424,561 research outputs found

    Towards a reading of the Vindolanda Stylus Tablets: Engineers and the Papyrologist

    Get PDF
    We introduce a collaborative project between the Department of Engineering Science and the Centre for the Study of Ancient Documents at the University of Oxford regarding the analysis and reading of the Vindolanda Stylus Tablets. We sketch the imaging and image processing techniques used to digitally capture and analyse the tablets, the development of the image analysis tools to aid papyrologists in the transcription of the texts, and lessons that can be learned so far from such an inter-disciplinary project

    Field-portable pixel super-resolution colour microscope.

    Get PDF
    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings

    Design and construction of a configurable full-field range imaging system for mobile robotic applications

    Get PDF
    Mobile robotic devices rely critically on extrospection sensors to determine the range to objects in the robot’s operating environment. This provides the robot with the ability both to navigate safely around obstacles and to map its environment and hence facilitate path planning and navigation. There is a requirement for a full-field range imaging system that can determine the range to any obstacle in a camera lens’ field of view accurately and in real-time. This paper details the development of a portable full-field ranging system whose bench-top version has demonstrated sub-millimetre precision. However, this precision required non-real-time acquisition rates and expensive hardware. By iterative replacement of components, a portable, modular and inexpensive version of this full-field ranger has been constructed, capable of real-time operation with some (user-defined) trade-off with precision

    Light field super resolution through controlled micro-shifts of light field sensor

    Get PDF
    Light field cameras enable new capabilities, such as post-capture refocusing and aperture control, through capturing directional and spatial distribution of light rays in space. Micro-lens array based light field camera design is often preferred due to its light transmission efficiency, cost-effectiveness and compactness. One drawback of the micro-lens array based light field cameras is low spatial resolution due to the fact that a single sensor is shared to capture both spatial and angular information. To address the low spatial resolution issue, we present a light field imaging approach, where multiple light fields are captured and fused to improve the spatial resolution. For each capture, the light field sensor is shifted by a pre-determined fraction of a micro-lens size using an XY translation stage for optimal performance

    Restoration of Oyster (Crassostrea virginica) Habitat for Multiple Estuarine Species Benefits

    Get PDF
    Increase in nitrogen concentration and declining eelgrass beds in Great Bay Estuary have been observed in the last decades. These two parameters are clear indicators of the impending problems for NH’s estuaries. The NH Department of Environmental Services (DES) in collaboration with the New Hampshire Estuaries Project (NHEP) adopted the assumption that eelgrass survival can be used as the water quality target for nutrient criteria development for NH’s estuaries. One of the hypotheses put forward regarding eelgrass decline is that a possible eutrophication response to nutrient increases in the Great Bay Estuary has been the proliferation of nuisance macroalgae, which has reduced eelgrass area in Great Bay Estuary. To test this hypothesis, mapping of eelgrass and nuisance macroalgae beds using hyperspectral imagery was suggested. A hyperspectral imagery was conducted by SpecTIR in August 2007 using an AISA Eagle sensor. The collected dataset was used to map eelgrass and nuisance macroalgae throughout the Great Bay Estuary. This report outlines the configured procedure for mapping the macroalgae and eelgrass beds using hyperspectral imagery. No ground truth measurements of eelgrass or macroalgae were collected as part of this project, although eelgrass ground truth data was collected as part of a separate project. Guidance from eelgrass and macroalgae experts was used for identifying training sets and evaluating the classification results. The results produced a comprehensive eelgrass and macroalgae map of the estuary. Three recommendations are suggested following the experience gained in this study: conducting ground truth measurements at the time of the HS survey, acquiring the current DEM model of Great Bay Estuary, and examining additional HS datasets with expert eelgrass and macroalgae guidance. These three issues can improve the classification results and allow more advanced applications, such as identification of macroalgae types

    Color Capable Sub-Pixel Resolving Optofluidic Microscope and Its Application to Blood Cell Imaging for Malaria Diagnosis

    Get PDF
    Miniaturization of imaging systems can significantly benefit clinical diagnosis in challenging environments, where access to physicians and good equipment can be limited. Sub-pixel resolving optofluidic microscope (SROFM) offers high-resolution imaging in the form of an on-chip device, with the combination of microfluidics and inexpensive CMOS image sensors. In this work, we report on the implementation of color SROFM prototypes with a demonstrated optical resolution of 0.66 ”m at their highest acuity. We applied the prototypes to perform color imaging of red blood cells (RBCs) infected with Plasmodium falciparum, a particularly harmful type of malaria parasites and one of the major causes of death in the developing world

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870
    • 

    corecore