Eqn. (3.17) by WΦU , and substituting Eqn. (3.16): 

                               W
T

CWCWWWWW Φ
ΦΦ

ΦΦΦΦ == UYWYUCΛU 0
ˆ                            (3.19) 

Multiplying both sides by T
CW
ΦY : 

W
T

CWCW
T

CWWW
T

CW Φ
ΦΦΦ

ΦΦ
Φ = UYWYYΛUY 0)(  

Again pre-multiplying both sides by 2/1−
ΦWΛ  on the right and 2/1

0W  on the left, 

and rearranging the terms: 

)()( 2/12/1
0

2/1
0

2/1
0

2/12/1
0

−
ΦΦ

ΦΦΦ
Φ

−
ΦΦ

Φ = ΛUYWWYYWΛΛUYW T
CWCW

T
CWWWW

T
CW   (3.20) 

Let 

WWW
T

CW αΛUYW =−
ΦΦ

Φ 2/12/1
0                                                 (3.21) 

Note that columns of Wα  are a set of orthonormal vectors, i.e., Iαααα == T
WWW

T
W . 

Now, Eqn. (3.20) can be written as:  

WC
T

CWW αWYYWΛα )( 2/1
0

2/1
0

ΦΦ
Φ =                                            (3.22) 

Note that the term 2/1
0

2/1
0 WYYW ΦΦ

CW
T

CW  is the centered kernel Gram matrix with the 

weight terms included. Denoting the weighted centered kernel Gram matrix as: 

2/1
0

2/1
0

ˆ WYYWK ΦΦ= C
T

CW                                                (3.23) 

The (i,j)th element of this matrix will be:  

),()()(]ˆ[ jijijC
T

iCjiijW kwwww yyyyK =ΦΦ==          (3.24) 

Then Eqn. (3.22) can be written in terms of the weighted centered kernel Gram 

matrix as: 

WWWW αKΛα ˆ=Φ                                                       (3.25) 

It can be seen from Eqn. (3.25) that the columns of the matrix Wα  are the eigenvectors of 

the weighted-centered kernel Gram matrix. Let us denote the jth eigenvector of the 
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weighted kernel Gram matrix WK̂  as j
Wα , i.e., ],....,[ 21 N

WWWW αααα = . From Eqn. (3.19) 

and (3.21), the eigenvectors of the covariance matrix can be expressed in terms of the 

eigenvectors of the weighted centered kernel Gram matrix as: 

2/12/1
0

−
Φ

Φ
Φ = WWCWW ΛαWYU                                             (3.25) 

Then from Eqn. (3.18) and (3.25), the pseudo inverse of the covariance matrix ΦĈ can be 

written as:  

T
CW

T
WWWCW

T
WWWW

Φ−
Φ

Φ
Φ

−
ΦΦΦ == YWαΛαWYUΛUC 2/1

0
22/1

0
1#ˆ                      (3.26) 

Writing Eqn. (3.6) in terms of the pseudo inverse of the covariance matrix from Eqn. 

(3.26): 

)()()( 2/1
0

22/1
0 rC

T
CW

T
WWWCW

T
rCrKRXSW yYWαΛαWYyy ΦΦ= Φ−

Φ
Φ        (3.27) 

where, )( rC yΦ is the centered target vector. Bringing in the weight associated with the 

target pixel rw , Eqn. (3.27) can be written as: 

2/12/12/1
0

22/1
0

2/12/1 )()()( −Φ−
Φ

Φ− ΦΦ= rrrC
T

CW
T

WWWCW
T

rCrrr wwwwKRXSW yYWαΛαWYyy  
(3.28) 

Thus, 

2/12/12/1
0

22/12/1
0

2/1 ])(][[])([

)(
−Φ−

Φ
Φ− ΦΦ

=

rrrC
T

CW
T

WWW
T

rrC
T

CWr

r

wwww

KRXSW

yYWαΛαyYW

y
   (3.29) 

Defining the column vector: 

 2/12/1
0 )(ˆ

rrC
T

CWWr wyYWk Φ= Φ                                       (3.30) 

Note that this Eqn. (3.30) is the weighted dot product of the target vector with the entire 

centered feature vector set, so that Eqn. (3.29) can be written as:  

Wr
T

WWW
T

Wrrr wKRXSW kαΛαky ˆ)(ˆ)( 2−
Φ=                            (3.31) 

Eqn. (3.31) gives the detector statistics for one target pixel ry . However, the modified 

expression for the detector statistics given in Eqn. (3.31) helps in circumventing a major 

computational hurdle. It should be noted that the weighted centered Gram matrix 

WK̂ defined in Eqn. (3.23) remains the same for all the target pixels in the image, 
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irrespective of the position of the target pixel under consideration. This is unlike the 

original Kernel RX algorithm, in which the background pixel set ΦY changes from pixel 

to pixel, due to which the Gram matrix has to be re-computed for each pixel. This 

fundamental drawback of re-computation of the Gram matrix is eliminated in the 

proposed reformulation of the Kernel RX detector. 

Since the Kernel matrix does not change from pixel to pixel, the SW-KRX 

detector statistics of Eqn. (3.31) can be combined in vector form, for all the pixels vectors 

in the image. From Eqn. (3.23), it can be seen that the vector Wrk̂ represents a column of 

the centered kernel Gram matrix WK̂ . The detector statistics q  for all the pixels in the 

image in combined vector form can be written as:  

)ˆ)(ˆ( 2
0 W

T
WWW

T
Wdiag KαΛαKqW −

Φ=                                      (3.39)  

where q  is the Nx1 vector containing the SW-KRX detector statistic for each pixel, i.e., 
T

NSWKRXSWKRXSWKRX ])(....)()([ 21 yyyq = . Eqn. (3.39) gives the weighted 

detector statistic for all the pixels, and denoting the qWq 0=W , it can be written as: 

)ˆ)(ˆ( 2
W

T
WWW

T
WW diag KαΛαKq −

Φ=                                      (3.40) 

Eqn. (3.40) gives the expression for the weighted SW-KRX detector statistics.  

Recall that Eqn. (3.23) gives the definition of the weighted centered kernel Gram 
matrix WK̂ . The (i,j)th element of this matrix is from Eqn. (3.24) is given as:  

),(]ˆ[ jijiijW kww yyK =                                           

Since the term of the centered kernel matrix is based on both the feature vectors, 

the total weight can be written as a function of the matrix entry position, i.e.,  

ijji www =                                                       (3.41) 

 Defining W as the matrix which has the combined weights ijw as entries, i.e.  

ijij w=][W                                                        (3.42) 

Note that the diagonal elements of the weight matrix W are the same as that of the 

weight matrix W0. Then, the weighted centered kernel Gram matrix can be written:  
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WKK *ˆˆ =W                                                      (3.43) 

where “*” denotes the element wise multiplication operation on two matrices, and 

ΦΦ= CW
T

CW YYK̂  is the kernel Gram matrix defined on centered feature dataset. The matrix 

K̂  can be computed in terms of the weight matrix W and the unweighted uncentered 

kernel Gram matrix K, as follows:  

WΩKΩWWΩKKΩWKK TT +−−=ˆ                                   (3.44) 

where, W is the weight matrix as defined in Eqn. (3.42) and Ω  is diagonal matrix given 

as: 

∑
=

= N

j
ij

ii

w
1

1][Ω  and jiij ≠∀= 0][Ω                                   (3.45) 

The detailed derivation of the relationship in Eqn. (3.44) is provided in Appendix D.  

At this point a special case of the SW-KRX detector is considered. Eqn. (3.40) 

can be re-written in terms of the Eqn. (3.25) as:  

)))(()(( 2 T
WWW

T
WWW

TT
WWWW diag αΛααΛααΛαq Φ

−
ΦΦ=               (3.46) 

In the case when the constituting dimensions of the mapped feature vector )( iyΦ are unit 

variance and uncorrelated, i.e., IΛ =ΦW ,  Eqn. (3.46) can be written as: 

)()))((( T
WW

T
WW

T
WW

T
WWW diagdiag ααααααααq ==               (3.47) 

Since in the special case, T
WWW ααK =ˆ , the SW-KRX detector statistics case is: 

 )ˆ( WW diag Kq =                                                      (3.48) 

Since qWq 0=W , and given Eqn. (3.44), Eqn. (3.48) can be written as: 

)ˆ(0 WKqW ∗= diag                                                  (3.49) 

Since the diagonal elements of the weight matrix W are the same as that of the 

weight matrix W0, the SW-KRX detector statistics (unweighted) for the special case is 

given as: 

)ˆ(Kq diag=                                                       (3.50)                         
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That is, the detector statistics is the diagonal of the weighted-centered kernel Gram 

matrix. 

3.3.2. Selection of Weights. As described in Eqn. (3.42), (i,j)th  element of the 

weight matrix W, i.e. ijw , is some function of the ith and jth pixels from the background 

set. Although the concept of masks is eliminated in the aforementioned version of Kernel 

RX, as mentioned earlier, the local adaptivity of the detector is enforced using the set of 

weights. To this end, the weights in the weighted kernel matrix are chosen to be functions 

of their relative positions. Let ),( iii cr=p be the spatial position vector of the ith pixel in 

the image. Let ),( jiwd pp  be a distance function between the ith and jth pixels. For the 

proposed SW-KRX, a continuous 2-D distance function is adopted. The continuous 

function chosen as the distance function is the same as the kernel function k 2. For the 

work in this dissertation, the kernel function, and hence the spatial distance function, is 

chosen to be the exponential function, i.e.,  

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−== 2

2

exp),(),(
γ

ji
jijiw kd

pp
pppp                                  (3.51) 

Similar to the binary distance function, the exponential distance function gets 

smaller for the pair of pixels that are spatially separated, however in a continuous fashion. 

The width of exponential distance function γ  essentially governs the falloff of the 

function with respect to the spatial distance. The smaller the width γ  of the exponential 

distance function, the smaller the region of influence around any given pixel. 

For the Gaussian kernel, the exponential spatial weight term ),( jiwij dw pp= , 

and the exponential kernel term ),( jik yy can be combined into one term. The 

augmented spatial-spectral pixel vectors in the image are defined as: 

 Nicr T
iiii ,....2,1][ =∀=

γ
σ

γ
σyx                                      (3.52)  

                                                 
2 This is assuming that the kernel function ‘k’ is a valid distance function, like the Gaussian kernel function 
used in this work. 
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where iy is the Jx1 pixel vector at location ),( iii cr=p . Thus, ix  is a dx1 vector, where 

d = J + 2. The creation of the augmented spectral-spatial vectors allows us to combine the 

weights and the kernel terms together, and define it directly in terms of the kernel 

operation on the augmented vectors. This allows us to use the same machinery as used for 

fast computation of the kernel matrix, proposed in the next section, for the computation 

of the weight terms too.                                                      

 

3.4. RESULTS: SIMULATED DATA 
In this section, some preliminary detection performance results of the proposed 

SW-KRX detector over simulated data are presented. For the purposes of comparison and 

accuracy of approximation, detection performance results for four other detectors, namely 

the RX detector, the Kernel RX detector, and two modified versions of Kernel RX 

detector are also presented.  

The data is simulated for two different types of background distribution, namely 

single Gaussian and Gaussian mixture distributions. For each type of background 

distribution, 25x25 patches are generated at random. 1000 patches are generated with a 

target pixel at the center, which has a different mean from the background. Another 1000 

patches are generated without any target pixel, and these are the patches with only the 

background. The number of bands in the spectral vectors for both the simulated datasets 

is J = 3. 

Note that the proposed method is slightly different from the Kernel RX algorithm 

in that it computes the kernel Gram matrix over all the pixels in the image, including the 

target pixel(s). However, if the number of target pixels is small in comparison to the total 

number of background pixels, their effect on the final Kernel RX statistic is expected to 

be negligibly small. To demonstrate this, the results for the first modified version of the 

Kernel RX, termed T-KRX (Target-KRX), are included. This detector is the same as the 

original Kernel RX, except that the kernel Gram matrix is defined including the target 

pixel(s). In the second modified version of the Kernel RX algorithm, instead of the 

computing the Kernel-RX statistic as in Eqn. (3.12), it is obtained directly from the 

weighted-centered kernel Gram matrix as in Eqn. (3.50) (the special case). This modified 

version is termed Direct T-KRX (“Direct”, since no matrix inversion is needed). Note 
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that the Direct T-KRX detector is the same as the proposed method, except that there is 

no spatial weighting based on the spatial dimensions. The idea behind showing the 

detection performance results for the T-KRX and Direct T-KRX detectors is to 

systematically analyze the effect on the two key modifications in the proposed method 

over the original Kernel RX detector, namely the inclusion of the target pixel in kernel 

Gram matrix definition, and direct computation of the statistic from the centered 

weighted kernel Gram matrix. 

For RX, Kernel RX, T-KRX and Direct T-KRX, a target mask diameter of 1, i.e., 

only one target pixel, is chosen.  The width of the Gaussian kernel function for Kernel 

RX, T-KRX, Direct T-KRX, and the proposed method is 33.32=σ . The width of the 

Gaussian kernel used as the spatial distance function is set at 13=γ .  

Figure 3.2 shows examples of simulated patches for the Gaussian distributed data. 

Figure 3.2a shows a non-mine patch, i.e., no target is present, and Figure 3.2b shows a 

patch with a single pixel target present at the center. Figure 3.3 shows the detection 

performance results using ROC curves for the Gaussian distributed background data. The 

standard deviation of the background data is 5, and the target mean is [9 8 9]T and [11 11 

12]T for Figures 3.3a and 3.3b, respectively, corresponding to the medium SNR and high 

SNR. It can be seen that the detection performances of all the detectors are similar.  

 

 

 
(a) 

 
(b) 

 
Figure 3.2. Simulated Patch for Gaussian Distributed Data (a) No Target Present (b) 

Target Present. 
 

The ROC curves for the T-KRX and Direct T-KRX detectors are almost the same 

as the original Kernel RX algorithm, corroborating the accuracy of the detector statistic 

Target Pixel 
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computation as given in Eqn. (3.50), and the fact that the inclusion of the target pixel has 

negligible effect. It should be noted that in case of Gaussian distributed background, the 

RX algorithm is theoretically optimal, and should, therefore, give the best performance 

amongst all detectors. 

 

 

(a) 
 

(b) 

 
Figure 3.3. Comparative Detection Performance for Various Detectors for Gaussian 

Distributed Data (a) Medium SNR (b) High SNR. 
 

 

However, it is noted that the performance of the Kernel RX algorithm is at par 

with the RX detector in this case as well. Also, as can be seen, the performance of the 

proposed detector, even with spatial weighting, is as good as the RX and the Kernel RX 

detectors. 

Although, the RX detector is based on the assumption that the background is zero 

mean and Gaussian distributed, it is not always the case with real world spatial data and 

images, due to primarily two reasons. In case of remote sensing and aerial imaging, due 

to thermal noise in the sensors, salt and pepper type noise is observed in the data, which 

are outliers to the underlying Gaussian distribution. Secondly, it is fairly common to see 

spatial data containing a mixture of different types of distributions. For example, in case 

of the airborne multispectral image data, it is common to see images containing two or 
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more different types of backgrounds, like vegetation, road, sand, and rivers. The data at 

the interface of two of more of these regions cannot be modeled accurately as a single 

Gaussian distribution. 

In the second set of results, the performance of the various detectors in the 

aforementioned scenarios is depicted. Figure 3.4 shows sample simulated patches for the 

case when the data is a mixture of two distinct background regions, similar to the 

condition mentioned above. The proportion of the two background regions in the patches 

is 80:20. Figure 3.4a shows a patch where target is not present, and the patch shown in 

Figure 3.4b contains a target at the center.  

 

 

 
(a) 

 
(b) 

 
Figure 3.4. Simulated Patch for Mixed Background in 80:20 Proportion (a) No Target 

Present (b) Target Present. 
 

 

Figure 3.5 depicts the detector performance results using Receiver Operating 

Characteristic (ROC) curves for data simulated for this case. The x-axis depicts the 

probability of detection and the y-axis depicts the False Alarm Rate (FAR). The 

proportion of the two regions in the background is 90:10, 80:20, 70:30, and 60:40 for 

Figures 3.5a, 3.5b, 3.5c and 3.5d, respectively. It can be seen from Figure 3.5 that, since 

the data is no longer Gaussian distributed, the performance of the RX detector 

deteriorates rapidly. However, the performance of the Kernel RX, T-KRX, Direct T-

KRX, and the proposed detector, does not suffer as badly and is much superior to the RX 

detector. This robustness of the Kernel RX and the proposed detectors can be attributed 

to their ability to effectively reject outliers from the data due to non-linear weighting. 

Target Pixel 

Background 1 

Background 2 
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Therefore, these results are indicative of the fact that Kernel RX detector is likely to 

detect targets which lie on the interface on two or more regions, or data with outliers 

much more accurately than the RX detector. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 3.5. Comparative Detection Performance for Various Detectors for Mixed 

Background with Different Proportions (a) 90:10, (b) 80:20, (c) 70:30, and (d) 60:40 
Mixture. 
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4. FAST APPROXIMATE COMPUTATION OF KERNEL GRAM MATRIX 

4.1. COMPUTATIONAL BURDEN IN SW-KRX 
In the SW-KRX algorithm presented in Section 3, the detector statistic for the 

image can be obtained directly from the centered Gram matrix computed over the entire 

image. The problem then becomes that of computing the centered weighted Gram matrix, 

WK̂ and consequently the original Gram matrix K  efficiently. It should be noted that the 

matrix K  under this framework is an NxN matrix, which even for small size images can 

be extremely large in dimensions. For example, for a small 64x64 image, K will be a 

4096x4096 matrix. The brute force calculation of the Gram matrix is a 

)()( 42 JMOJNO = computation, which is impracticable even for small images. In this 

section, the methodology behind fast calculation of the Gram matrix K , and the 

weighted centering for the diagonal elements is developed for the widely used and well-

known Gaussian kernel. 

 

4.2. SPECTRAL-SPATIAL CLUSTERING 
The key idea behind the development of a fast method for the computation of the 

kernel Gram matrix for the SW-KRX detector statistic is to move from individual pixel 

based computations to cluster-based computations. That is, instead of computing statistics 

for one pixel at a time, the pixels can be grouped into clusters and the computations can 

be done for the whole cluster at a time efficiently. Similar ideas for fast computation of 

the Gauss transforms has been proposed in techniques like Improved Fast Gauss 

Transform (IFGT) [Raykar, 2005a, 2005b] and KD-trees [Gray, 2001]. The Improved 

Fast Gauss Transform (IFGT) method is based on a wider class of algorithms called Fast 

Multipole Methods, which were developed for problems in computational physics 

[Greengard, 1987]. The basic idea behind the IFGT method is also to cluster the data 

points involved in the Gauss transform, and approximate the effect of clusters as a whole, 

instead of individual data points.  

As a first step to the fast implementation of the proposed SW-KRX detector, the 

spectral vectors in the image need to be clustered into spectral-spatial clusters.  Several 

algorithms exist in the literature, based on techniques like vector quantization, watershed 
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segmentation [Vincent, 1991; Gauch, 1999], quad-tree or oct-tree decomposition [Spann, 

1985, 1989; Wilson, 1988; Lee, 1989], and Voronoi tessellation [Okabe, 1992; Horn, 

1986], which can possibly be used for spatial-spectral clustering of the image. In Section 

4.2.1, a brief review of some of the methods that can be used for the aforementioned 

spatial-spectral clustering is presented. This is followed by the description of the 

watershed-based clustering technique adopted for spectral-spatial clustering in this work.  

4.2.1. Clustering Techniques: Review. For the fast implementation of the SW-

KRX algorithm, the spatial data has to be “tessellated” with spectral-spatial clusters. 

Consider a discrete spatial dataset, with a set of points  dN
iiP ℜ⊆= =1}{p . In case of the 

uniformly sampled image dataset, set P is the location of all the pixels in the image and 

the spatial dimensionality is d = 2. Then, a set G
iisS 1}{ ==  is called a “tessellation” of P, 

if jiss ji ≠∀=∩ φ  and Psi
G
i =∪ =1 . In this work, the goal is to tessellate the spatial 

data using a criterion based on spectral similarity and spatial vicinity. Several techniques 

in image segmentation and data clustering literature have been proposed for the 

generation of such tessellations on spatial data. A comprehensive review of such 

techniques is beyond the scope of this dissertation. The focus in this work being on fast 

computation, the important issue in selecting a clustering technique is that of 

computational speed. In this section, a brief review of the some of the more suitable 

techniques is presented.  

One important category of useful techniques is that of algorithms based on 

Voronoi tessellations. The first formal studies of spatial tessellations were done by 

Dirichlet [1850] and Voronoi [1908]. Their main contribution was the formalization of 

the idea of partitioning of a space by considering a set of source points and assigning 

each point to the “closest” source point. There are several applications of the concept of 

Voronoi tessellations. For a detailed description of the various concepts in Voronoi 

tessellations and the computational algorithms and their variants, the reader is referred to 

[Okabe, 1992]. Earlier work based on Voronoi tessellations in image segmentation and 

vision can be found in [Horn, 1986]. A variant of Voronoi tessellation is the concept of 

Centroidal Voronoi Tessellations (CVT). The key idea in CVT is that the source points 
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are also the centroids of the clusters, which are determined algorithmically in an iterative 

fashion.  Several applications of CVT have been proposed [Du, 1999, 2002; Hausner, 

2001; Kanungo, 2002], and they have found several applications in image processing, 

specifically image segmentation [Du, 2006]. CVT is an intuitive clustering strategy and 

its simplest form is the same as the popular k-means clustering strategy [Kanungo, 2002; 

Inaba 1994]. Understanding the k-means algorithms in the mathematical framework of 

CVT allows significant extensions and improvements in the k-means algorithm, and also 

other clustering strategies. Arbelaez et al. [2003] recently proposed the concept of 

generalized Voronoi tessellations for the segmentation of vector-valued images. Their 

key contribution is the definition of a pseudo-metric on the vector-valued image data and 

a novel technique for the selection of the source points. Their pseudo-metrics are able to 

accurately describe the structure of the images with relatively homogeneous regions.  

Another set of techniques is region-based split and merge segmentation 

techniques. There is an extensive body of literature on this category of techniques. The 

goal is to tessellate the image into regions, based on some homogeneity criteria. In 

merging, first a primitive tessellation of the image is derived. As a correction step, 

neighbors with similar characteristics, as defined by some criteria, are merged. The 

starting point in splitting techniques, is the entire rectangular image, which is iteratively 

split into four rectangular regions (in case of 3D data, eight regions) until each region 

satisfies a homogeneity criterion. The key component in these techniques is the 

homogeneity criteria, which decides the final segmentation outcome. For example, in the 

early work, Chen et al. [1981] proposed a quad-tree like linked pyramidal structure and a 

statistical criterion for combining global and local region statistics for image modeling. 

Improvements and variants of their technique were later developed in other efforts [Burt, 

1981; Hong, 1984a, 1984b]. Spann and Wilson [1985] were amongst the first to propose 

a quad-tree structure based method which used clustering of a histogram at a low spatial 

resolution, followed by boundary refinement. Other algorithms on similar lines were also 

developed in [Wilson, 1988; Spann, 1989]. Schroeter et al. [1995] experimented with 

different clustering algorithms and also proposed an improved boundary refinement step 

using adaptive filtering. Another interesting method in this category was that proposed by 

Lee [1989]. Although the goal there was primarily compression, the basic idea was to 
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determine an optimal tessellation of the image. This method combines the regular 

splitting, and the quad-tree data structure of the split and merge techniques with the 

general threshold based region extraction method of the recursive splitting techniques.  

Another important category of techniques for generating tessellation on images is 

watershed transformation based techniques. Watershed transformation, which is inspired 

from the notions in topography, has received considerable attention in the last two 

decades. Watershed is defined as the lines that divide a given region into the so called 

catchment basins, which are essentially the minima in the topographical surface. Any 

drop of water falling in the catchment basins will reach the minima associated with it. 

Watershed transformation in images essentially is the process of finding the watershed 

pixels, and consequently the catchment basins or segments, in the topographical surface 

created by the image function. This idea is used for image segmentation and tessellation 

in that anytime a secondary image can be formed such that it has high ridges at the region 

edges and low values on the region themselves, the watershed pixels will outline the 

various regions. Watershed transformation is particularly effective when combined with 

other morphological and region handling techniques.  

The introduction of watershed transformation to the field of image processing is 

credited to Digabel et al. [1978]. However, Vincent and Soille [1991] proposed one of the 

first popular computational algorithms for computing the watershed transformation. Their 

algorithm is based on immersion simulation, and was the basis of several subsequent 

efforts. Another significant effort was that by Gauch et al. [1999], where the watershed 

segmentation was done on the gradient magnitude image, followed by non-linear filtering 

process. The resulting algorithm was simpler than the Vincent and Soille algorithm, but 

gave similar results. Although, the watershed algorithm results in a natural tessellation of 

the image, in most real images, it leads to over-segmentation. Therefore, several 

algorithms have been proposed which use region growing and region merging on the 

primitive regions defined by watersheds, for achieving accurate segmentation [Haris, 

1998; Wang, 1997; Bleau, 2000; Makrogiannis, 2001]. For instance, Haris et al. [1998] 

proposed a gradient and region-based hybrid method, which used the primitive regions 

generated by watersheds and applies an efficient region merging process based on Region 

Adjacency Graphs (RAG) for final segmentation. Hernandez et al. [2000] also proposed a 
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hybrid region merging criterion based on edge integrity and region homogeneity for 

reducing oversegmentation. In an example of the application of watershed in real-world 

systems, Chen et al. [2007] have proposed a watershed-based adaptive skin lesion 

segmentation technique for dermoscopy images. They propose a object histogram based 

region merging method for reducing the oversegmentation, and conclude that watershed-

based segmentation method outperforms several other automated techniques for this 

application. With the analysis of multiscale watersheds [Gauch, 1993; Pratikakis, 1999; 

Olsen, 1997; Jackway, 1996], several segmentation algorithms using morphological 

pyramids [Salembier, 1995; Meyer, 1997; Wright, 1997; Bosworth, 1998] and multiscale 

hierarchies [Pratikakis, 1999; Olsen, 1997] have also been proposed.  

The clustering literature is vast, and there are several other techniques which may 

be applicable to the present problem. The interested reader is referred to the excellent 

surveys of data clustering techniques by Xu and Wunsch [2005] and Jain et al. [1999]. 

4.2.2. Watershed-based Clustering. For the SW-KRX algorithm presented in 

this section, the watershed-based clustering technique has been adopted. Watersheds 

produce a natural tessellation of the image and are can be computed speedily. The 

popular Vincent and Soille algorithm [Vincent, 1991], as implemented in Mathworks 

Inc.’s Matlab® package, was used for watershed transformation.  

Although watersheds typically lead to the problem of oversegmentation, this was 

not a major issue in the implementation of the SW-KRX detector algorithm. The reason 

for this is that the proposed SW-KRX detector entails an upper bound on cluster size 

along each dimension, for more accurate approximation using multivariate Taylor series. 

This bound should hold for all clusters and for all the dimensions, including the spatial 

dimensions. A detailed explanation and development of this bound is presented in 

following Section 4.3. In light of the bound and the empirical results on watershed on the 

spatial image data, it was found that the natural clusters generated by watershed were of 

appropriate size and oversegmentation was not a major issue.  

As a first step, each image frame is passed through a Gaussian smoothing filter, 

followed by the computation of the multiband gradient magnitude image. Watershed 

transformation was then applied to the gradient magnitude images. Each watershed 

region (which has a different label) is considered a spatial-spectral cluster, and is 
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subsequently checked for the spatial and spectral bounds given above. If a cluster fails to 

meet the bound along any dimension, it is split along the median point of the cluster 

along that dimension, and the resulting clusters are checked again for all dimensions. At 

the end of this process, each cluster meets the bound and consists of a group of spatially 

close and spectrally similar pixels.  

 It should be noted that the watershed pixels themselves do not belong to any 

cluster, and in that sense watershed transformation does not give a complete tessellation. 

However, instead of posing a problem, this creates a choice in the clustering process. 

Since the watershed transformation is done on the gradient magnitude image, the 

watershed pixels typically lie on region edges. The edge pixels typically are an overlap of 

pixel intensities from different regions and belong to a particular region only partially. In 

such a case, it might be better to leave the edge pixels out of any cluster instead of 

“corrupting” the cluster, which, as shown later, leads to more computation. However, 

since the SW-KRX detector statistic is calculated only for the pixels belonging to the 

clusters, it might not be a viable option to leave out edge pixels from the clusters when 

the statistics have to be computed for the entire image (or on any set including any subset 

of the set of the edge pixels). In such a case, there are potentially different ways to 

distribute the watershed pixels into clusters, so as to make them part of the detector 

statistics computation.  

In this work, the following approach is adopted for this distribution of watershed 

pixels. Each edge pixel is compared with each one of eight neighbors in its immediate 

vicinity. The edge pixel is assigned to the cluster to which its spectrally closest neighbor 

belongs. There might be cases where the most similar neighbor of a watershed pixel is 

also a watershed pixel (in which case both of them will remain watershed pixels). In such 

cases, each watershed pixel is considered a single-pixel cluster in itself. In the results 

depicted in this dissertation, the watershed pixels are assigned to clusters using the 

technique outlined above. At the end of the watershed-based spectral-spatial clustering, 

the entire image is tessellated with compact clusters, which satisfy the bound.  
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4.3. FAST COMPUTATION OF KERNEL GRAM MATRIX 

Let us assume that the augmented spatial-spectral vectors }{ ix of the image are 

clustered into G clusters. The clusters are denoted by }.....2,1|{ Gksk = , and the number 

of pixels vectors in the kth cluster by kN . The spatial centroid of the kth cluster is denoted 

by p
kc , and the spectral centroid is denoted by s

kc . The combined spatial-spectral 

centroid is denoted by Tp
k

s
kk ][ ccc = . The clustering is such that it should satisfy the 

following three conditions: 

1. NiGkski ,....2,1},...2,1{, =∀∈∈x                                                                       

2. klss liki ≠∉⇒∈ xx ,  

3. ∑
==

=⇔==
G

i
ii

G

k
k NNNis

11

}...2,1|{xU                                                (4.1) 

Since, the pixels in the image are clustered into spectral-spatial clusters, they can 

be indexed in the order of the clusters they belong to, i.e., all the pixels in the first cluster 

together and then the second cluster and so on.  
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As shown in Eqn. (4.2), since the indexing of pixels is such that the pixels under a 

cluster are placed together, the kernel Gram matrix K  can be thought of as a block 

matrix. Each block in the matrix denotes a sub-matrix formed by calculating the kernel 

distance between elements of one cluster with elements of another. Let us assume that the 

image is clustered into G spectral-spatial clusters. Let the G spectral-spatial clusters, be 

denoted by }.....2,1|{ Gksk = .  

 

1st Cluster 2nd Cluster Gth Cluster 
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Gram matrix K can be written as:  
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where, the sub-matrix element klK  of the block matrix K is given by: 

[ ] ljki
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ijkl ss ∈∈∀
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⎛ −
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xx
K &,exp 2

2

σ
                                (4.4) 

Thus, klK is  a lk NN × matrix, the entires of which are calculated between 

elements of clusters k and l. It is noted that the blocks on the diagonal of the matrix are 

square and symmetric, and also T
lkkl KK = . 

The goal is to calculate the matrix K one block at a time, efficiently. A 

methodology is now proposed to get an approximation for each block, which can be 

computed efficiently. Consider the (i, j) element of the block klK from Eqn. (4.3), which 

is the combination of the points from clusters ks and ls . It can be written as: 
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where, kc  and lc  are the centroids of the clusters ks  and ls , respectively. This can be 

expanded as 
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Regrouping the terms, Eqn. (4.26) can be written as:  
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where, 
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The last term in Eqn. (4.8) can be approximated using the truncated multivariate 

Taylor series [Raykar, 2005a, 2005b]. To this end, at this point, the multi-index notation 

from [Raykar, 2005a] is introduced. Let T
d ],......,[ 21 ααα=α is a vector of the same 

length as the dimension of the spectral-spatial vectors ix , and following operations are 

defined over the vector α :  

1. dααα +++= ......21α                                                                (4.9a) 

2. d
dxxx ααα .....21

21=αx                                                                        (4.9b) 

3. !!......!! 21 dααα=α                                                                         (4.9c) 

4. ∑
=

=⋅
n

n

α

ααyxyx )(                                            (4.9d) 

Using the multi-index notation, the multivariate Taylor series approximation of 

the last term in Eqn. (4.8) can be written as [Raykar, 2005a]:  
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             (4.10) 

It is desirable that an accurate Taylor series approximation, up to a desired 

accuracy, be obtained in the fewest possible terms. For a compact Taylor series 

representation, it is essential that the argument of the exponential function be a small 

number. To this end, an upper bound of 1 is enforced on the argument of the exponential 

function in Eqn. (4.10). The exponential on the dot product can be written as the 

multiplication of individual exponentials on individual dimensions. Using this, the bound 
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on the argument of the exponential can be translated into the following bound on each 

individual dimension: 

dnss
cxcx

ljki
jnknin ,...2,1&&1

)()(2
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−⋅−

xx
σ

      (4.11a) 

where, inx  and knc  denote the nth dimension of the spectral-spatial vectors ix  and kc , 

respectively. In terms on each clusters this translates into the bound:  
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                                   (4.11b) 

Eqn. (4.11b) should hold for all clusters and for all the dimensions. This is taken care of 

during the first step of spatial-spectral clustering.  

Note that Eqn. (4.10) gives the truncated decomposition, with the truncation 

number p. This decomposition can be made arbitrarily accurate by choosing a high 

enough truncation number, although at the expense of more computation. The issue of 

approximation accuracy and computational burden is dealt with in Section 4.4.  

However, such decomposition allows us to disentangle the two vectors 

)( ki cx − and )( lj cx − from the dot product and separate them out. Using Eqn. (4.10),  

Eqn. (4.7) and (4.8) can be modified as follows:  

[ ] αα

α

α

κκ
ασ jlkikl

p

lk
ijkl ∑

−≤⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=

1
2

2

!
2)(

exp
cc

K                                  (4.12a) 
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From a computational perspective, note that in Eqn. 10, in the calculation of the 

terms ακ ikl and ακ jlk , the terms ⎟
⎠
⎞

⎜
⎝
⎛ −⋅−
− 2

)()(2
exp

σ
lkki cccx

have to be computed for each 

point in the cluster and for coupling with every other cluster, which is a 

)( GNO k operation. Instead, this term can be approximated by using the truncated 

multivariate Taylor series again, i.e.,  
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where q and r are the truncation number for the Taylor series approximation for clusters k 

and l, respectively. With this approximation, the terms 
β

σ
⎟
⎠
⎞

⎜
⎝
⎛ − li cx

and 
β

σ
⎟
⎠
⎞

⎜
⎝
⎛ − kl cc

can be 

computed separately. Using the decomposition in Eqn. (4.13), Eqn. (4.12) is written as: 
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The terms in Eqns. (4.14), (4.15) and (4.16) are for the (i,j) element of the block 

matrix klK . These equations can be written in vector form for the entire block matrix. Let 
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where lN and kN are the number of vectors in the clusters ls and ks respectively. Thus, 

k
k
αβκ  and l

l
αβκ and are 1×kN and 1×lN  vectors respectively. Using this notation, the 

block klK  as defined by Eqn. (4.14), can be written in vector form as outer product 

decomposition: 

T
lkkl

p rq
kl

lklk

lk

b αβαβββα

α ββ

κκK ∑ ∑∑
−≤ −≤−≤

=
1 11

                              (4.17) 



 

 

47

Eqn. (4.17) can be interpreted as a combination of inter-cluster and intra-cluster 

interactions. Note that the vectors k
k
αβκ and l

l
αβκ  depend only on the spectral-spatial 

vectors from cluster ks  and ls , respectively. Therefore, the vectors αβ
lκ and αβ

kκ represent 

the intra-cluster interaction for the kth and the lth clusters. Also, the term lk
klb ββ  in Eqn. 

(4.17) depends only on the centroids of the kth and the lth clusters, it represents the inter-

cluster interaction between the two clusters. Thus, the block klK can be interpreted as the 

result of interplay between the inter-cluster and intra-clusters vectors of the kth and the lth 

clusters. 

Note that for the computation of the block lying on the diagonal of the kernel 

Gram matrix, i.e. kkK , the computations are considerably simplified. Going back to 

Eqns. (4.15), (4.16) and (4.17), it can be seen that the diagonal blocks represent the 

interaction of a cluster with itself. Since lk cc = , all the terms involving kβ  and lβ  

vanish, and  Eqn. (4.17) is simplified to: 
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From Eqn. (4.17) it can be seen that the blocks of the kernel Gram matrix can be 

decomposed into weighted outer products of vectors, defined on the two interacting 

clusters. In Section 4.4, it is described how this decomposition can be used to efficiently 

compute the detector statistics for the special case given in Eqn. (3.36).  

 

4.4. FAST APPROXIMATE CENTERING OF KERNEL GRAM MATRIX: 
DIAGONAL ELEMENTS 

Once the outer product decomposition is obtained from either Eqn. (4.17) or 

(4.18), the centered version of the entire kernel Gram matrix needs to be computed for 

the computation of the SW-KRX statistics. However, recall that for the special case of the 

SW-KRX detector, i.e., unit variance of the various dimensions in the feature space, the 
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statistics is given by: )ˆ(Kk diag= . In this dissertation, the implementation of the SW-

KRX is limited to the special case, and this section presents the method for fast 

computation of these diagonal elements of the weighted centered Gram matrix.  

From Appendix D, the centered kernel Gram matrix can be written in terms of the 

uncentered unweighted kernel Gram matrix K (defined only on the spectral vectors) as:  

KWΩΩWKWΩKΩWKK TT
W +−−=ˆ                                    (4.20) 

where, ),(][ jiijij kw ppW == and Ω  is a NxN diagonal matrix with ∑
=

=
N

j
ijii w

1
][Ω .  

Note that, in this section, the weights are incorporated explicitly by the use of the 

weight matrix W, and are not assumed to be the part of the kernel Gram matrix. Similar 

to the kernel Gram matrix, the weight matrix W can also be understood as a block matrix, 

with the block defined for the kth and lth clusters denoted as klW . Moreover, since the 

spatial distance function is also a Gaussian function, the various elements of the block 

klW  can be computed efficiently using Taylor series decomposition. In terms of the (i,i)th  

pixel, the centering equation for the diagonal term can be written as: 
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The second term in Eqn. (4.21) is the weighted column mean and the third term is the 

weighted row mean of the Gram matrix. Since K is a symmetric matrix the weighted row 

mean is the same as the weighted column mean.  
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Also, the diagonal terms in the Gram matrix are unity, i.e., 

1),( =iiK                                                      (4.23) 

The weighted row mean term are denoted by: 
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If the ith pixel belongs to the kth cluster, the weighted row mean for the ith pixel 

can be written in terms of the block matrices as: 
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Since the spatial distance function is the same as the kernel function, the numerator term 

can be computed efficiently by working with augmented spectral-spatial vectors }{ ix . For 

the denominator term the same computing framework can be used, except that the 

position vectors }{ ip  alone are used in place of the augmented spectral-spatial vectors.  

The fourth term in Eqn. (4.21) is the weighted Gram matrix mean. This term 

entails N2 computations for the centering of each term of the N x N kernel Gram matrix. 

That is an order )( 4NO  complexity operation, and consequently has huge computational 

load. Therefore, instead of the actual weighted Gram matrix mean, an approximation is 

used. The weighted Gram matrix mean is approximated as the weighted average of the 

weighted row means, i.e., 
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Eqn. (4.26) gives only an estimate of the actual fourth term, and is done only for 

computational purposes. The approximate term is denoted as: 
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Using Eqns. (4.23), (4.24), (4.26), and (4.27), the diagonal elements of the centered 

weighted Gram matrix can be written as: 

ii mmii ~21),(ˆ +−=K                                         (4.28) 

The centering equation for all the pixels in the kth cluster can be written together 

in vector form. Defining the vector of weighted row means and the fourth term 

respectively as:  

T
Nk k

mmm ]....[ 21=m     

     T
Nk k

mmm ]~....~~[~
21=m                                            (4.29) 

Also, denoting the diagonal element of the weighted kernel Gram matrix of the kth cluster 

as kk  ( 1×kN  vector), Eqn. (4.27) can be written as:  

kkk mmk ~21 +−=                                             (4.30) 

Eqn. (4.30) is essentially the detector statistics for the kth cluster in terms of the row sum 

of the block matrices.  

 

4.5. COMPUTATIONAL ACCURACY AND APPROXIMATIONS 

The outer product decomposition of a block klK  is given in terms of the truncated 

multivariate Taylor series of the various cross-terms between the clusters. This 

representation is approximate in nature although it can be made arbitrarily accurate by 

choosing a high enough truncation number. In this section, the details of choosing the 

truncation numbers and other parameters of the algorithm, based on the acceptable error 

in approximation, are presented. Also, based on the acceptable error some computational 

approximations are suggested, which can potentially improve the computational speed of 

the algorithm.   

Although, the Taylor series approximation is done for function involving the 

augmented spectral-spatial vector, the acceptable error is specified for the spectral and 

spatial dimensions separately. Suppose the acceptable error per dimension for the spatial 

dimensions be denoted by pε and that in the spectral dimensions as sε .  
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4.5.1. Determination of α. In this section, the method for the selection of the set 

of vectors α employed in the multivariate Taylor series approximation in Eqn. (4.10), is 

outlined. Each element of the set α is a d-dimensional vector, where d is the 

dimensionality of the augmented spectral-spatial vectors.  The truncation numbers for 

each dimension are chosen individually, and the truncated powers for the dimensions are 

combined later, so as to get the smallest set of α which give the desired accuracy. For a 

given block klK , and each dimension n = 1,2..d, the following is determined:  
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where, inx denotes the nth element (dimension) of the pixel vector ix . Then, the 

truncation number for the nth dimension, nq , is the smallest positive integer which 

satisfies the following:  
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                                                            (4.32) 

where, pεε = for the spatial dimensions and sεε = for the spectral dimensions. Let 

nQ denote the set: }....2,1,0{ nn qQ = , then the set of α to compute the multivariate Taylor 

series in Eqn. (4.10) is given by the cross-products of the sets nQ for all the dimensions, 

i.e.,  

dQQQ .....21 ××=α                                                       (4.33) 

4.5.2. Determination of β. The procedure for determination of the set βk and βl 

for the multivariate Taylor series in Eqn. (4.13a) and (4.13b) is similar to the 

determination of the set α. Again, the truncation numbers for each dimension are chosen 

individually, and the truncated powers for the dimensions are combined later. For a given 

block klK , and each dimension n = 1,2..d, the following is determined:  

ki
knknin

ikn s
cccx

z ∈⎟
⎠
⎞

⎜
⎝
⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ −

= x,max ln

σσ
                            (4.34) 



 

 

52

Similarly, lnz is determined using cluster l. Then, the truncation number for the cluster k, 

and the nth dimension, knq , is the smallest positive integer which satisfies the following:  
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kn

knq
kn

q
z

                                                     (4.35) 

where, pεε = for the spatial dimensions and sεε = for the spectral dimensions. 

Similarly, let knQ denote the set: }....2,1,0{ knkn qQ = , then the sets of  βk and βl to compute 

the multivariate Taylor series in Eqn. (4.13) are given by  

kdkkk QQQ .....21 ××=β  

ldlll QQQ .....21 ××=β                                              (4.36) 

4.5.3. Spatial Far-field Approximation. Note that for the pair of clusters that are 

spatially far apart, the terms 
⎟
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 in Eqn. (4.17) will be small, and 

approach zero as the inter-cluster distance approaches infinity. In terms of the Gram 

matrix K, this means that the blocks klK which correspond to a pair of clusters that are 

far apart (large spatial distance), will be populated by elements very close to zero. 

Therefore, since the contribution of these blocks is small, they can be approximated by 

block zero matrices, and the block need not be computed. This approximation is termed 

the spatial far-field approximation. This approximation can be enforced by putting a 

threshold on the distance between the centroids of the two clusters, i.e.,                    
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where ),( p
l

p
kd cc  is a distance function. Therefore, the Gram matrix contains blocks of 

zeros corresponding to cluster pairs that are farther apart than the threshold pT . Eqn. 

(4.38)  shows the form of a typical sparse kernel Gram matrix. 



 

 

53

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−−−−−
−−−−−−−−

−−−−
−−−−

=

GGG KK00

0KKK
00KK

K

3

232221

1211

                                 (4.38) 

The threshold pT is determined based on the acceptable error in the spatial dimensions as:  
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Now that the kernel matrix is modified using the spatial far-field approximation, the 

weighted row mean expression from Eqn. (4.25) needs to be modified. Note that the row 

means for the kth cluster km  in Eqn. (4.25) are calculated for the entire row. However, 

due to the far field approximation, some of the blocks are negligibly small and not 

computed. To account for that, Eqn. (4.25) is modified to include the correct weight 

normalization. Let us denote the set of clusters which are in the “near-field” of the kth 

cluster as:  
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Then, Eqn. (4.25) can be written as:  
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4.5.4. Spectral Far-field Approximation. Similar to the spatial far-field 

approximation, the spectral far-field approximation is also introduced. The idea is that 

from the clusters that lie in a given cluster’s spatial “near-field”, the block sub-matrices 

corresponding to the clusters which are far-off spectrally can be approximated as block 

zero matrices. The threshold for the spectral distance is given by:  
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Similar to Eqn. (4.40), the set of clusters which are in spatial-spectral near field of the kth 

cluster is defined as: 
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kk Tdi <=Γ cc                                                (4.43) 

However, since these clusters lie in close spatial vicinity, the weights (which depend on 

spatial distance) will be non-negligible. Therefore, although the set of clusters used to 

estimate the numerators in the second and third terms of Eqn. (4.41) can be reduced 

further to those which have low spectral-spatial distance, the denominators have to be 

based on the set of all the clusters which are in spatial near-field. The detector statistics 

expression from Eqn. (4.41) can be written as: 
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4.5.5. Spectral Zeroth Order Approximation. Consider the case when the 

spectral expanse of say the kth cluster is small, i.e., the pixels belonging to the cluster are 

spectrally similar. In such a case, the exponentials can be approximated with only a single 

term of the multivariate Taylor series, which is the “zeroth” order approximation. In 

zeroth order approximation the set of both multi-index variables α  and β  contain one 

vector each, which is the zero vector. Let J0  denote a Jx1 vector full of zeros. A 

threshold is applied on the spectral expanse if the cluster to decide whether to use this 

approximation. That is, if 
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It is also noted that based on the multi-index notation:  

J
J 1a0

a
=

→0
lim                                                          (4.46) 

where J1  denote a J x 1 vector of ones.  
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From Eqn. (4.17), it can be seen that for the kth cluster, whose spectral expanse satisfies 

the threshold in Eqn. (4.45), the second term on the right-hand side 
k
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+
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⎛ − cx  is 

just a vector of ones (similar to Eqn. (4.46)). Therefore, in the outer-product 

decomposition of the spectral block sub-matrix klK  (from Eqn. (4.17)), the left vectors 

k
k
αβκ , which involve the kth cluster, can be written directly using the spectral zeroth-order 

approximation as:  
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Since, only one term is used in the outer-product decomposition, it fastens the 

computation of the spectral block klK . However, the block sub-matrix of weights klW  

has to be computed using the full outer-product decomposition. 

4.5.6. Spectral Near-Field Approximation. This approximation is similar to the  

spectral zeroth order approximation. Consider the case when the spectral centroids of the 

two interacting clusters representing the spectral block ][ klK , i.e. clusters k and l, lie 

close by. In such a case, the second term on the left-hand side in the expression for iklκ  

in Eqn. (4.12), can be approximated by 1. This leads similar outer-product decomposition 

as in the case of a diagonal blocks, given in Eqn. (4.18). A threshold is applied on the 

spectral inter-cluster distance to decide whether to use this approximation. That is, if 
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However, similar to the spectral zeroth order approximation, the block sub-matrix of 

weights klW  has to be computed using the full outer-product decomposition. 

 

4.6. MULTIPLE PIXEL TARGET 
In case of the RX anomaly detector, the case of targets with signatures that extend 

for more than one pixel can be handled conveniently. Since the RX detector is linear in 

nature, averaging the RX statistics over a target mask (which defines the expected target 

shape and size) is the same as finding the mean target pixel over the target window, and 

using it as the test vector. However, since KRX and SW-KRX are nonlinear in nature, the 

case of multiple pixel targets becomes slightly more complicated.  

The case of multiple pixels is handled by computing the mean of the detector 

statistic over the target area. Given the form of the detector statistic for the special case of 

the SW-KRX detector in Eqn. (4.21), it can be seen that the detector statistic is essentially 

a weighted sum of the weighted row means of the kernel Gram matrix. Since the statistic 

is linear in the row means, the detector statistic for a multiple pixel target can be 

expressed as the linear combination of the detector statistics for individual pixels under 

the target region. Let the matrix S  be defined as the matrix with same dimensions as the 

image, containing the detector statistic for each pixel at its corresponding location, i.e,   

)),((]~[ jiKRXSWij yS =  

Also, let TW  denote the target mask, which has values 1 over the target region and 0 

elsewhere. Then, the multiple pixel target detector statistics can be given as:  

TWSS ⊗=
~                                                         (4.51) 

where, ‘⊗ ’ denotes the 2-D convolution operation.  

 

4.7. COMPUTATIONAL COMPLEXITY 
In this section, the analysis of the computational complexities of the Kernel RX 

and the SW-KRX algorithm is presented. Complexities are presented for the special case 

(unit variance and uncorrelated feature dimensions) for both the algorithms. Since Kernel 

RX operates pixel-wise and in a deterministic fashion, its exact complexity analysis is 

possible. However, the SW-KRX algorithm is data dependent in nature in that the 
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computation depends on several variables like cluster sizes and spectral and spatial 

distribution of data. Therefore, for SW-KRX complexity analysis is presented based on 

average values of the stochastic variables. Although, this analysis describes the algorithm 

complexity analysis for the “average” case only, it is effective in highlighting the salient 

computational differences in the two algorithms. It is noted that the operations counts are 

based primarily on the multiplication operation, although it is noted that operations like 

the exponentials take several more flops than the multiplication operation, on almost all 

processors.  

Consider the computation for a single pixel using the Kernel RX algorithm. Let us 

assume that a total of NC  pixels are used for the estimation of the background statistics. 

Let the dimensionality of the data be J. Then, the number of operations needed for the 

computation of the kernel Gram matrix at each pixel is JNC
2 . It is noted that the 

computational cost of the calculation of the exponential is taken to be the same as the 

multiplication operation, although, as mentioned earlier, exponentials take several more 

flops than the multiplication operation. The second step is that of the Gram matrix 

centering. The centering operation takes 22 CN  additions. This is followed by centered 

Gram matrix inversion, which typically is a )( 3
CNO operation. It is noted that there exist 

techniques for fast iterative inversion methods which are )( 2 mNO C complexity, where m 

is the number of iterations. However, for our purposes and in general complexity 

comparison literature, matrix inversion operation is considered )( 3
CNO . Similarly, the 

computation of the target vector rk  takes approximately JNC operations. Again, it is 

noted that this step involves exponential computation, which is treated as a simple 

multiplication. And finally, the matrix-vector product to get the final detector statistic 

requires CC NN +2  computations. In total, the number of computations needed for the 

detector statistics for a single pixel is approximately: 

 CCCKRX NJNJNC )1()3( 23 ++++=                              (4.52) 

As is evident, the main computational bottleneck is the matrix inversion 

operation, which for large masks sizes (higher values of CN ) can make the computation 

prohibitively expensive. Besides the matrix inversion, there are other computational steps 
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which are expensive too. At best, with the most efficient implementation, the complexity 

of the Kernel RX algorithm still remains at )( 2
CNO .  

Now the complexity for the proposed SW-KRX algorithm is presented. Again, the 

goal is obtain the computational cost of computing the detector statistics for a single 

pixel. Let us consider a J band multi-dimensional data, with an average cluster size n. Let 

the spectral distribution of the members in the cluster be such that the average number of 

terms required for the α -multivariate Taylor series be SA  and the average number of 

terms required for β -multivariate Taylor series be SB . Similarly, let the spatial 

distribution of the cluster be such that theα andβ -multivariate Taylor series 

approximations require PA  and PB  number of terms on an average. Since the detector 

statistics is computed for a cluster as a whole, first the cost for the entire cluster is 

obtained and then divided by the cluster size. The computational complexity of the outer 

product decomposition for an average sized block will take the following number of 

computations:  

Single Outer Product Decomposition: )(2 222
PPPPSS BABABAn +  

Let us assume that there are, on an average, M clusters which lie within the vicinity of the 

given block and are not neglected based on spatial far-field approximation. This 

translates into the computation of the outer product decomposition for a total of M 

blocks. However, note that since the kernel Gram matrix is symmetric, the following 

relationship between the blocks holds: T
lkkl KK = . In terms of the computations, the 

outer product decomposition for the klK block can be used for the lkK  block, just by 

interchanging the left and right vectors. On an average this reduces the number of blocks 

for which the outer product decomposition is needed by a factor of 2. Therefore, on an 

average, the total number computations needed for outer product decompositions for 

computing the statistics for a given cluster are:  

Total Outer Product Decomposition: )( 222
PPPPSS BABABAMn +  

Once the outer-product decomposition is obtained, the next step is to compute the 

row means for each block. Given a single outer product decomposition, the row mean can 

be calculated efficiently in n2  computations instead of full 2n operations. However, it 
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should be noted that although the outer product decomposition for the klK  block can be 

used for the lkK block too, the row means need to be calculated for both the blocks 

separately. Therefore, the total computations needed for row mean calculation is 

Row Mean Computation: )(2 222
PPPPSS BABABAMn +  

Thus the total computations required for the computation of the detector statistics for the 

entire cluster is )(3 222
PPPPSS BABABAMn + . Therefore the average computations 

required for a single pixel is:  

)(3 222
PPPPSSKRXSW BABABAMC +=−                                (4.53) 

Comparing complexities of the two algorithms, it can be seen that Kernel RX 

complexity depends mainly on CN . In case of SW-KRX, it depends mainly on the 

number of clusters in the vicinity M. It is noted that M typically is much smaller than CN . 

In case of Kernel RX CN  grows as the square of the clutter mask radius, and is a very 

high number for large radii. However, in the case of SW-KRX, the value of M does not 

always go higher with the increase in the width of the spatial weighting function γ . At 

relatively small values of γ , M, which is the number of clusters in the vicinity, typically 

goes down. This is because with the increase in the value of γ , the allowed cluster sizes 

(based on the bounds in Eqns. (4.10) and (4.11)) also goes higher, leading to larger 

clusters. Thus, for small increases in the value of γ  the region of influence remains 

almost the same, but the cluster sizes grow, leading to a falloff in the value of M. This 

translates into fewer computations with increasing value ofγ . This phenomenon is 

observed in the empirical results on execution times of the SW-KRX algorithm for both 

multispectral and single band data in Tables 5.1 and 5.2 in Section 5. However, this is not 

true at large value of γ . This is because at higher values, the cluster sizes cease to grow 

as the cluster start to cut across different regions of the image. Also, at higher values the 

allowed cluster sizes get restricted due to the bounds on the spectral expanse of the 

clusters. Thus, as γ  grows, the region of influence grows but the cluster sizes remain 

fixed, which leads to higher values of M, thus increasing computational loads.  
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Another factor that governs the load of the SW-KRX algorithm is the number of 

terms needed for multivariate Taylor series approximations. Fewer terms (low values 

of PA , PB , SA and SB ) lead to better computational efficiency of the proposed algorithm. 

It was observed that these values were typically less than 10 for error tolerances of 

02.0=Sε and 1.0=pε . This analysis highlights the need for the application on the 

bounds on the cluster sizes as discussed in Eqns. (4.10) and (4.11). Larger cluster 

expanses in either spectral or spatial dimensions require a larger number of terms in the 

approximation, which lowers the computational efficiency. Limiting the cluster expanses 

helps overcome this problem to a certain extent. On the other hand limiting the cluster to 

very small sizes also hurts the performance due to higher values of M. Also, with the 

increase in the allowed errors, the number of terms needed for approximation goes down, 

thereby reducing computational load. Finally, both algorithms have the same linear 

complexity in terms of the dimensionality of the data.  

For comparison purposes, the computational requirements of the two algorithms 

are determined for a typical data scenario. For a typical frame from Dataset 1 for 7=γ , 

02.0=sε  and 1.0=sε , the average values of the different variables are found to be: 

55.8=M , 82.28=n , 717.22 =SS BA , 665.32 =PP BA  

Based on the average values, a total of approximately 350 operations are needed for the 

fast implementation of the SW-KRX detector (special case). Now consider the full 

implementation of the original Kernel RX detector. For the same size of the 

neighborhood used for background estimation used for SW-KRX detector, the following 

parameters are used:  

demeaning radius = 10, blanking radius = 0 317=⇒ CN  

For these mask sizes, a total of approximately 6103× operations are needed for the Kernel 

RX detector. From the number of operations needed, it can be seen that for an average 

scenario the fast implementation of the SW-KRX detector is several orders of magnitude 

faster than the Kernel RX detector.  
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5. SW-KRX: RESULTS AND DISCUSSION 

This section presents the various results pertaining to the SW-KRX algorithm. 

The fast version of the SW-KRX detector has been implemented. However, it is only for 

the special case of the SW-KRX detector given in Eqn. (3.50), which is based on the 

assumption that the various dimensions in the feature space are unit variance and 

uncorrelated. Results are presented on broadly two lines. Section 5.2 presents the results 

on the detection performance of the SW-KRX detector vis-à-vis the popular multiband 

RX anomaly detector. These results are compiled for surface mines, on two different 

datasets. Sections 5.3 and 5.4 present results on the computational speed of the two 

detectors. Section 5.3 depicts the comparison of the execution times of the proposed 

detector and the original Kernel RX algorithm [Kwon, 2005a]. Section 5.4 presents the 

comparative results on the computational speed-up achieved by the proposed multivariate 

Taylor series based approximation of the Gaussian kernel. A brief summary of the results 

is presented in Section 5.5. 

 

5.1. DATA DESCRIPTION 
Airborne data has been collected as part of the airborne landmine detection 

program at Night Vision and Electronic Sensors Directorate (NVESD).  In this work, 

results are reported on two datasets, collected at different times, and for different terrain 

conditions. From this point on, the two datasets are referred to as Dataset 1 and Dataset 2. 

Dataset 1 data was collected over a temperate site, whereas Dataset 2 was collected at an 

arid site.  

Data collected in one sweep over a minefield is collectively called a “segment”, 

and it consists of 21 images (called frames). The multispectral data consists of four 

bands, of which three are in the visual range: red (R), green (G), and blue (B). The fourth 

band in the multispectral data is in the near-infrared (N) range. The data contains both 

buried and surface mine signatures.  However, the current analysis presented in this 

section is limited to the surface mines. Datasets 1 and 2 evaluated here contain a total of 

39 and 54 segments, respectively, containing surface mines. As a pre-processing step, the 



 

 

62

dynamic range of various bands of the multispectral image is restricted to the following 

intervals: 

Dataset 1: 50<R< 1000, 200<G<2600, 100<B<600, 400<N<2600 

Dataset 2: 400<R< 4000, 200<G<1800, 200<B<1600, 500<N<3200 

This is done to eliminate any bias in the further processing due to extremely high sensor 

values from noise or some ground features such as fiducial markers. It was found that 

some frames in the datasets had a “washed out” appearance due to saturation of the 

sensors. Such frames were eliminated from consideration and results have been compiled 

on only the good frames. The exact number of frames used for a particular result is 

provided in the discussion following each result. Figures 5.1 and 5.2 show typical surface 

mine signatures. Figure 5.1 shows surface mine signatures that are clearly visible and 

well-distinguished from the background. Figure 5.2 shows relatively obscure mine 

signatures, which are hard to distinguish from the background. 

 
 

 

Figure 5.1. Clearly Visible Surface Mine Signatures (Top Row) RGB Composite (Bottom 
Row) NIR Band. 
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Figure 5.2. Poorly Visible Surface Mine Signatures (Top Row) RGB Composite (Bottom 
Row) NIR Band. 

 

 

5.2. DETECTION PERFORMANCE: SW-KRX (SPECIAL CASE) VS. RX 
This section presents the detection performance results for the fast 

implementation of the special case of SW-KRX detector (Eqn. (3.50)). The detection 

performance results for the popular RX anomaly detector are also presented for the 

purposes of comparison. Results on both the datasets are illustrated for two different 

cases. The first case is that of single band data, where only the green-band (G) is used for 

detection, both for the proposed SW-KRX and RX anomaly detector. The second case is 

that of multispectral data, where all four bands are used for detection. Comparative 

results using the RX anomaly detector are shown. For the RX detector the following 

mask sizes were used: demeaning radius = 10, blanking radius = 5 and target radius = 1, 

for all the results. The SW-KRX detector entails the selection of two parameters, namely 

spectral kernel width σ, and the spatial weighting function width γ . The spatial weight 

function width was chosen to be 7=γ , as that gives a region of influence of 
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approximately the same as that used for demeaning in the RX detector. The value of the 

spectral kernel width σ, is chosen adaptively for each segment, based on the variance of 

the frames of the segment. The width σ was determined as s5=σ , where ‘s’ is the mean 

standard deviation of the demeaned frames, averaged over the segment. Thus, the width σ 

is the same for all the frames in a segment, but for different segments. Typical ranges of 

values for σ are 350-600 and 150-300 for multispectral and single band data, respectively. 

Also, it was found that the SW-KRX detector gives high detector statistics along 

the major edges in the images. This is expected because typically the edge pixels are 

spectrally “different” from the object regions on either side. Since SW-KRX is capable of 

detecting anomalies from non-homogeneous background, the SW-KRX detector gives a 

high response at the edge pixels and generates false alarms. Figure 5.3a shows a typical 

frame and Figure 5.3b shows the SW-KRX detector output. The RX and SW-KRX 

detections (at constant FAR of 10-2 FA/m2) are depicted in blue circles and red diamond 

markers, respectively. As can be seen, the SW-KRX detector response it high at the 

edges, and consequently there are several false alarms at the edges. To correct this 

problem, the SW-KRX detector statistics are modulated using an edge map of the image. 

This reduces the false alarms along the edges as can be seen in Figure 5.4. 

 

 

(a) (b) 

 
Figure 5.3. Typical Frame with False Alarms Along Edges (a) Original Frame, (b) SW-

KRX Detector Output. 
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(a) (b) 

 

Figure 5.4. Typical Frame with Edge-Suppressed False Alarms (a) Original Frame, (b) 
Edge-Suppressed SW-KRX Detector Output. 

  

 

5.2.1. Results: Green Band. As mentioned earlier, the results for the SW-KRX 

detector are presented only for the special case, assuming that the various dimensions in 

the feature space are uncorrelated and unit variance. Given this assumption, a mixed 

performance for the SW-KRX detector was achieved vis-à-vis the RX anomaly detector. 

It was found that on some segments the proposed detector gave superior results as 

compared to the RX detector and on others its performance was at par or slightly inferior 

to the RX algorithm. Figure 5.5a shows the Receiver Operating Characteristic (ROC) 

curves for both the detectors for the set of segments where SW-KRX performance was 

better as compared to the RX detector. The results are compiled for a set of 179 frames 

from 16 segments. As can be seen, the performance is distinctly superior on the selected 

segments, especially at the lower false alarm rates (FARs). Figure 5.5b depicts the ROC 

curves over the set of rest of the data, namely 226 frames from 23 segments. Again, it can 

be seen that the performance of the two detectors is largely at par with each other.  

Figure 5.6 shows the detection performance for the two detectors for Dataset 2. 

Dataset 2 in general has lower contrast signatures of targets as compared to Dataset 1. 

Again, the special case SW-KRX detector shows superior performance for a certain set of 
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segments as compared to the RX algorithm, as can be seen in Figure 5.6a. The results in 

Figure 5.6a were compiled on 345 frames from 18 segments. Showing a similar trend as 

Dataset 1, the detection performance over the rest of the data (738 frames from 36 

segments) was almost at par with the RX detector, with the detection rates at lower FARs 

marginally lower. 

 

 

 
(a) (b) 

 
Figure 5.5. Detection Performance of SW-KRX vis-à-vis RX Detector for Green Band 

Data for Dataset 1 (a) Selected Segments (b) Rest of the Segments. 
 

 

 
(a) (b) 

 
Figure 5.6. Detection Performance of SW-KRX vis-à-vis RX detector for Green Band 

Data for Dataset 2 (a) Selected Segments (b) Rest of the Segments. 
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The results in Figures 5.5 and 5.6 indicate that the non-linear SW-KRX detector, 

even with the restrictive assumption of uncorrelated feature dimensions, is largely at par 

with the RX detector, but gives improved detection under certain scenarios. 

5.2.2. Results: Multispectral. The results on multispectral data for the two 

datasets are presented in this section. Figure 5.7 shows the ROC curves for Dataset 1. The 

performance of the SW-KRX detector is only marginally better in some segments, as is 

evident from Figure 5.7a, which is based on 46 frames from 4 segments. The 

performance on the rest of the data (359 frames from 35 segments) for the SW-KRX 

detector is worse than the multiband RX detector.  

 

 

 
(a) (b) 

 
Figure 5.7. Detection Performance of SW-KRX vis-à-vis RX Detector for Multispectral 

(4-Band) Data for Dataset 1. 
 

 

Visual inspection of the detection results reveals that the primary reason for the 

drop in the performance of the proposed detector is the inter-band misalignment in the 

multispectral data. As a result of this misalignment the mine signatures in case of 

multispectral data are more diffused than that in any single band. This misalignment may 

also result in poor initial clustering of the image data, which reduces performance. Based 

on empirical observations, this misalignment affects the proposed detector (in its current 

implementation) more than the RX detector.  
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In the case of Dataset 2, note that in Figure 5.8a the relative performance in some 

segments is slightly improved than that on Dataset 1 (Figure 5.7a). The results in Figure 

5.8a are based on 93 frames from 5 segments. Figure 5.4b shows the results on the rest of 

the data consisting of 990 frames from 49 segments. As is evident, although SW-KRX 

performs marginally better at low FARs, its performance is largely worse at higher FARs. 

Comparing Figure 5.7a and 5.8a, it can be seen that the performance of SW-KRX relative 

to the RX detector is better on Dataset 2 as compared to Dataset 1. As mentioned earlier, 

Dataset 2 contains greater number of lower contrast target signatures as compared to 

Dataset 1. Although both RX and SW-KRX are sensitive to target to background 

contrast, SW-KRX shows better capability in the detection of low contrast targets in non-

homogenous background, as compared to the RX detector, as shown later in Figure 5.9. 

 

 

 
(a) (b) 

 
Figure 5.8. Detection Performance of SW-KRX vis-à-vis RX Detector for Multispectral 

(4-Band) Data for Dataset 2. 
 

 

The proposed SW-KRX detector demonstrates a better capacity at detecting 

targets in a non-homogeneous background, as compared to the RX detector. This 

phenomenon can be explained more clearly by looking at the detector statistics of the 

special case of the SW-KRX detector, given in Eqn. (3.50), and the RX detector statistics. 

Since RX assumes a single Gaussian distribution for the background, it computes the 
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Mahalanobis distance of the target vector from the sample distribution obtained from the 

samples falling in the clutter mask. Therefore, in case of non-homogeneous background, 

where the data is not from a single Gaussian distribution, the RX statistic is essentially 

the distance of the target vector from the “mixture” of the two or more background 

distributions. On the other hand, looking at the SW-KRX detector (special case), it is 

observed that the detector statistic is essentially the sum of the kernel distances 

(exponential, in case of the Gaussian kernel) of the target vector from all the pixels in the 

“neighborhood”. It, unlike the RX detector, is not the distance of the target vector from 

the “mixture” of the background. Consider, for example, the case of a two class 

background, which are well separated. Now consider the case where the target vector lies 

somewhere in between the ranges of two background classes. The mean statistics of the 

“mixture” of the two distributions will lie close to the target vector, and consequently, the 

RX detector will give a poor response for the target pixel. However, since the target 

vector is well-separated from the two background classes, the SW-KRX detector will 

give a better response.  

As an example, Figure 5.9 shows a frame which has several surface mine targets 

which are in non-homogeneous backgrounds. Thresholds for the detector statistics are 

chosen at a constant FAR of 10-2 FA/m2. The thresholds for SW-KRX and RX detectors 

are 1.22 and 37.41, respectively. All targets which have detector statistics greater than the 

threshold are classified as detections. The green (square) markers show the actual mine 

locations, and the red (diamond) and blue (circle) markers show the detections given by 

the SW-KRX and RX detectors, respectively. As is evident, the SW-KRX detector is able 

to detect all the mine targets at the given FAR, whereas RX misses some of them, since 

the targets lie in a non-homogeneous background. The only target it detects lies in the 

region where majority of the pixels in the background are from a single class.  

Figure 5.10 shows a typical frame with multiple false alarms generated by both 

the detectors. The detections are shown at a constant false alarm rate of 10-2 FA/m2. It can 

be observed that the SW-KRX detector mostly responds to features which are similar to 

the surface mine signatures, although they are really false alarms and do not count as 

correct detections. It is noted again, that although RX also detects mine-like features, it 

does not detect such features when they lie in non-homogeneous background. 
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Figure 5.9. Example Frame with Targets in Non-Homogeneous Background.  
 

 

 
 

Figure 5.10. Typical Frame with False Alarms. 
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5.3. COMPUTATIONAL SPEED: SW-KRX (SPECIAL CASE) VS. KERNEL-RX 
In this section, the computational speeds of the fast implementation of the special 

case of the SW-KRX and the original Kernel RX algorithm are presented. The total 

computational time for the proposed implementation is separated into two categories: that 

used for initial clustering, and that for the detector statistics computation, based on the 

clustered data. Tables 5.1 and 5.2 show the average execution times per pixel for the 

proposed implementation and the original Kernel RX algorithm, for single band and 

multispectral data, respectively. Both the detectors were implemented in Matlab®, and the 

execution times were recorded for a 3.2 GHz, Pentium® DuoCore® processor, Windows 

machine with 2 GB RAM.   

Since the original implementation of the Kernel RX algorithm has a large 

computation time, the average execution time was computed over a set of 100 pixels. The 

execution times for the proposed implementation were recorded for a typical frame from 

Dataset 1, and the average time per pixel was computed over an entire frame. Since the 

computational speed of the proposed implementation depends on the width of the spatial 

weighting function γ , and the spectral and spatial error tolerance parameters Sε  and Pε , 

the execution times were recorded for different value of the of these parameters. The 

clustering part of the algorithm does not change with the change in error tolerance 

parameters, and depends only the width of the spatial weighting function γ  and the 

kernel width σ. Therefore, for a given value of γ , the clustering time remains the same 

for the various values of the spectral and spatial error tolerances. For faithful comparison, 

the radius of the clutter mask for the full Kernel RX algorithm D, and the width of the 

spatial weighting functionγ , was chosen such that both the detectors take approximately 

the same background region under consideration. The parameters values are depicted in 

the first column of the tables.  

As can be seen from Table 5.2, the proposed implementation provides 

computational speed-ups of several orders of magnitudes over the original kernel RX 

algorithm. It can be observed that in the original Kernel RX detector, as the clutter mask 

radius increases, the computations rise exponentially, due to the increase in 

dimensionality of the kernel Gram matrix. However, in case of the fast implementation 

the computation time actually reduces with the larger values of γ . The reason for this is 
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two-fold. Firstly, the clustering time reduces since larger clusters are now permitted to 

exist based on the upper bound on the cluster spatial dimensions and fewer clusters need 

to be corrected. In a related manner, since the data is clustered into larger clusters in 

general, the algorithm for the computation of the detector statistics has higher 

computational gains, as explained in Section 4.8 on computational complexity. Due to 

this, there is a falloff in the overall computation time per pixel, as observed. However, 

with the increase in the value of γ , the number of  blocks that can be neglected based on 

the spatial far-field approximation reduce, and more computation is required. Therefore, 

the falloff can be expected only up to a limited value of γ . 

Also, it is observed that the computation times reduce with higher value of error 

tolerances. This is expected because higher allowed error translates into lower truncation 

numbers for the multivariate Taylor series approximation, which reduces computational 

load. However, based on the execution times for εs = 0.02, εp = 0.5 and εs = 0.1, εp = 0.1, it 

is observed that the speed-up with the increase in spatial error tolerance is greater than 

that with spectral error tolerance. This is due to the fact that typically the spatial expanse 

of the clusters is larger than the spectral expanse and hence the reduction in the number 

of terms needed for the Taylor series approximation is greater for spatial dimensions. A 

similar trend in observed in the case of single band data as shown in Table 5.1, although 

the computation times are lesser than the multispectral case. 

It is noted that the fast implementation (special case) of the SW-KRX detector 

gives a speed-up of up to 3-4 orders of magnitude over the original Kernel RX detector. 

However, in the theoretical complexity analysis discussed in Section 4.7, the speed-ups 

were up to 5-6 orders of magnitude, for the average scenario. The primary reason for this 

difference is that in the theoretical analysis of the computations required for Gram matrix 

inverse was taken as 3
CN . In the Kernel RX implementation used for the results in Tables 

5.1 and 5.2, the pseudo-inverse of the Gram matrix is used, since the Gram matrix is not 

full rank and hence non-invertible. For the pseudo-inverse computation, the eigenvector 

decomposition of the Gram matrix is computed which is lower complexity than the full 

matrix inverse. Therefore, the implementation of the Kernel RX detector is slightly faster 

than what the theoretical complexity was presented for. 
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Table 5.1. Average Computation Time per Pixel for Full Kernel RX and Fast Implementation, for Single Band Data. Times are in 

μSecs. 

Time (μSec) εs = 0.02, εp = 0.1 εs = 0.02, εp = 0.5 εs = 0.1, εp = 0.1 
γ , D 

Full 
Kernel RX 

Clustering 
Time SW-KRX 

Time 
Total SW-KRX 

Time 
Total SW-KRX 

Time 
Total 

γ  = 7, 
D  = 10 

1.16 x 105 40.56 207.97 248.53 101.16 141.72 189.48 230.04 

γ  = 10, 
D  = 15 

9.13 x 105 26.71 132.09 158.80 60.64 873.44 156.81 183.51 

γ  = 13, 
D  = 20 

4.32 x 106 21.79 131.96 153.74 56.03 77.812 154.63 175.81 

 

 

 

Table 5.2. Average Computation Time per Pixel for Full Kernel RX and Fast Implementation, for Multispectral Data. Times are in 

μSecs. 

Time (μSec) εs = 0.02, εp = 0.1 εs = 0.02, εp = 0.5 εs = 0.1, εp = 0.1 
γ , D 

Full 
Kernel RX 

Clustering 
Time SW-KRX 

Time 
Total SW-KRX 

Time 
Total SW-KRX 

Time 
Total 

γ  = 7, 
D  = 10 

9.93 x 104 34.79 108.23 143.01 57.31 92.11 106.09 140.88 

γ  = 10, 
D  = 15 

8.51 x 105 21.97 73.71 95.68 31.80 53.78 71.29 93.26 

γ  = 13, 
D  = 20 

4.13 x 106 17.07 66.81 83.88 26.79 43.84 62.85 79.92 

73
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Also, since the clustering time is also included in the total execution time of the 

fast implementation of the SW-KRX detector in Tables 5.1 and 5.2, and were not 

included in the theoretical analysis, the computation time for SW-KRX is more than the 

one based on theoretical calculations. 

 

5.4. SW-KRX: COMPUTATIONAL SPEED-UP VIS-À-VIS FULL GRAM 
MATRIX COMPUTATION 

In the previous section, the broad comparison between the overall execution times 

between the two detectors was presented. This section presents the results on the 

computational speed-ups achieved due to the computation of the blocks of the kernel 

Gram matrix using multivariate Taylor series approximation, as compared to the full 

computation using direct exponentials.  

Tables 5.3 and 5.4 depict the average computation time per block (in 

milliseconds) for a typical frame from Dataset 1, for single band and multispectral data, 

respectively. The values of the spectral and spatial kernel width are: 7=γ  and 140=σ , 

respectively. The first row of the tables shows the average time per block, when averaged 

over all the blocks of all sizes in the Gram matrix. The second row shows the average 

computation time per block for the blocks which have at least one dimension greater than 

15, i.e. at least one of the two representing clusters contains 15 or more pixels. The third 

row is the same as the second except that only blocks with at least one dimension greater 

than 30 are considered. The idea is to demonstrate the effect on computational efficiency 

of the proposed method, with the increase in cluster sizes.  

The execution times are recorded for all the non-zero blocks of the kernel Gram 

matrix. The columns in the tables denoted by “t Approx” depict the average time (in 

milliseconds) per block for the computation of the weighted row means using 

approximate computations based on the multivariate Taylor series. The columns in the 

tables denoted by “t Expo” show the average time (in milliseconds) per block for the 

computation of the weighted row means using full exponential based computation. The 

column denoted by “Factor” shows the ratio of the former to the latter, which essentially 

is the fraction of the full exponential computation time that is taken by the approximate 

computation.  
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Table 5.3. Computational Speed-up via Taylor Series Approximation, for Single Band Data. Times are in milliSecs. 

Time(mSec) εs = 0.02, εp = 0.1 εs = 0.02, εp = 0.3 εs = 0.02, εp = 0.5 

Clusters t Approx. t Expo. Factor t Approx. t Expo. Factor t Approx. t Expo. Factor 

All 0.7 0.8 0.91 0.4 0.8 0.50 0.4 0.8 0.49 

> 15 0.7 0.9 0.87 0.4 0.8 0.47 0.4 0.8 0.46 

> 30 0.8 1.0 0.76 0.4 1.0 0.40 0.4 1.0 0.40 

 

 

 

Table 5.4. Computational Speed-up via Taylor Series Approximation, for Multispectral Data. Times are in milliSecs. 

Time(mSec) εs = 0.02, εp = 0.1 εs = 0.02, εp = 0.3 εs = 0.02, εp = 0.5 

Clusters t Approx. t Expo. Factor t Approx. t Expo. Factor t Approx. t Expo. Factor 

All 0.6 0.8 0.76 0.3 0.8 0.38 0.3 0.8 0.38 

> 15 0.7 0.9 0.73 0.3 0.9 0.36 0.3 0.9 0.34 

> 30 0.7 1.2 0.64 0.3 1.1 0.29 0.3 1.1 0.27 
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The various values are recorded for three different values of the spatial error 

tolerance εp. The goal is to observe the effect of approximation accuracy on the 

computational gain, and since the spatial dimensions have larger expanses, the effect is 

expected to be relatively clearer.  

As can be seen, in case of both multispectral and single band data, the there are 

larger computational gains with higher error tolerance, and the approximate computation 

takes smaller fraction of the time taken by full computation. Also, it is evident there are 

higher computational gains with increasing clusters sizes, as is expected based on the 

complexity analysis.  

Comparing the speed-ups achieved for the single band and multispectral data, it is 

observed that the gains are higher for higher dimensionality of the data. Again, this is 

expected, since there are higher computational savings for the computation of the term 
2

)( ji xx −  that is used in the exponential computation, because the proposed method 

does not explicitly compute the term.  

 

5.5. CONCLUSION 
Section 3 presented the SW-KRX detector which is a reformulated version of the 

original Kernel RX algorithm. The reformulated version entails the computation of the 

centered kernel Gram matrix which was defined over the augmented spectral-spatial 

vectors from the entire image. Section 4 presented the detailed theoretical development of 

the methodology for the fast computation of the kernel Gram matrix. The proposed 

methodology shifts the paradigm from pixel-based to cluster-based computation. Based 

on the methodology, a fast implementation of the SW-KRX algorithm has been 

developed for the special case of uncorrelated feature dimensions. This section presented 

detailed results for the SW-KRX algorithm. It was found that the SW-KRX detector gave 

better detection performance as compared to the RX detector under certain scenarios even 

with the restrictive assumption of uncorrelated feature dimensions. However, the 

performance was not superior to RX in all the cases.  

As for the computational gains of the proposed algorithm, it was demonstrated 

that the proposed multivariate Taylor series based block approximation provided 

computational gains over the direct block computation. These gains were greater for the 
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multispectral data as compared to single band data.  It was also demonstrated that overall 

the proposed methodology achieved speed-ups of up to 3-4 orders of magnitude, over the 

Kernel RX algorithm. This makes the proposed methodology more lucrative for 

implementation, especially over large datasets, as compared to the original algorithm. 
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6. BURIED MINE DETECTION USING CO-OCCURRENCE TEXTURE 
FEATURES 

Detection of buried landmines in the airborne multispectral imagery is a 

challenging problem. For this problem, the baseline processing in several airborne 

detection systems is the popular RX anomaly detector [Reed, 1990]. Several techniques 

for improvement over RX detector output have been proposed in the past; however, most 

of these methods have focused on detection of surface mines [Agarwal, 2001; Filippidis, 

2000; Beaven 2004], and few algorithms have been proposed specifically for buried mine 

detection [Ling, 2006; Bowman, 1998; McFee, 1997]. As a result, notable success has 

been reported for surface mine detection, but results for buried mine detection are far 

from satisfactory. In this section, a methodology for the detection of buried mines in 

airborne multispectral imagery using co-occurrence texture features is presented.    

 

6.1. BURIED MINE DETECTION: REVIEW 
This section presents a review of some of the techniques for buried mine detection 

proposed in the past. Lundberg [2001] developed a parametric model for the thermal 

signature of buried landmines in order to capture, in a few parameters, the variability in 

the signature due to weather, soil type, moisture content etc. Lundberg [2001] models the 

signature as a convolution of the ideal shape (top-view) of the buried mine and a 

smoothing kernel specified by two parameters, one for scaling and one for smoothing the 

mine shape depending on the depth of burial. A likelihood ratio test (LRT) based 

detector, which assumes the noise in the thermal signature to be a quarter-plane 

autoregressive process, is also developed.  McFee and Ripley [1997] conducted extensive 

experiments using surrogate mines and blocks of explosives, buried under soil and 

vegetative cover, and scanning them using a casi hyperspectral imager to estimate the 

receiver operating characteristics for buried mines. They used the Linear Correlation 

Coefficient (LCC) to determine the similarity between the average spectral reflectance 

vector (over a 20-30 cm2 area) and a reference vector, to detect any surface disturbances 

that might reveal presence of a buried mine. They also used linear unmixing of the 

spectral reflectance vector using Orthogonal Subspace Projection (OSP) to isolate the 
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mine signature. They reported slightly better performance for LCC, but suggested the 

need for conducting more studies.  

Recently, Ling et al. [Ling, 2006] proposed a methodology for detection of buried 

mines in airborne mid-wave infrared imagery. They proposed a supervised image “chip” 

or patch based classification technique, in which the pixel intensities from each image 

chip from the MWIR image are clustered using a 3-D Adaptive Self-Organizing Map, 

and an intensity difference vector amongst the various clusters is computed. To perform 

detection, these difference vectors are then compared to the reference vectors from the 

buried mine library using the Kolmogorov-Smirnov test. Their approach highlights the 

need for investigating the intensity variations in the buried mine signature, instead of 

basing the detection decision on intensity values themselves, as is the case with the RX 

detector [Reed, 1990]. Amongst other notable work on using IR imagery for buried 

landmine detection, Bowman et al. [Bowman, 1998] present a consolidated overview of 

the challenges in buried mine detection using both spectral and thermal signatures. They 

describe the physical mechanisms behind the observed signature for various categories of 

background types (vegetation, tilled soil, untilled soil) and mines (both buried and 

surface) in different sensor modalities. 

The primary challenge with using electro-optical multispectral data for buried 

mine detection comes from the fact that the spectral signature of the mine pixels is very 

similar to the spectral signature of the background constituents. Any technique utilizing 

anomaly detection or linear unmixing, both of which work directly with the intensities of 

the pixels (i.e. appearance-based methods), is rendered ineffective due to the substantial 

overlap of the spectral subspaces defined by the mine pixels and the background. In this 

work, an alternate approach of extracting features from the patches on the images, instead 

of utilizing the pixel intensities directly, is explored. This is done so as to exploit the fact 

that the tilling of the soil also creates intensity variations in the thermal signature of the 

mine area due to small shadows. Moreover, in case of spectral data, the signature of the 

disturbed soil typically seen at and around the area where a buried mine is placed is 

substantially different from that of the undisturbed soil. This difference typically arises 

due to the disparity in the particle sizes at different depths, which arises due to the fact 

that smaller particles (order of tens of micrometers) at the surface are eroded away due to 
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wind and rain, leaving a relatively lower concentration at the surface. Therefore, long-

exposed and recently-disturbed surfaces have distinct spectral signatures. The reader is 

referred to the work by Bowman et al. [1998] for a detailed analysis of the spectral 

signatures under various conditions. In light of the aforementioned phenomenology, it is 

reasonable to expect that the information in the spatial variations of intensity may be 

more useful for detection, as opposed to the intensities directly.   

To capture the information in intensity variations, first the cross-co-occurrence 

matrices (CCM) based texture features from the various patches in the multispectral 

images are extracted. Cross-co-occurrence matrices are extension of the popular Gray-

Level Co-occurrence Matrices (GLCM) for texture feature extraction to color images. 

Based on extensive analysis of the raw texture features from both the mine and 

background patches, a subset of features with relatively high discriminatory information 

is selected. Next, a few features are short listed from this subset for detection, using a 

technique for critical variable selection called Principal Feature Analysis [Cohen, 2002], 

which takes the interdependencies of the features into account and eliminates redundant 

features. Finally, a detection strategy based on feature-based anomaly detection is 

developed to generate the final detector statistics, to demonstrate the ability of the 

features to effectively capture the information in intensity variations. 

The proposed approach compactly includes the intensity variation information in 

the detection process. Also, since it is based on co-occurrence features, it is inherently 

invariant to illumination changes in the images, which, to a certain extent, addresses the 

problem of variability of mine signature. Finally, the proposed technique is amenable to 

fast implementation, since methods exists for the fast calculation of the co-occurrence 

features over an image [Argenti, 1990].  

In Section 6.2, a brief overview of the multispectral data used in this part of the 

dissertation is presented. Section 6.3 contains a detailed description the cross co-

occurrence texture features that are extracted from the imagery to capture the color 

texture information. Section 6.4 presents the details of a systematic approach for the 

selection of co-occurrence texture features. First the Bhattacharya coefficients are used 

for the initial selection of discriminatory texture features, followed by principal feature 

analysis of the selected features, to identify the minimal set of features with mutually 
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uncorrelated information. To show the utility of the selected features, four different 

detectors, namely the Matched Filter, AND Fusion, Feature-based SW-KRX, and the 

Vegetation Mask detectors, are used for detection. Section 6.5 contains the description of 

these detectors.  Section 6.6 provides comparative results in the form of Receiver 

Operating Characteristic (ROC) curves for the proposed methodology and the multiband 

RX detector. Finally, this section on buried mine detection is concluded in Section 6.7. 

 

6.2. DATA OVERVIEW 
The data used in this part of the dissertation is essentially the same four-band 

multispectral data as that described in Section 5. However, unlike Section 5, the focus 

here is on buried mine targets in the imagery. The results are reported on both Datasets 1 

and 2. A total of 168 frames from 22 segments from Dataset 1, and 201 frames from 50 

segments from Dataset 2 are used for analysis.  

Figure 6.1 shows a typical segment from the Dataset 1 in the combined RGB 

bands (color images) where the frames are co-registered for convenient visualization. 

Figures 6.2 and 6.3 show examples of clearly visible and poorly visible buried mine 

signatures (51x51 pixels) in the segment, respectively. Figure 6.4 depict patches in the 

segment which typically show up as false alarms in the detection process. Figures 6.5, 

6.6, 6.7 and 6.8 are the same as Figures 6.1, 6.2, 6.3 and 6.4, respectively, except the 

near-IR band signatures are shown. Figures 6.3 and 6.7 show that not all the buried mines 

have a distinct signature, and in some cases the signature is largely indistinguishable from 

the background to a human observer. Conversely, looking at Figures 6.4 and 6.8, it is 

apparent that several of the background patches are visually very similar to the buried 

mine signatures. It was also observed that some mine targets are in close vicinity of 

background features, like vegetation and other terrain features.  

The goal of this work is to demonstrate the effective extraction of the texture 

information in a minimal set of features from the imagery for improved detection. 

Therefore, feature reduction and selection is an important step of the proposed 

methodology. For efficient selection of discriminatory features, a set of actual buried 

mine signatures and background patches are extracted from the imagery, using available 

groundtruth information. 
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Figure 6.1. Typical Data Segment (RGB Bands) Containing Buried Mine Signatures. 
 

 

 
 

Figure 6.2. Examples of Clearly Distinguishable Buried Mine Signatures (RGB Bands). 
 

 

 

Figure 6.3. Examples of Poorly Distinguishable Buried Mine Signatures (RGB Bands). 
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Figure 6.4. Typical False Alarm Patches (RGB Bands). 
 

 

 
 

Figure 6.5. Typical Data Segment (NIR Band) Containing Buried Mine Signatures. 
 

 

 
 

Figure 6.6. Examples of Clearly Distinguishable Buried Mine Signatures (NIR Band). 
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Figure 6.7. Examples of Poorly Distinguishable Buried Mine Signatures (NIR Band). 

 

 

 
Figure 6.8. Typical False Alarm Patches (NIR Band). 

 

 

The selection methodology for these patches is as follows. The set of actual 

buried mine patches are selected based on the ground truth for the dataset, which is 

available to us. However, the background patches are selected based on the values of the 

RX anomaly detector. From each frame of data, 40 locations with the highest RX values 

are selected and a patch (15x15 pixels) at each location is extracted as examples of 

background patches for further processing. Essentially, these patches are representative of 

the patches with high potential for generating false alarms. Any potential false alarm 

patches that spatially overlap with the actual mine patches or other known targets are 

removed to avoid repetition of patches. For Dataset 1, a total of 545 mine patches and 

14,792 non-mine patches (potential false alarms) are obtained from 168 frames from 20 
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segments. For Dataset 2, a total of 1,251 mine patches and 6,709 non-mine patches 

(potential false alarms) are obtained from 201 frames from 50 segments. 

 

6.3. CO-OCCURRENCE TEXTURE FEATURES 
The current method is based cross-co-occurrence (CCM) texture features, 

extracted from a given patch (15x15 pixels) around each location. Since CCM texture 

features are a direct extension of the Gray-level Co-occurrence Matrix (GLCM) texture 

features to multispectral images, first the description of GLCM features is presented in 

Section 6.3.1. This description is followed by the description of the CCM features for 

multispectral images in Section 6.3.2.  

6.3.1. Gray-Level Co-occurrence Texture Features. Gray-level Co-occurrence 

Matrix [Haralick, 1973, 1979] is a well known method for texture analysis. GLCM 

estimates second-order statistics from an image. A co-occurrence matrix is an estimate of 

the joint probability density function of gray-level pairs along a given direction and 

distance in any region of the image (typically over the target window). The idea is to 

capture the average information regarding the coarseness and direction of the texture in 

the region. For pattern recognition, detection or image segmentation, a set of these 

textural parameters are calculated over a window centered at a given pixel to define a 

texture feature vector. 

To describe the gray-level co-occurrence matrix, an MxM window in the image 

denoted by W is defined, centered at the pixel under consideration. The pixel at location 

(p,q)  in the window is denoted as pqw . Let there be N gray levels in the image and let 

),( yx δδ=δ  be the displacement vector. Then the gray-level co-occurrence matrix G is 

an NxN square matrix whose entries are defined as follows: 

],[ δδ
ijG=G where || δδ

ijij KG = , where |.|  denotes the cardinality of a set and the set δ
ijK is 

defined as follows:  

{ }jwiwqsprwwK rspqyxrspqij ==+=+== ,,,|),( δδδ                 (6.1) 

Thus, each entry δ
ijG of the gray-level co-occurrence matrix counts the number of 

times a given pair of gray values (i,j) occurs at a displacement of δ  in the window W. 
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The co-occurrence matrix is typically normalized by the number of pixel pairs in the 

window ( δN ) to give the joint probability density estimate δ
δδ NGP ijij /= . The 

displacement vector δ  plays an important role in texture analysis. For a coarse texture, 

whose texture elements are larger than δ , most of the energy will be centered along the 

diagonal of the GLCM matrix. In case of finely-grained texture (relative toδ ), the entries 

will be mostly off diagonal. Furthermore, in case of patterned textures the co-occurrence 

entries δ
ijG  are found at only a few locations in GLCM matrix.  

Haralick [1979] proposed 14 different features defined over the co-occurrence 

matrices, for distinguishing between different co-occurrence matrices. Several studies 

have been conducted for testing the effectiveness of these features for texture description. 

GLCM texture features have been found to perform better texture classification than 

fractal, Markov Random Field, and Gabor filter features [Ohanian, 1992]. For our work 

in buried mine detection, seven of the more frequently quoted features in literature are 

evaluated, to identify which of them are useful for the problem at hand. The seven 

GLCM features are defined as: 

       Maximum Probability:                Max. Prob. )max( δ
ijP=                        (6.2a) 

       Energy:                                        Energy = ∑
ji

ijP
,

2)( δ                                 (6.2b) 

Contrast:                                     Contrast = ∑ −
ji

ijPji
,

2)( δ                           (6.2c) 

Inverse Difference Contrast:      IDC = ∑
−+ji

ijP
ji,

2)(1
1 δ                   (6.2d) 

Correlation:                                 Corr. = ∑
−−

−
ji

ij
yx

yx P
ji

,

))(( δ

σσ

μμ                 (6.2e) 

Variance:                                      Var.  = 2

,
( )x ij

i j
i Pδμ−∑                            (6.2f) 

Entropy:                                       Ent. = ∑−
ji

ijij PP
,

log δδ                               (6.2g) 

where the mean and variance along the row and the column of the co-occurrence matrix 

are defined as: 
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∑∑ −=
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yy Pj δμσ 2)(  

The texture features in Eqn. (6.2) are computed for a set of displacement vectors. 

The displacement vectors are defined using distances and angles, with distances from the 

set }4,2{=dist and angles from }135,90,45,0{ oooo=θ . The displacement vector at an 

angle of θ  and distance dist is denoted as distdθ . Composite GLCM matrices are formed 

for a given distance by combining the GLCM for all the angles at that distance. This is 

done as follows. Let dPθ denote the co-occurrence matrix at a distance d and angle θ . 

Then the composite GLCM matrix for distance d, dP , is given as:  

)(
4
1

13590450
ddddd PPPPP +++=                                               (6.3) 

The composite GLCM matrix is computed for 2 different distances, d = 2 and d = 

4. In addition to this, GLCM matrix is also computed for the zero displacement vector 

)0,0(0
0 =d as the 3rd displacement vector. Thus, each location is defined by 3x7 GLCM 

features.  

6.3.2. Cross Co-occurrence Texture Features. The Gray-level Co-occurrence 

Matrix described in the last section is defined for scalar images. Arvis et al. [2004] 

extended the concept of co-occurrence matrices to multispectral images and defined 

cross-co-occurrence matrices. The key idea in their work is to calculate the co-

occurrences not just within, but also between the color bands, so as to take into account 

the correlations between the bands and get a complete color texture description. Several 

approaches to color texture description have been proposed in the past. Arvis et al. [2004] 

reported that cross-co-occurrence matrix texture features perform better classification, as 

compared to methods based on joint color-texture features (gray-scale texture and color 
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features like moments or histograms computed separately [Maenpaa, 2002; Drimbarean, 

2001]) and co-occurrences based on color quantization (converting the color image to a 

gray-scale image using color binning [Chen, 2002; Hauta-Kasari, 1996]).  

The cross-co-occurrence matrices for multispectral images are briefly described 

here. Consider a multispectral image with J bands. Let W be an MxM window in the 

multispectral image centered at the given pixel. The value of the gth band at pixel location 

(p,q) in the multispectral image is denoted as g
pqw . The cross-co-occurrence matrices are 

defined for a pair of bands. Thus, for every pixel in the J band image, there are J(J+1)/2 

cross-co-occurrence matrices. The definition of cross-co-occurrence matrix between 

bands f and g ( δ
fgG ) is obtained by modifying the definition of set δ

ijK for gray-level co-

occurrence matrix from Eqn. (6.1) as follows:  

},,,|),{(, jwiwqsprwwK g
rs

f
pqyx

g
rs

f
pqijfg ==+=+== δδδ                 (6.4) 

Thus, δ
ijfgK , is the set of pixel pairs between f th and gth bands of the image, which have 

intensities i and j, respectively, and ],[ ,
δδ

ijfgfg G=G where || ,,
δδ

ijfgijfg KG = .  

Once the cross-co-occurrence matrices are computed, the aforementioned GLCM 

texture features can be computed and used to represent the matrices. It is noted that it is 

entirely possible to have different dynamic ranges and, hence, different numbers of 

quantization levels for different bands. In the case where the quantization levels of the 

two bands under consideration are not the same, the co-occurrence matrix is no longer 

square. However, that does not change the definitions of any of the seven texture features 

given in Eqn. (6.2).  

In addition to the seven features mentioned above, another feature called 

Normalized Color Index (NCI) is included, which is defined as follows:  

NCI = ∑ +
−

ji
ijP

ji
ji

, )(
)( δ                                                 (6.5) 

Note that the NCI feature for the cross-co-occurrence matrix between the red and 

near-infrared bands and a displacement of )0,0(=δ , is a modified version of the 

Normalized Difference Vegetation Index (NDVI), a well-known feature in field of 

remote sensing. At a pixel (i, j), NDVI is defined as: 
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)),(),((
)),(),((),(

jiRjiN
jiRjiN

jiNDVI
+
−

=  

where N and R are the near-infrared and red bands of the multispectral image, 

respectively. NDVI, which was first formally proposed by Rouse et al. [Rouse, 1973], is 

a good indicator of the presence of vegetation in multispectral imagery. Note that the NCI 

feature defined over Red-Near-infrared CCM at )0,0(=δ  is the mean NDVI that 

averages over the target window. However, it is noted that for the within-band co-

occurrence matrices (RR, GG, BB, NN), the NCI feature at zero displacement 

)0,0(=δ will always be zero.  

Thus, given these eight features for each cross-co-occurrence matrix, every 

detected location in the multispectral image is described by 2/)1(83 +×× JJ  texture 

features.  

 

6.4. DISCRIMINATORY FEATURE SELECTION 
The amount of texture information captured in a particular feature depends on the 

texture type and the displacement vector used for computing co-occurrence matrices. The 

goal is to capture maximum information in the fewest of the texture features. A two stage 

approach for the selection of the minimal set of discriminatory features is adopted. The 

first step is to identify texture features with relatively high discriminatory information (in 

terms of their ability to separate false alarms from the mine signatures). This is done 

using the Bhattacharya coefficient based analysis of the features. In the second step, 

Principal Feature Analysis (PFA) is used to reduce the features selected from the first 

step to a set of uncorrelated features. Details of initial selection of the discriminatory 

texture features based on Bhattacharya coefficient is expounded upon in Section 6.4.1, 

and the uncorrelated feature subset selection using PFA is presented in Section 6.4.2.  

6.4.1. Discriminatory Texture Feature Reduction. For this step, first the cross-

co-occurrence features, as described in Section 6.3.2 are extracted from the entire set of 

mine and non-mine patches.  All the eight cross-co-occurrence features are calculated for 

all ten possible band combinations, and for all the 3 displacements. Thus, a total of 

3x10x8 (240) features are extracted for each patch. Once the features are extracted for the 

entire set of mine and non-mine patches, the distribution for each feature over the mine 
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and non-mine patches is estimated separately. The idea is to calculate the disparity in the 

distribution of each feature between the mine and non-mine patches. The kernel density 

estimation method is used to obtain a non-parametric estimate of the distributions. This is 

done primarily to overcome the effect of different numbers of mine and non-mine sample 

patches, and compute a more robust and representative estimate of the distributions. The 

values for each texture feature are binned into N = 50 equidistant bins, between the 

minimum and maximum feature values, for mine and non-mine patches separately. Let us 

denote the vector of values in each bin for a feature f for the mine and non-mine patches 

as f
mx and f

nx , i.e., 

 ]........,[ 21
f

mN
f

m
f

m
f
m xxx=x  

]........,[ 21
f

nN
f

n
f

n
f
n xxx=x   

Also, the vector containing the bin centers is denoted as ]......,[ 21
f

N
fff bbb=b , 

which is the same for both the mine and non-mine patches. Then the kernel density 

estimate for the feature distribution over mine patches ( f
mq ) and the non-mine patches 

( f
nq ) can be calculated as  

∑
=
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                (6.6) 

where K is the kernel function. In this work, the Gaussian function with unit width and 

zero mean is used. Note that f
mq and f

nq are continuous density estimates. Figure 6.9 

shows these distributions for mine and non-mine patches for three features, namely the 

Energy, IDC and the NCI features. From the feature definitions in Eqn. (6.2b), it is noted 

that the energy feature is high when the probability is high for only a few elements of the 

co-occurrence matrix. Similarly, the IDC feature values (Eqn. (6.2d)) tend to be higher 

when most of the high probability elements in the co-occurrence matrix lie along the 

diagonal. Both of these are true when target signature is relatively smooth. It was 

observed that the variation in intensity tends to be smaller for most of the mine 

signatures. This is reflected in the feature value distributions for the IDC and energy 
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features shown in Figure 6.9a and 6.9b, respectively, where the IDC and energy values 

for mine patches are higher than those of non-mine patches.  

Next, the Bhattacharya coefficient between the feature distribution over the mine 

and non-mine patches is computed. Bhattacharya coefficient [Kailath, 1967], which is a 

divergence-type measure, is defined for the two densities for the feature f as:  

dyyqyqB f
n

f
mf ∫= )()(                                                  (6.6) 

The Bhattacharya coefficient can be interpreted geometrically as the cosine of the 

angle enclosed by the square root of the two density functions. 

 

 

 
(a) (b) 

 
(c) 

 
Figure 6.9. Kernel Density Estimates of the PDF for the Three Selected Features for Mine 
(red) and Non-mine (blue) Patches from Dataset 1. (a) Energy d = 0, RG, (b) IDC d = 0, 

GN, (c) NCI d = 0, RN. 
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Features with lower values of Bhattacharya coefficient have higher disparity 

between their mine and non-mine distributions, i.e., higher discriminatory information. 

Bhattacharya coefficient is computed in the aforementioned fashion for all the 240 

features. Figure 6.10 graphically illustrates the relative Bhattacharya coefficient values 

for various features. The various displacement vectors are plotted along the rows, with 

the first, second and the third row corresponding to distances of d = 2, 4 and 0, 

respectively. The columns are arranged separately for different band combinations. The 

first eight columns show the eight features over the RR cross-co-occurrence matrix, and 

the second set of eight columns shows values for the RG cross-co-occurrence matrix and 

so on, in the order shown in Figure 6.10.  

 

 

 
 

 

Figure 6.10. Bhattacharyya Coefficient Values for Different Features for Dataset 1. The 
Eight Features (1: Max. Prob., 2: Energy, 3: Contrast, 4: IDC, 5: Corr., 6: Var., 7: 

Entropy, 8: NCI) are Plotted for all Possible Cross-Co-Occurrence Matrices Along the 
Columns as Shown, for the Different Displacement Vectors that Vary Along the Rows. 

  

RR RB RG BB BN NN RN GG GB GN 
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As can be seen, some features have lower values (darker shade) of Bhattacharya 

coefficient and, thus, higher discriminatory information than others. These features with 

lower values of Bhattacharya coefficient are more suitable for mine and non-mine 

discrimination. The lower values of Bhattacharya coefficients are shown in darker shades 

in Figure 6.10. The coefficient values in Figure 6.10 range from 0.8056 to 1. Note that 

the NCI features for the RN, GN and BN band combinations (columns 32, 56 and 72, 

respectively) have low values of Bhattacharya coefficients. In order to reduce 

computational complexity, a set of 12 features with relatively low values of Bhattacharya 

coefficients were selected for further analysis. The selected 12 features are shown with 

cross-marks (red) in Figure 6.10. 

6.4.2. Feature Selection Using Principal Feature Analysis. Feature selection 

based on Bhattacharya coefficient only helps to identify individual texture features that 

might be more useful to discriminate between mines and non-mines. However, it does not 

take into account any inter-dependencies and correlations amongst these features. Thus, 

features selected based on Bhattacharya coefficient may be correlated and thus will be 

redundant. The goal is to obtain a small set of features that will allow us to effectively 

discriminate between mine and non-mine detections. As a second step to the feature 

selection process, Principal Feature Analysis (PFA) is used for the selection of a subset of 

uncorrelated features from the 12 short listed features. The PFA method used here is 

proposed by Cohen et al. [Cohen, 2002], and is described here briefly in a stepwise 

fashion.  

Let T
M ],.........,[ 21 xxxX = be the matrix containing all the feature vectors for both 

the mine and non-mine patches, where M is the total number of mine and non-mine 

patches combined.   

Step 1: Normalize each feature to zero mean and unit variance.  

Step 2: Compute the sample covariance matrix C from the data and calculate the 

eigenvectors and corresponding eigenvalues of the covariance matrix as TUDUC = , 

where U contains the eigenvectors along the columns and D is a diagonal matrix 

containing the corresponding eigenvalues.  

Step 3: Choose first q eigenvectors with highest eigenvalues; q can either be a 

fixed number or determined based on the energy to be retained in the selected 
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eigenvectors. The reduced set of q eigenvectors is denoted as qU . qU is an M x q matrix. 

Let the square of the rows (each element squared) of the matrix qU be denoted as 1v , 

2v ….. Mv . 

Step 4: Cluster the vectors 1v , 2v ….. Mv into k clusters using k-means clustering 

algorithm. The distance used here for the k-means algorithm is Euclidean distance.  

Step 5: For each cluster, select vector iv  belonging to that cluster that has the 

lowest value of Bhattacharya coefficient. The feature corresponding to vector iv  is called 

the principal feature for that cluster. Thus, k features are selected as principal features, 

from k clusters.   

For PFA on the co-occurrence features from Dataset 1, the first three eigenvectors 

are used for clustering, i.e. q = 3. Also, the number of clusters k was chosen to be k = 3, 

which was determined empirically. The 12 selected features are clustered into 3 clusters, 

as follows:  

Cluster 1: (1) =d 0, NCI-RN, (2) =d 0, NCI-GN, (3) =d 0, NCI-BN 

Cluster 2: (1) =d 0, Energy-RG, (2) =d 2, Energy-GB, (3) =d 2, Entropy-RB, (4) =d 2, 

Entropy-GG, (5) =d 2, IDC-RG 

Cluster 3: (1) =d 0, IDC-GN, (2) =d 2, Max. Prob.-BN, (3) =d 2, IDC-NN, (4) =d 4 

IDC-NN 

The 3 principal features obtained are:  

        (1) =d 0, NCI-RN, (2) =d 0, Energy-RG, (3) =d 0, IDC-GN 

These 3 principal features are used to represent each patch in the data. Note that 

all the selected features are cross-band features between red, green and NIR bands. This 

indicates the importance of color as a feature. Also, note that the first feature is the 

average NDVI feature, which is indicative of presence of vegetation at a location. This 

feature was also amongst the set of selected features in an earlier reported work [Tiwari, 

2007]. Moreover, similar to the selected feature set here, it was the IDC and Energy 

features that were short listed in the final set of features in [Tiwari, 2007], although for 

different spectral band combinations.  

Figures 6.11a shows an example frame from Dataset 1. Figure 6.11b shows the 

composite color image where the values from the three features are mapped into an RGB 
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color image for the frame in Figure 6.11a. Figure 6.12 shows another example image and 

the corresponding composite feature image. 

 

  
(a) (b) 

 
Figure 6.11. Example 1 of a Feature Image as a Composite RGB Image (a) Original 

Frame 1, (b) Corresponding Composite Feature Image.  
 

 

  
(a) (b) 

 
Figure 6.12. Example 2 of a Feature Image as a Composite RGB Image (a) Original 

Frame 2, (b) Corresponding Composite Feature Image. 
 

 

6.5. FEATURE-BASED DETECTORS 
To demonstrate the efficacy of the selected features in extracting useful 

discriminatory information, these are used in four different feature-based detectors for 

buried mine detection. The four detectors are named as the Matched Filter detector, the 
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AND Fusion detector, the Feature-based SW-KRX detector, and the Vegetation Mask 

detector. The Matched Filter detector and AND Fusion detector are supervised and semi-

supervised in nature, respectively. The Feature-based SW-KRX and Vegetation Mask 

detectors are completely unsupervised in nature in that no information from the training 

set of mine and non-mine signatures are needed for computing the detector statistics. The 

Matched Filter, AND Fusion and Feature-based SW-KRX detectors are extension of 

similar standard detectors to the feature images. However, the Vegetation Mask detector 

is more heuristically based, motivated by the empirical observations on the selected 

features. The performance results for these four detectors are shown to demonstrate the 

effectiveness of the buried mine detection strategy using the selected features in general, 

irrespective of the detector used. The results highlight the performance that can typically 

be expected by using the selected features. However, it is possible to devise other 

detection and classification strategies which might improve the detection performance 

further.  

It is pointed out that the detection is done for all the pixels in the images, i.e., the 

detectors are applied on the complete feature images. This is different from the detection 

methodology reported earlier in [Tiwari, 2007], where the detector statistics were 

computed for only those patches which gave a high multi-band RX detector statistics. In 

that sense, the earlier strategy was more akin to a false alarm mitigation strategy, whereas 

the current methodology is a direct anomaly detection strategy. 

A brief description of the Matched Filter detector, the AND Fusion detector, the 

Feature-based SW-KRX detector, and the Vegetation Mask detector is presented in 

Sections 6.5.1, 6.5.2, 6.5.3 and 6.5.4, respectively. Corresponding detection performance 

results for the detectors are shown in Section 6.6.  

6.5.1. Matched Filter Detector. Each pixel in the image data is described by a 

vector of three selected texture features. The matched filter detector essentially “matches” 

a given feature vector with typical signature(s) of buried mines. In this sense, it is a 

supervised detector as it looks for a specific type of feature vector. In this work, the 

typical buried mine signatures, which are termed representative mine signatures (RMSs), 

are obtained from the training data used for Bhattacharya coefficient based analysis. 
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Given a set of normalized3 mine and non-mine signatures, the mine feature vector which 

has the highest ratio of the mines to non-mines in a selected neighborhood around it in 

the feature space, is selected as the RMS. Since there can potentially be more than one 

type of mine signature, it is quite natural to select more than one RMS. In that case, first 

all the mines and non-mines within a certain neighborhood of the previously selected 

RMS are removed from consideration. Then, the same process is followed for selecting 

the second RMS on the reduced set. In this way, multiple RMSs can be selected for the 

detection process. The number of RMSs to use for the matched filter is determined 

empirically.  

Suppose there are L representative mine signatures denoted by },......,{ 21 Lrrr . 

Then the matched filter detector test statistic for a given pixel, whose feature vector is 

denoted by t , is defined as follows:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

0

2

exp)(
σ
dtMFD ,   { }Lrtrtrtd −−−= ,......,min 21                     (6.7) 

Here, ||.||  denotes the Euclidean distance, and 0σ  is chosen to be 0σ = 1. As can 

be seen from Eqn. (6.7), patches with feature vectors ‘similar’ to one of the RMSs will 

have higher value of the MCD detector output. Results for one and two RMSs are shown  

in Section 6.6 

6.5.2. AND Fusion Detector. The AND Fusion detector does not require an 

explicit set of mine and non-mine signatures, like the matched filter detector. The idea 

here is to generate a composite test statistic based on the three features. To this end, first 

a mapping function for each feature is determined which maps the feature values between 

0 and 1. This mapping function in this work is chosen to be a step-wise constant function. 

The feature range for a particular feature is divided into a certain number of bins 

(quantization levels) say ‘m’, whose edges are determined such that each bin covers the 

same area on the probability density function (PDF), estimated from the training data. 

Each bin is mapped to a different level between 0-1. The mapping function is determined 

for each feature separately, based on the corresponding non-mine PDF. Let the mapped 

                                                 
3 Here “normalization” refers to the transformation of making the feature set zero mean and unit variance. 
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features (say L of them) for a pixel with feature vector t , be denoted by },......,{ 21
t
L

tt rrr . 

Then the AND Fusion detector statistic is given as: 

 ],......,[max)( 211

t
L

tt
L

i
AFD rrrt

=
=                                                     (6.8) 

In the results shown in Section 6.6, the number of features used is L = 3 and the 

number of quantization bins used for each of the three features is m = 10.  

6.5.3. Feature-based SW-KRX Detector. The third detector is essentially the 

SW-KRX anomaly detector (special case implementation), as described in Sections 3, 4 

and 5, applied to the feature images. The results for the SW-KRX anomaly detector are 

compiled for two different modes of operation. For the first case, the three feature 

images, obtained from computation of the three features at each pixel location, are 

arranged into a multiband image. The SW-KRX detector statistics are computed on the 

feature multiband images. In the second mode, the SW-KRX detector statistics are 

computed on combined multispectral and feature images. The feature images are added 

on to the multispectral images as additional bands (total of 4+3 = 7 bands), and a scaling 

is applied to each band so as to bring each band to approximately the same mean value. 

The SW-KRX detector on these composite images gives the statistics in second mode. 

The feature-based SW-KRX detector is completely unsupervised as no information from 

the training set of mine and non-mine signatures is utilized.  

6.5.4. Vegetation Mask Detector. This detection strategy is based on the 

heuristics derived from the empirical observations on the feature images. This detector 

uses two of the three selected features, namely Energy-RG and NCI-RN features. The 

first step in this detector is anomaly detection on the selected energy feature image, 

which is followed by the modulation of the anomaly detector statistics based on the NCI 

feature. Figures 6.13a shows an example frame from Dataset 1 with the buried mine 

signatures enclosed in green boxes.  

Figure 6.13b shows the feature image for the Energy-RG feature for the same 

frame. It should be noted that the energy feature shows high values where there are less 

variations in the image i.e., relatively flat areas. Based on empirical observations it is 

found that the buried mine signatures are relatively smoother as compared to the 
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background, and give high values for the energy feature. Figure 6.13c show the feature 

image for the NCI-RN features. Since it is the average NDVI feature, it has high values 

where vegetation is present. Figure 6.14 depicts another example image from Dataset 2 

and the corresponding feature images. 

 

(a) (b) 

 
(c) 
 

Figure 6.13. Example 1 of a Feature Image as a Composite RGB Image from Dataset 1 
(a) Original Frame 1, (b) Corresponding Energy-RG Feature Image, (b) Corresponding 

NCI-RN Feature Image. 
 

 

It can be seen in Figures 6.13a and 6.14a that the typical buried mine signatures 

(marked with green boxes) show relatively fewer variations in the color values as 

compared to the background, i.e. is relatively smoother. Therefore, the energy feature 

gives high values in and around the buried mine signature patches, as can be seen in 

Figures 6.13b and 6.14b. Moreover, the feature values are typically significantly different 
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from the background, and form a distinct region around the mine signature, like a local 

anomaly. Therefore, it is expected that anomaly detection on the energy feature image 

will successfully indicate the presence of buried mines. However, it is found that the 

major vegetation patches, containing bush or tree tops, also tend to have smaller spectral 

variations. Consequently, such vegetation patches also tend to give high values for the 

energy feature. This phenomenon can be observed clearly in Figures 6.13. Therefore, 

basing the detection only on energy feature gives false alarms on or around the vegetation 

patches. 

 

 

(a) (b) 

 
(c) 

 
Figure 6.14. Example 2 of a Feature Image as a Composite RGB Image from Dataset 2 
(a) Original Frame 2, (b) Corresponding Energy-RG Feature Image, (b) Corresponding 

NCI-RN Feature Image. 
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However, note that the second selected feature, i.e. the NCI feature, is a robust 

indicator of the presence of the vegetation in the image. The idea is to modulate the 

detector statistics obtained by using the anomaly detector on the energy feature image, 

based on the NCI features.  

The first step of the feature-based detection strategy is anomaly detection on the 

Energy-RG feature images. The RX detector is used for this anomaly detection step. 

Figure 6.15 shows the Energy-RG feature image from the example image shown in 

Figure 6.13, and the corresponding RX anomaly detector output. It can be seen that the 

RX detector gives high output in the regions with high values of the Energy-RG feature, 

including the vegetation regions. The second step is to develop a “mask” image based on 

the NCI-RN feature. First, a binary image is obtained by thresholding the NCI-RN 

feature image. The threshold is chosen empirically such that the feature values of the 

actual vegetation patches are greater than the threshold. This is followed by a 

morphological opening and closing operation on the binary images, to retain only the 

sizeable vegetation regions and removing the scattered smaller regions. Morphological 

image dilation is applied to the resulting image, to get the final “mask” image. The idea is 

that the NCI-RX feature-based binary “mask” image delineates the vegetation regions in 

the image. Figure 6.16a shows the NCI-RN mask image for the same image from Figures 

6.15 and 6.13, obtained from the aforementioned morphological operations on the NCI-

RN feature image. 

As the final step, the RX detector statistics for each pixel is multiplied by the 

corresponding pixel value of the mask image, to give the final feature-based detector 

statistics. Figure 6.16b shows the result of the multiplication of the mask image with the 

RX detector output. It can be seen that the high values of the RX detector in and around 

the vegetation regions are suppressed. Note that the proposed Vegetation Mask detector 

is completely unsupervised as no information from the training set of mine and non-mine 

signatures is utilized for computation of the detector statistics.  

 

6.6. RESULTS AND DISCUSSION 
In this section, comparative results on the performance of the proposed buried 

mine detection methodology, vis-à-vis the multiband RX anomaly detector is presented, 
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to highlight the improvement in detection performance. Detection performance of the 

Matched Filter, AND Fusion and Feature-based SW-KRX detectors are shown for 

Dataset 1. The detection performance for the Vegetation Mask detector is shown for both 

Datasets 1 and 2. 

 

 

(a) (b) 
 

Figure 6.15. RX Detector on Energy-RG Feature Image from Dataset 1 (a) Energy-RG 
Feature Image, (b) Corresponding RX Detector Output. 

 

 

(a) (b) 
 

Figure 6.16. Vegetation Based Masking of RX Detector Statistics (a) Mask Image, (b) 
RX Detector Output with Vegetation Based Masking. 
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 For the results presented here, the cross-co-occurrence matrices are calculated 

over a window size of 15x15 pixels. As a pre-processing step, the dynamic range of 

various bands of the multispectral image is restricted to the following 

intervals: 100050 ≤≤ R , 2600200 ≤≤ G , 600100 ≤≤ B , and 2600400 ≤≤ N  (the 

letter N  is used to denote the near-infrared band). This is done to eliminate any bias in 

the further processing due to extremely high sensor values for some ground features such 

as fiducial markers. Next, the mean and standard deviation of each band for a given 

segment are estimated, and the dynamic range of the bands is further restricted to two 

standard deviations around the mean. Next, the values in the various bands are uniformly 

quantized to eight levels before cross-co-occurrence matrices are calculated. The 

dynamic range reduction, based on mean and standard deviation, helps to avoid the loss 

of texture information in the mine signatures in case of low contrast signatures during the 

quantization step. The selected three CCM features as listed in Section 6.4 are extracted 

for all the pixels, which are subsequently used for detection. Note that the Vegetation 

Mask detector is uses only two of the three selected features. However, the rest of the 

three detectors use all the three features for detection. In addition to the proposed 

methodology, multiband RX detector’s test statistics are calculated using the following 

mask sizes: demeaning radius = 25, blanking radius = 15 and target radius = 6. 

First, the results for the Matched Filter detector are presented. Figure 6.17 shows 

the receiver operating characteristic (ROC) curves for the feature-based matched filter 

and the multiband RX anomaly detector. ROC curves are shown for different number of 

representative mine signatures. The selection mechanism for the RMSs is described in 

Section 6.5.1.  

As can be seen, the detection performance is characteristically different for the 

case of single and two RMSs. The ROC curves are representative of the case when there 

are two different ‘type’ of mine signatures, which are fairly distinctly clustered into two 

clusters in the feature space. As can be seen, in case of a single RMS the performance is 

comparatively better for lower false alarm rates (FAR), but does not improve beyond a 

certain detection rate even at high FARs. This is indicative of the fact that there are mine 

signatures that do not give high detector statistics, i.e., they are significantly dissimilar 

from the RMS.  
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Figure 6.17. Comparison of Detection Performance of the Matched Filter 
Detector for Different Number of Representative Mine Signatures, vis-à-vis 

Multiband RX Anomaly Detector. 
 

The ROC curve for two RMSs corroborates the conclusion that there are two 

different types of mine signatures, since the inclusion of the second RMS improves the 

detection performance at higher FARs.  However, this improvement comes at the cost of 

higher false alarm rate, since the probability of a false alarm patch falling “close enough” 

to one of the cluster centroids also increases. In case of high degree of similarity between 

the mine patches, the detection performance of the matched filter detector is not expected 

to improve for higher number of RMSs. This is because the selected mine patches do not 

form distinct clusters in the feature space, the average distance of a patch feature vector 

from the nearest cluster does not improve significantly with increasing number of 

clusters. As seen in Figure 6.17, the proposed methodology has a significantly improved 

detection performance as compared to multiband RX.   

Figure 6.18 presents the detection performance results for the AND fusion 

detector. The AND Fusion detector essentially maps the individual feature values into 

meaningful individual feature detector statistics, using a mapping function based on the 

feature PDF. It then takes the maximum value amongst all the mapped feature values as 

the final AND Fusion detector statistics. The detection performance for the detector is 

shown in Figure 6.18, which shows improvement in performance over multiband RX. 
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The performance is better than the matched filter with 2 RMSs at lower FAR (up to about 

0.005 FA/m2), but is similar at higher FARs.  

 

 

 
 

Figure 6.18. Comparison of Detection Performance of the AND Fusion Detector, vis-à-
vis Multiband RX Anomaly Detector. 

 

Next, the detection performance for feature-based SW-KRX detector is presented 

in Figure 6.19. As mentioned earlier, this detector is applied in two different modes. In 

the first mode, the detector is applied to the multiband image with each band representing 

each feature image. Thus, each pixel contains the 3-element vector representation of the 

texture. In the second mode, the 4 multispectral bands of the images are combined with 

the 3-band feature image to get 7-band composite image. The SW-KRX detector is 

applied on the composite image. The ROC curve in black shows the detection 

performance for the first mode. As can be seen in Figure 6.11b and 6.12b, the values for 

the 3-selected features are typically significantly different from the background, and form 

a distinct region around the mine signature, like a local anomaly. The SW-KRX is able to 

pick up on these anomalies and this is reflected in the detection performance of the 

detector, which shows improvement over not just the multiband RX algorithm, but also 

the other detectors. It should be noted that the detection rates show improvement at all 



 

 

106

FARs upto approximately 0.05 FA/m2.  The falloff around 0.05 FA/m2 is due to the 

presence of mine signatures which are not significantly distinct from the background and 

do not show up as anomalies in the feature images. This problem is corrected slightly 

with the operation in the second mode, where the multispectral bands are also included. 

As can be seen, in the second mode (the red ROC curve) the detection performance at 

higher FARs (over 0.01 FA/m2) improves over the first mode. Overall, the performance is 

better than the multiband RX upto 0.1 FA/m2, beyond which it is similar.  

 

 
 

Figure 6.19. Comparison of Detection Performance of the Feature-based SW-KRX 
Detector (Black: Feature based SW-KRX, Red: Joint Multispectral and Feature-based 

SW-KRX), vis-à-vis Multiband RX Anomaly Detector. 
 

The detection performance results for the Matched Filter, AND Fusion and 

Feature-based SW-KRX detector shown here are for Dataset 1 only. For Dataset 2, the 

performance of these feature-based detectors was found to be similar to that of the 

multiband RX detector. However, the results for the Vegetation Mask detector are shown 

for both Datasets 1 and 2.  

For the Vegetation Mask detector, the RX detector statistics on the Energy-RG 

feature images are calculated for the following mask size values: demeaning radius = 30, 

blanking radius = 20 and target radius = 8. The threshold value for the thresholding of 

the NCI-RN feature image is chosen to be 0.6. For the morphological opening and 
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closing operations, a 5x5 square structuring element is used. For the morphological 

dilation step, a 7x7 square structuring element is used. In addition to the proposed 

methodology, multiband RX detector’s test statistics are also calculated using the 

following mask size values: demeaning radius = 25, blanking radius = 15 and target 

radius = 6. 

Figure 6.20 shows the receiver operating characteristic (ROC) curves for the 

Vegetation Mask detector and the multiband RX anomaly detector for Dataset 1. The 

feature-based detector is able to pick up on the anomalies in the Energy-RG feature 

image, and this is reflected in the detection performance of the detector, which shows 

significant improvement over the multiband RX algorithm. It should be noted that the 

detection rates show improvement at all FARs upto approximately 0.05 FA/m2.  The 

falloff around 0.05 FA/m2 is due to the presence of mine signatures which are not 

significantly distinct from the background and do not show up as anomalies in the feature 

images.  

 

 

 
 

Figure 6.20. Detection Performance of the Vegetation Mask Detector vis-à-vis Multiband 
RX Anomaly Detector for Dataset 1. 
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Similarly, Figure 6.21 shows the receiver operating characteristic (ROC) curves 

for the feature-based detection strategy and the multiband RX anomaly detector for 

Dataset 2. Again, similar to Dataset 1, the detection performance of the feature-based 

detection strategy shows improvement over the multiband RX anomaly detector. 

However, the improvement in performance is not as high as that shown for Dataset 1. 

The primary reason for that, in general, the contrast of the images in Dataset 2 is not as 

high as that in images in Dataset 1. Due to this, the buried mine signatures show 

relatively greater distinction from the background in Dataset 1, than in Dataset 2. This is 

also reflected in the feature images, and consequently, in the final feature-based detector 

statistics.  

 

 

 
 

Figure 6.21. Detection Performance of the Vegetation Mask Detector vis-à-vis Multiband 
RX Anomaly Detector for Dataset 1. 

 

 

These results provide the proof-of-concept that the selected texture features have 

substantial discriminatory information, and can substantially reduce false alarms and 

improve detection performance. It is noted that the results on the various detectors were 
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presented to demonstrate performance that can typically be expected by using the 

selected features. Further improvement in the detection performance is possible for 

different detection and classification strategies. 

 

6.7. CONCLUSION 
This section presents a methodology for buried mine detection in multispectral 

images based on cross co-occurrence texture features. First the raw CCM features are 

analyzed individually, based on the disparity of their distribution over the mine and non-

mine patches. Principal feature analysis is used for selecting the final set of three features, 

which are then used for generating a test statistic for detection. Different feature-based 

detectors are presented, which can be classified as supervised, semi-supervised and 

unsupervised in nature. Comparative detection results for the detectors are depicted, 

which shows improvement over the traditional multiband RX approach for buried mine 

detection. The results are also indicative of the presence of the significant discriminatory 

information in the selected features, which can be harnessed for effective buried mine 

detection.  
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7. CONCLUSIONS AND FUTURE WORK 

This work considers the problem of detection in airborne spatial data. Two 

different detection algorithms for spatial data have been proposed. Performance of the 

detection algorithms is demonstrated for the airborne landmine detection data. However, 

the proposed algorithms are not restricted to any specific spatial dataset.  

The first part of the dissertation presents the development of a fast approximate 

implementation of the kernel-based nonlinear anomaly detector called Kernel RX. First a 

reformulated version, termed the Spatially Weighted Kernel RX (SW-KRX), of the 

original detector is proposed. A novel framework, which is based on computing the 

detector statistic using all the pixels in the image while maintaining local adaptivity, is 

presented. It is shown that under the proposed framework, the detector statistics can be 

computed as a function of the centered kernel Gram matrix defined over the entire image. 

Next, a detailed development of the fast computation of the kernel Gram matrix is 

presented. The proposed method uses a cluster-based representation of the data, to obtain 

a sparse block representation of the kernel Gram matrix. Also, a method for an outer 

product decomposition of each block of the kernel Gram matrix is presented, which 

allows for fast computation of the detector statistics. The details of the fast centering of 

the diagonal elements of the kernel Gram matrix are also presented. Based on the fast 

computation of the kernel Gram matrix and the fast centering of its diagonal elements, an 

implementation for a special case of the SW-KRX detector has been developed. The 

underlying assumption in the implementation is that of uncorrelatedness and unit 

variance of the various feature dimensions in the non-linear feature space. It is 

demonstrated that, even with this assumption, the SW-KRX detector shows better 

detection performance under certain scenarios, as compared to the RX anomaly detector. 

This has been demonstrated for both the multispectral and single band data, although 

better results have been obtained for single band data due to the absence of problems like 

band misalignment. In terms of the computational gains, the proposed methodology is 

been shown to be 3-4 orders of magnitude faster than the original kernel RX algorithm. 

Results have also demonstrated the efficacy of the multivariate Taylor series based block 

approximation in reducing the computational burden.  
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Although the current implementation of the SW-KRX (with the specific 

assumption) gives superior performance vis-à-vis RX detector under some scenarios, it is 

expected that the SW-KRX detector in its complete form will improve the detection 

performance universally. Therefore, as part of the future direction of work on this 

algorithm, a technique for the fast centering of the non-diagonal elements of the kernel 

Gram matrix needs to be explored. Moreover, for fast implementation of the general case 

detector, methods for fast eigenvalue decomposition of the centered kernel Gram matrix, 

based on the outer product decomposition has to be developed. This work provides the 

details of the underlying framework necessary for the aforementioned developments. The 

performance of the proposed SW-KRX detector on large hyperspectral datasets can also 

be explored.  

The second part of the dissertation presented a methodology for the detection of 

buried mines in spatial data, through efficient extraction of the information in the spatial 

distribution of the spectral vectors. The proposed methodology extracts the spectral 

texture information using cross-co-occurrence features. Although, cross-co-occurrence 

texture features as color texture features have been proposed in the past, they have not 

been used extensively and are relatively less explored. A new color texture feature, 

termed Normalized Color Index (NCI), defined on the cross-co-occurrence matrices is 

proposed. This feature is similar to the Normalized Difference Vegetative Index, popular 

in the remote sensing community, but is more general in definition and scope. The 

algorithm is one of the first to exploit color texture information in the airborne 

multispectral images, using cross-co-occurrence texture features, for buried mine 

detection. A unique two stage scheme, using Bhattacharya coefficients and Principal 

feature analysis, is proposed for discriminatory feature selection. This feature selection 

process gives a minimal set of uncorrelated features, containing discriminatory 

information. Finally, details of the different feature-based detectors are presented. 

Comparative detection performance results are presented for the different feature-based 

detectors vis-à-vis the multiband RX detector. These results demonstrate the efficient 

extraction of texture information via the CCM features and the efficacy of the feature 

selection process. Currently, the feature selection process is semi-automatic in that the 

initial stage of the feature reduction process using Bhattacharya coefficients is based on 
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manual selection of features. In the future, techniques for automatic feature reduction can 

be explored. Also, methods for fast implementation of some of the co-occurrence features 

such as NCI exist, and have been implemented here as such. Techniques for fast 

computation of other features, like Energy and Entropy, need to be explored.   
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APPENDIX A. 

DETAILED DERIVATION OF THE KERNEL-RX DETECTOR STATISTICS 
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The detector statistics for the Kernel RX detector can is given as:  

)(ˆ)()( #
rC

T
rCrKRX yCyy ΦΦ= Φ                               (A.1) 

where #ˆ
ΦC  is the pseudo-inverse of the covariance matrix in the feature space ΦĈ . Let 

the eigen-decomposition of ΦĈ is given by: 

 T
ΦΦΦΦ = UΛUĈ                                                      (A.2) 

where, ],.....,[ 21 CN
ΦΦΦΦ = uuuU , is the matrix containing the eigenvectors along its 

columns. Then, the pseudo inverse of the covariance matrix ΦĈ can be written as:  

T
Φ

−
ΦΦΦ = UΛUC 1#ˆ                                                   (A.3) 

As shown in Appendix B, the relationship between the eigenvectors of the covariance 

matrix ΦĈ  and the centered kernel Gram matrix K̂  is given by:  

2/1−
Φ

Φ
Φ = αΛYU C                                                            (A.4) 

where α  is the matrix containing the eigenvectors for the centered kernel Gram matrix 

K̂ (see Appendix B).   

Writing the KRX statistics from Eqn. (A.1) in terms of the pseudo inverse of the 

covariance matrix from Eqn. (A.3): 

)()()( 2
rC

T
C

T
C

T
rCrKRX yYααΛYyy ΦΦ= Φ−

Φ
Φ                           (A.5) 

where, )( rC yΦ is the centered target vector. 

Define: 

 )(ˆ
rC

T
Cr yYk Φ= Φ                                               (A.6) 

Then, Eqn. (A.5) can be re-written as:  

r
TT

rrKRX kααΛky ˆˆ)( 2−
Φ=                                         (A.7) 
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APPENDIX B. 

RELATIONSHIP BETWEEN COVARIANCE AND KERNEL GRAM MATRIX IN 
HIGH DIMENSIONAL SPACE 
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In this Appendix, the relationship between the eigenvectors of the centered kernel 

Gram matrix and the covariance matrix is obtained. Consider the set of centered 

background feature vectors: 

})((,......)2((,)1(({ ΦΦΦΦ −Φ−Φ−Φ≡ CCCC N μμμ yyyY  

The covariance matrix is given as:  

T
CC

N

i

T
CiCi

ΦΦ

=

ΦΦ
Φ =−Φ−Φ= ∑ YYμyμyC

1

))()()((ˆ                          (B.1) 

Let us assume that the covariance matrix ΦĈ  has an eigen-decomposition: 

 T
ΦΦΦΦ = UΛUĈ                                                      (B.2) 

where, ],.....,[ 21 CN
ΦΦΦΦ = uuuU , is the matrix containing the eigenvectors along its 

columns, ΦΛ  is a diagonal matrix and IUUUU == ΦΦΦΦ
TT . From Eqn. (B.2), 

Φ
ΦΦ

ΦΦΦΦ == UYYUCΛU T
CC

ˆ                                      (B.3) 

Multiplying both sides by T
C
ΦY : 

 Φ
ΦΦΦ
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C
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C )(                                     (B.4) 

Again multiplying both sides from the left by 2/1−
ΦΛ : 
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Define                                        

αΛUY =−
ΦΦ

Φ 2/1T
C                                                     (B.6) 

So that Eqn. (B.5) can be written as:  

αYYαΛ )( ΦΦ
Φ = C

T
C                                                (B.7) 

Note that the term ΦΦ
C

T
C YY  is the centered kernel Gram matrix, i.e. ΦΦ= C

T
C YYK̂ . Then, 

Eqn. (B.7) becomes:  

αKαΛ ˆ=Φ                                                       (B.8) 



 

 

117

The columns of α  are a set of orthonormal vectors, i.e., Iαααα == TT .  Eqn. (B.8) 

implies that α  are the eigenvectors of the centered kernel Gram matrix K̂ . Multiplying 

both sides of Eqn. (B.6) by Tα , 

TααΛK Φ=ˆ                                                                (B.9) 

Multiplying both sides of Eqn. (B.3) by 1−
ΦΛ  and substituting Eqn. (B.6): 

 2/1−
Φ

Φ
Φ = αΛYU C                                                           (B.10) 
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APPENDIX C. 

CENTERING OF KERNEL GRAM MATRIX 
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In this Appendix, the relationship between the kernel Gram matrix K and the 

centered kernel Gram matrix K̂  is derived. The centered weighted kernel Gram matrix 

K̂ is defined on centered featured vectors. Let the feature vector set be denoted as ΦY .   

Then the centered feature vector set Φ
CY  can be written as:  

 ΦΦΦ −= CC μYY                                                      (C.1) 

where, Φ
Cμ  is the mean feature vector, which can be written in terms of the feature vector 

set as:  

CNC 1Yμ ΦΦ =                                                      (C.2) 

and, 
CN1 is a NC x NC matrix with each element equal to 1/NC.  

Then the centered kernel Gram matrix can be written as: 
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ΦΦΦΦΦΦΦ

ΦΦΦΦ

ΦΦΦΦ
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     (C.3) 

Since, ΦΦ= YYK T and 
CC N

T
N 11 = , it implies: 

CCCC NNNN 1K11KK1KK +−−=ˆ                             (C.4) 
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APPENDIX D. 

RELATIONSHIP BETWEEN THE KERNEL GRAM MATRIX AND THE 
WEIGHTED CENTERED KERNEL GRAM MATRIX 

 



 

 

121

In this Appendix, the relationship between the kernel Gram matrix K and the 

weighted centered kernel Gram matrix WK̂  is derived. The centered weighted kernel 

Gram matrix WK̂ is defined on centered featured vectors. Let the feature vector set be 

denoted as ΦY .  Then the centered feature vector set Φ
CY  can be written as:  

 ΦΦΦ −= CC μYY                                                             (D.1) 

where, Φ
Cμ  is the matrix containing the mean feature vectors. The ith column of the matrix 

Φ
Cμ is denoted by )(iμC

Φ and is given as: 

iN

j
ij

C

w
iμ wYΦ

=

Φ

∑
=

1

1)(                                                      (D.2) 

where, T
iNiii www ]....[ 21=w . Thus, the matrix Φ

Cμ   

WΩYμ ΦΦ =C                                                               (D.3) 
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 Then the weighted centered kernel Gram matrix can be written as: 
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Since, ΦΦ= YYK T and ΩΩ =T , it implies: 
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