4,130 research outputs found

    Intuitionistic completeness for first order classical logic

    Get PDF
    In the past sixty years or so, a real forest of intuitionistic models for classical theories has grown. In this paper we will compare intuitionistic models of first order classical theories according to relevant issues, like completeness (w.r.t. first order classical provability), consistency, and relationship between a connective and its interpretation in a model. We briefly consider also intuitionistic models for classical ω-logic. All results included here, but a part of the proposition (a) below, are new. This work is, ideally, a continuation of a paper by McCarty, who considered intuitionistic completeness mostly for first order intuitionistic logi

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    Kripke Semantics and Proof Systems for Combining Intuitionistic Logic and Classical Logic

    Get PDF
    International audienceWe combine intuitionistic logic and classical logic into a new, first-order logic called Polarized Intuitionistic Logic. This logic is based on a distinction between two dual polarities which we call red and green to distinguish them from other forms of polarization. The meaning of these polarities is defined model-theoretically by a Kripke-style semantics for the logic. Two proof systems are also formulated. The first system extends Gentzen's intuitionistic sequent calculus LJ. In addition, this system also bears essential similarities to Girard's LC proof system for classical logic. The second proof system is based on a semantic tableau and extends Dragalin's multiple-conclusion version of intuitionistic sequent calculus. We show that soundness and completeness hold for these notions of semantics and proofs, from which it follows that cut is admissible in the proof systems and that the propositional fragment of the logic is decidable

    Focusing in linear meta-logic: extended report

    No full text
    It is well known how to use an intuitionistic meta-logic to specify natural deduction systems. It is also possible to use linear logic as a meta-logic for the specification of a variety of sequent calculus proof systems. Here, we show that if we adopt different {\em focusing} annotations for such linear logic specifications, a range of other proof systems can also be specified. In particular, we show that natural deduction (normal and non-normal), sequent proofs (with and without cut), tableaux, and proof systems using general elimination and general introduction rules can all be derived from essentially the same linear logic specification by altering focusing annotations. By using elementary linear logic equivalences and the completeness of focused proofs, we are able to derive new and modular proofs of the soundness and completeness of these various proofs systems for intuitionistic and classical logics
    • …
    corecore