70 research outputs found

    Aggregated Deep Local Features for Remote Sensing Image Retrieval

    Get PDF
    Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.Comment: Published in Remote Sensing. The first two authors have equal contributio

    Barcode Annotations for Medical Image Retrieval: A Preliminary Investigation

    Full text link
    This paper proposes to generate and to use barcodes to annotate medical images and/or their regions of interest such as organs, tumors and tissue types. A multitude of efficient feature-based image retrieval methods already exist that can assign a query image to a certain image class. Visual annotations may help to increase the retrieval accuracy if combined with existing feature-based classification paradigms. Whereas with annotations we usually mean textual descriptions, in this paper barcode annotations are proposed. In particular, Radon barcodes (RBC) are introduced. As well, local binary patterns (LBP) and local Radon binary patterns (LRBP) are implemented as barcodes. The IRMA x-ray dataset with 12,677 training images and 1,733 test images is used to verify how barcodes could facilitate image retrieval.Comment: To be published in proceedings of The IEEE International Conference on Image Processing (ICIP 2015), September 27-30, 2015, Quebec City, Canad

    Video Registration in Egocentric Vision under Day and Night Illumination Changes

    Full text link
    With the spread of wearable devices and head mounted cameras, a wide range of application requiring precise user localization is now possible. In this paper we propose to treat the problem of obtaining the user position with respect to a known environment as a video registration problem. Video registration, i.e. the task of aligning an input video sequence to a pre-built 3D model, relies on a matching process of local keypoints extracted on the query sequence to a 3D point cloud. The overall registration performance is strictly tied to the actual quality of this 2D-3D matching, and can degrade if environmental conditions such as steep changes in lighting like the ones between day and night occur. To effectively register an egocentric video sequence under these conditions, we propose to tackle the source of the problem: the matching process. To overcome the shortcomings of standard matching techniques, we introduce a novel embedding space that allows us to obtain robust matches by jointly taking into account local descriptors, their spatial arrangement and their temporal robustness. The proposal is evaluated using unconstrained egocentric video sequences both in terms of matching quality and resulting registration performance using different 3D models of historical landmarks. The results show that the proposed method can outperform state of the art registration algorithms, in particular when dealing with the challenges of night and day sequences

    The generalization of the R-transform for invariant pattern representation

    Get PDF
    International audienceThe beneficial properties of the Radon transform make it an useful intermediate representation for the extraction of invariant features from pattern images for the purpose of indexing/matching. This paper revisits the problem of Radon image utilization with a generic view on a popular Radon transform-based transform and pattern descriptor, the R-transform and R-signature, bringing in a class of transforms and descriptors spatially describing patterns at all directions and at different levels, while maintaining the beneficial properties of the conventional R-transform and R-signature. The domain of this class, which is delimited due to the existence of singularities and the effect of sampling/quantization and additive noise, is examined. Moreover, the ability of the generic R-transform to encode the dominant directions of pattern is also discussed, adding to the robustness to additive noise of the generic R-signature. The stability of dominant direction encoding by the generic R-transform and the superiority of the generic R-signature over existing invariant pattern descriptors on grayscale and binary noisy datasets have been confirmed by experiments

    MinMax Radon Barcodes for Medical Image Retrieval

    Full text link
    Content-based medical image retrieval can support diagnostic decisions by clinical experts. Examining similar images may provide clues to the expert to remove uncertainties in his/her final diagnosis. Beyond conventional feature descriptors, binary features in different ways have been recently proposed to encode the image content. A recent proposal is "Radon barcodes" that employ binarized Radon projections to tag/annotate medical images with content-based binary vectors, called barcodes. In this paper, MinMax Radon barcodes are introduced which are superior to "local thresholding" scheme suggested in the literature. Using IRMA dataset with 14,410 x-ray images from 193 different classes, the advantage of using MinMax Radon barcodes over \emph{thresholded} Radon barcodes are demonstrated. The retrieval error for direct search drops by more than 15\%. As well, SURF, as a well-established non-binary approach, and BRISK, as a recent binary method are examined to compare their results with MinMax Radon barcodes when retrieving images from IRMA dataset. The results demonstrate that MinMax Radon barcodes are faster and more accurate when applied on IRMA images.Comment: To appear in proceedings of the 12th International Symposium on Visual Computing, December 12-14, 2016, Las Vegas, Nevada, US

    Reconocimiento de Patrones en Imágenes Digitales a Color usando el Descriptor RFM

    Get PDF
    En este trabajo se propone un sistema digital de reconocimiento de patrones para imágenes a color basado en firmas 1D invariantes a traslación, escala y rotación (RST). La invariancia a rotación se obtiene por medio de la transformada de Radon. Para la invariancia a escala se utiliza la transformada de Fourier-Mellin normalizada. La invariancia a traslación se consigue a través del espectro de amplitud de la transformada de Fourier de la imagen. Al trabajar en el espacio de color RGB la imagen se separa en tres imágenes monocromáticas, las cuales corresponden al canal rojo (R), verde (G) y azul (B). Al aplicar las transformadas integrales a cada una de las imágenes monocromáticas se generan tres imágenes, denominadas Radon-Fourier-Mellin (RFM) que son invariantes a traslación, escala y rotación, por lo que para una imagen a color se generan tres imágenes Radon-Fourier-Mellin. Para cada una de las imágenes Radon-Fourier-Mellin (señal 2D) se construye una firma 1D invariante a traslación, escala y rotación, de la cual se calcula su potencia. Como para la imagen se tienen tres firmas 1D (una para cada canal), entonces se tienen tres potencias. Las tres potencias son los atributos que se le asignan a la imagen a color para su clasificación y se utilizan para generar un espacio de clasificación 3D que tiene un nivel de confianza de al menos el 95.4 %. Para mostrar la eficiencia del sistema se emplea una base de datos de 18 imágenes de referencia a color que contienen mariposas, dicho conjunto fue seleccionado por la similitud que presentan en su morfología y gama de colores

    DTW-Radon-based Shape Descriptor for Pattern Recognition

    Get PDF
    International audienceIn this paper, we present a pattern recognition method that uses dynamic programming (DP) for the alignment of Radon features. The key characteristic of the method is to use dynamic time warping (DTW) to match corresponding pairs of the Radon features for all possible projections. Thanks to DTW, we avoid compressing the feature matrix into a single vector which would otherwise miss information. To reduce the possible number of matchings, we rely on a initial normalisation based on the pattern orientation. A comprehensive study is made using major state-of-the-art shape descriptors over several public datasets of shapes such as graphical symbols (both printed and hand-drawn), handwritten characters and footwear prints. In all tests, the method proves its generic behaviour by providing better recognition performance. Overall, we validate that our method is robust to deformed shape due to distortion, degradation and occlusion

    Application of Texture Descriptors to Facial Emotion Recognition in Infants

    Get PDF
    The recognition of facial emotions is an important issue in computer vision and artificial intelligence due to its important academic and commercial potential. If we focus on the health sector, the ability to detect and control patients’ emotions, mainly pain, is a fundamental objective within any medical service. Nowadays, the evaluation of pain in patients depends mainly on the continuous monitoring of the medical staff when the patient is unable to express verbally his/her experience of pain, as is the case of patients under sedation or babies. Therefore, it is necessary to provide alternative methods for its evaluation and detection. Facial expressions can be considered as a valid indicator of a person’s degree of pain. Consequently, this paper presents a monitoring system for babies that uses an automatic pain detection system by means of image analysis. This system could be accessed through wearable or mobile devices. To do this, this paper makes use of three different texture descriptors for pain detection: Local Binary Patterns, Local Ternary Patterns, and Radon Barcodes. These descriptors are used together with Support Vector Machines (SVM) for their classification. The experimental results show that the proposed features give a very promising classification accuracy of around 95% for the Infant COPE database, which proves the validity of the proposed method.This work has been partially supported by the Spanish Research Agency (AEI) and the European Regional Development Fund (FEDER) under project CloudDriver4Industry TIN2017-89266-R, and by the Conselleria de Educación, Investigación, Cultura y Deporte, of the Community of Valencia, Spain, within the program of support for research under project AICO/2017/134
    • …
    corecore