13,555 research outputs found

    The Structure of High Strehl Ratio Point-Spread Functions

    Full text link
    We describe the symmetries present in the point-spread function (PSF) of an optical system either located in space or corrected by an adaptive o to Strehl ratios of about 70% and higher. We present a formalism for expanding the PSF to arbitrary order in terms of powers of the Fourier transform of the residual phase error, over an arbitrarily shaped and apodized entrance aperture. For traditional unapodized apertures at high Strehl ratios, bright speckles pinned to the bright Airy rings are part of an antisymmetric perturbation of the perfect PSF, arising from the term that is first order in the residual phase error. There are two symmetric second degree terms. One is negative at the center, and, like the first order term, is modulated by the perfect image's field strength -- it reduces to the Marechal approximation at the center of the PSF. The other is non-negative everywhere, zero at the image center, and can be responsible for an extended halo -- which limits the dynamic range of faint companion detection in the darkest portions of the image. In regimes where one or the other term dominates the speckles in an image, the symmetry of the dominant term can be exploited to reduce the effect of those speckles, potentially by an order of magnitude or more. We demonstrate the effects of both secondary obscuration and pupil apodization on the structure of residual speckles, and discuss how these symmetries can be exploited by appropriate telescope and instrument design, observing strategies, and filter bandwidths to improve the dynamic range of high dynamic range AO and space-based observations. Finally, we show that our analysis is relevant to high dynamic range coronagraphy.Comment: Accepted for publication in ApJ; 20 pages, 4 figure

    An Algorithm for Precise Aperture Photometry of Critically Sampled Images

    Full text link
    We present an algorithm for performing precise aperture photometry on critically sampled astrophysical images. The method is intended to overcome the small-aperture limitations imposed by point-sampling. Aperture fluxes are numerically integrated over the desired aperture, with sinc-interpolation used to reconstruct values between pixel centers. Direct integration over the aperture is computationally intensive, but the integrals in question are shown to be convolution integrals and can be computed ~10000x faster as products in the wave-number domain. The method works equally well for annular and elliptical apertures and could be adapted for any geometry. A sample of code is provided to demonstrate the method.Comment: Accepted MNRA

    Quantifying Resonant Structure in NGC 6946 from Two-dimensional Kinematics

    Full text link
    We study the two-dimensional kinematics of the H-alpha-emitting gas in the nearby barred Scd galaxy, NGC 6946, in order to determine the pattern speed of the primary m=2 perturbation mode. The pattern speed is a crucial parameter for constraining the internal dynamics, estimating the impact velocities of the gravitational perturbation at the resonance radii, and to set up an evolutionary scenario for NGC 6946. Our data allows us to derive the best fitting kinematic position angle and the geometry of the underlying gaseous disk, which we use to derive the pattern speed using the Tremaine-Weinberg method. We find a main pattern speed Omega_p=22 km/s/kpc, but our data clearly reveal the presence of an additional pattern speed Omega_p=47 km/s/kpc in a zone within 1.25 kpc of the nucleus. Using the epicyclic approximation, we deduce the location of the resonance radii and confirm that inside the outer Inner Lindblad Resonance radius of the main oval, a primary bar has formed rotating at more than twice the outer pattern speed. We further confirm that a nuclear bar has formed inside the Inner Lindblad Resonance radius of the primary bar, coinciding with the inner Inner Lindblad Resonance radius of the large-scale m=2 mode oval.Comment: Accepted for publication in ApJ Letter

    On the bar pattern speed determination of NGC 3367

    Full text link
    An important dynamic parameter of barred galaxies is the bar pattern speed. Among several methods that are used for the determination of the pattern speed the Tremaine-Weinberg method has the advantage of model independency and accuracy. In this work we apply the method to a simulated bar including gas dynamics and study the effect of 2D spectroscopy data quality on robustness of the method. We added a white noise and a Gaussian random field to the data and measured the corresponding errors in the pattern speed. We found that a signal to noise ratio in surface density ~5 introduces errors of ~20% for the Gaussian noise, while for the white noise the corresponding errors reach ~50%. At the same time the velocity field is less sensitive to contamination. On the basis of the performed study we applied the method to the NGC 3367 spiral galaxy using H{\alpha} Fabry-Perot interferometry data. We found for the pattern speed 43 \pm 6 km/s/kpc for this galaxy.Comment: Accepted for publication in ApJ. 16 pages, 16 figure

    Propagation of spatially entangled qudits through free space

    Get PDF
    We show the propagation of entangled states of high-dimensional quantum systems. The qudits states were generated using the transverse correlation of the twin photons produced by spontaneous parametric down-conversion. Their free-space distribution was performed at the laboratory scale and the propagated states maintained a high-fidelity with their original form. The use of entangled qudits allow an increase in the quantity of information that can be transmitted and may also guarantee more privacy for communicating parties. Therefore, studies about propagating entangled states of qudits are important for the effort of building quantum communication networks.Comment: 5 Pages, 4 Figures, REVTeX

    Performance Investigation on Scan-On-Receive and Adaptive Digital Beam-Forming for High-Resolution Wide-Swath Synthetic Aperture Radar

    Get PDF
    The work investigates the performance of the Smart Multi-Aperture Radar Technique (SMART) Synthetic Aperture Radar (SAR) system for high-resolution wide-swath imaging based on Scan-on-Receive (SCORE) algorithm for receive beam steering. SCORE algorithm works under model mismatch conditions in presence of topographic height. A study on the potentiality of an adaptive approach for receive beam steering based on spatial spectral estimation is presented. The impact of topographic height on SCORE performance in different operational scenarios is examined, with reference to a realistic SAR system. The SCORE performance is compared to that of the adaptive approach by using the Cramèr Rao lower bound analysis

    Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector

    Get PDF
    Terahertz (THz) imaging has the ability to see through otherwise opaque materials. However, due to the long wavelengths of THz radiation ({\lambda}=300{\mu}m at 1THz), far-field THz imaging techniques are heavily outperformed by optical imaging in regards to the obtained resolution. In this work we demonstrate near-field THz imaging with a single-pixel detector. We project a time-varying optical mask onto a silicon wafer which is used to spatially modulate a pulse of THz radiation. The far-field transmission corresponding to each mask is recorded by a single element detector and this data is used to reconstruct the image of an object placed on the far side of the silicon wafer. We demonstrate a proof of principal application where we image a printed circuit board on the underside of a 115{\mu}m thick silicon wafer with ~100{\mu}m ({\lambda}/4) resolution. With subwavelength resolution and the inherent sensitivity to local conductivity provided by the THz probe frequencies, we show that it is possible to detect fissures in the circuitry wiring of a few microns in size. Imaging systems of this type could have other uses where non-invasive measurement or imaging of concealed structures with high resolution is necessary, such as in semiconductor manufacturing or in bio-imaging
    • …
    corecore