1,487 research outputs found

    Monitoring of Wireless Sensor Networks

    Get PDF

    INSENS: Intrusion-tolerant routing for wireless sensor networks

    Get PDF
    This paper describes an INtrusion-tolerant routing protocol for wireless SEnsor NetworkS (INSENS). INSENS securely and efficiently constructs tree-structured routing for wireless sensor networks (WSNs). The key objective of an INSENS network is to tolerate damage caused by an intruder who has compromised deployed sensor nodes and is intent on injecting, modifying, or blocking packets. To limit or localize the damage caused by such an intruder, INSENS incorporates distributed lightweight security mechanisms, including efficient one-way hash chains and nested keyed message authentication codes that defend against wormhole attacks, as well as multipath routing. Adapting to WSN characteristics, the design of INSENS also pushes complexity away from resource-poor sensor nodes towards resource-rich base stations. An enhanced single-phase version of INSENS scales to large networks, integrates bidirectional verification to defend against rushing attacks, accommodates multipath routing to multiple base stations, enables secure joining/leaving, and incorporates a novel pairwise key setup scheme based on transitory global keys that is more resilient than LEAP. Simulation results are presented to demonstrate and assess the tolerance of INSENS to various attacks launched by an adversary. A prototype implementation of INSENS over a network of MICA2 motes is presented to evaluate the cost incurred

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Intrusion Tolerant Routing Protocols for Wireless Sensor Networks

    Get PDF
    This MSc thesis is focused in the study, solution proposal and experimental evaluation of security solutions for Wireless Sensor Networks (WSNs). The objectives are centered on intrusion tolerant routing services, adapted for the characteristics and requirements of WSN nodes and operation behavior. The main contribution addresses the establishment of pro-active intrusion tolerance properties at the network level, as security mechanisms for the proposal of a reliable and secure routing protocol. Those properties and mechanisms will augment a secure communication base layer supported by light-weigh cryptography methods, to improve the global network resilience capabilities against possible intrusion-attacks on the WSN nodes. Adapting to WSN characteristics, the design of the intended security services also pushes complexity away from resource-poor sensor nodes towards resource-rich and trustable base stations. The devised solution will construct, securely and efficiently, a secure tree-structured routing service for data-dissemination in large scale deployed WSNs. The purpose is to tolerate the damage caused by adversaries modeled according with the Dolev-Yao threat model and ISO X.800 attack typology and framework, or intruders that can compromise maliciously the deployed sensor nodes, injecting, modifying, or blocking packets, jeopardizing the correct behavior of internal network routing processing and topology management. The proposed enhanced mechanisms, as well as the design and implementation of a new intrusiontolerant routing protocol for a large scale WSN are evaluated by simulation. For this purpose, the evaluation is based on a rich simulation environment, modeling networks from hundreds to tens of thousands of wireless sensors, analyzing different dimensions: connectivity conditions, degree-distribution patterns, latency and average short-paths, clustering, reliability metrics and energy cost
    corecore