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1 Abstract (400 words or less) 
  

Increase in nitrogen concentration and declining eelgrass beds in Great Bay Estuary 
have been observed in the last decades. These two parameters are clear indicators of 
the impending problems for NH’s estuaries. The NH Department of Environmental 
Services (DES) in collaboration with the New Hampshire Estuaries Project (NHEP) 
adopted the assumption that eelgrass survival can be used as the water quality target for 
nutrient criteria development for NH’s estuaries. One of the hypotheses put forward 
regarding eelgrass decline is that a possible eutrophication response to nutrient 
increases in the Great Bay Estuary has been the proliferation of nuisance macroalgae, 
which has reduced eelgrass area in Great Bay Estuary. To test this hypothesis, mapping 
of eelgrass and nuisance macroalgae beds using hyperspectral imagery was suggested. 

A hyperspectral imagery was conducted by SpecTIR in August 2007 using an AISA 
Eagle sensor. The collected dataset was used to map eelgrass and nuisance 
macroalgae throughout the Great Bay Estuary. This report outlines the configured 
procedure for mapping the macroalgae and eelgrass beds using hyperspectral imagery. 
No ground truth measurements of eelgrass or macroalgae were collected as part of this 
project, although eelgrass ground truth data was collected as part of a separate project.  
Guidance from eelgrass and macroalgae experts was used for identifying training sets 
and evaluating the classification results.  The results produced a comprehensive 
eelgrass and macroalgae map of the estuary. Three recommendations are suggested 
following the experience gained in this study: conducting ground truth measurements at 
the time of the HS survey, acquiring the current DEM model of Great Bay Estuary, and 
examining additional HS datasets with expert eelgrass and macroalgae guidance. These 
three issues can improve the classification results and allow more advanced 
applications, such as identification of macroalgae types. 
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2 Executive Summary 
 
Measurements over the last few decades demonstrated an increased nitrogen 
concentration in Great Bay (59% in the past 25 years) and a loss in percent cover of 
historic eelgrass beds (29% in the past 60 years). Increasing nitrogen concentrations 
and declining eelgrass beds in Great Bay are clear indicators of impending problems for 
NH’s estuaries. One of the NH Department of Environmental Services (DES) 
responsibilities is nutrient criteria development for protecting NH’s estuaries. The DES, 
in collaboration with the New Hampshire Estuaries Project (NHEP), adopted the 
assumption that eelgrass survival can be used as a water quality target for nutrient 
criteria development for NH’s estuaries. Eelgrass takes up a large portion of nitrogen 
from the water column in Great Bay, but as nitrogen levels have risen and exceeded the 
capacity of eelgrass to absorb; researchers have observed a proliferation of green and 
red nuisance macroalgae and a loss of eelgrass.  
 
A study was suggested by the DES to test the hypothesis that one of the eutrophication 
responses to nutrient increases in the Great Bay Estuary has been a proliferation of 
abundance of macroalgae, which has reduced the amount of eelgrass the Great Bay 
Esuary. Hyperspectral imagery collected in August and October 2007 was used to map 
eelgrass and nuisance macroalgae throughout the estuary. The distribution of nuisance 
macroalgae will be compared to areas where historic eelgrass beds have been lost to 
determine whether nuisance macroalgae correlates with eelgrass loss in the Great Bay 
Estuary. The research outputs will contribute to the development of numeric nutrient 
criteria for NH’s estuaries. The research will benefit other states in New England 
because eutrophication responses in Great Bay Estuary can be used as a model for 
other, macrotidal estuaries. 
 
This report outlines a procedure for mapping the macroalgae and eelgrass beds using 
hyperspectral imagery. The procedure was configured based on the available 
hyperspectral data on the study site (Great Bay Estuary). No ground truth 
measurements of eelgrass or macroalgae were collected as part of this survey. This 
present study required guidance from eelgrass and macroalgae experts in identifying 
training sets and evaluating the classification results.  The goals of the study were to 
configure a procedure for identifying eelgrass and macroalgae based on AISA 
hyperspectral remote sensing imagery; map eelgrass and macroalgae beds using data 
collected from 2008 NHDES hyperspectral survey; and provide a recommendation for 
planning future hyperspectral surveys for eelgrass mapping based on the study 
experience. The eelgrass and macroalgae mapping procedure included four main tasks: 
 
• End-member collection- A spectrum representing a spectrally “pure” feature (e.g, 

vegetation, soil, etc.) is defined as a spectral end-member. Candidate locations 
were identified in the hyperspectral imagery and end-members were created of the 
macroalgae and eelgrass areas and of bottoms without macroalgae (pure 
background).  

 
• Endmember analysis- The collected end-members were analyzed according to the 

feature type. Distinct features along the spectra were used to discriminate between 
the different end-members.  
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• Classification- Following the characteristics of the different end-members a 
classification technique approach (decision rules) was chosen and applied to the 
data. The classification algorithms and algorithm thresholds were modified 
following several iterations with eelgrass and macroalgea experts. The resulting 
product is a thematic map that represents spatial distribution of the eelgrass and 
macroalgae beds. 

 
• Data export- The classification results were exported to a vector format that is 

compliant with the GIS environment (shapfile polygons). 
 
The resulting product of the study was the development of a mapping procedure for 
eelgrass and macroalgae. This procedure included four main processing steps (not 
including pre-processing): 1) water body separation from land, 2) mapping the 
vegetation in the water body, 3) masking wetland vegetation, and 4) mapping the 
eelgrass and macroalgae beds.  The resulting classes (eelgrass and macroalgea) were 
merged into a single file and georefenced to WGS-84 datum with a UTM projection 
(Zone 19N). The georeferenced class files were exported to an ArcMap-polygon 
shapefile. The shapefiles were subset into the NHDES estuary assessment zones and 
all files were also georeferenced to the New Hampshire State Plane NAD 1983 (FIPS 
2800). Given the quality of the data and time constraints associated with funding 
available for the work, only the overflight on August 29, 2007 was analyzed. 
 
A comprehensive eelgrass and macroalgae map of the Estuary was produced. The 
classification process was not automatic and required interaction with the operator. 
Important wavelength regions for the procedure were identified (0.574 µm to 0.630 µm 
and 0.670 µm to 0.726 m). Three recommendations are suggested following the 
experience gained in this study: 
 

1. Collection of ground truth (reflectance spectra) at the time of the hyperspectral 
survey would allow QA of the dataset, applying water depth correction to the 
dataset, and constructing decision rules for classification. 

 
2. An updated high resolution (2.5 m) elevation model that also covers the shallow 

areas would allow correcting the HS dataset attenuation at different water 
depths.  

 
3. Additional hyperspectral datasets over the same study area and also other sites 

that contain eelgrass and macroalgae would provide more feedback on the 
procedure and allow it to be more robust.   

 
4. Ground truth assessments simultaneous with the HS imagery and substantial 

expert eelgrass and macroalgae input are needed to increase the level of 
confidence in the HS image analysis.  

 
 The results of the HS study including maps of eelgrass and macroalgae can now 
be compared to the historic eelgrass maps and to the 2007 ground-truthed eelgrass 
maps, in order to evaluate the success of the image analysis and determine the areas of 
former eelgrass that are now macroalgae. 
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5 Introduction (Great Bay Estuary without Portsmouth Harbor) 

5.1 Importance of eelgrass mapping 
 
 Nitrogen concentration in Great Bay Estuary (GBE) has increased by 59% in the 
past 25 years (NHEP, 2006). Since the 1940s, 29% of the historic eelgrass cover has 
been lost.  Nitrogen loading rates in GBE (182 kg/ha/yr) are higher than estuaries for 
which dramatic eelgrass loss has occurred (>60 kg/ha/yr) (Hauxwell et al., 2003).  
Increasing nitrogen concentrations (Figure 5.1) and declining eelgrass beds in GBE 
(Figure 2) are clear indicators of impending problems for NH’s estuaries (Short et al. 
1986, Short 1992, NHEP, 2006). The NH Department of Environmental Services (DES) 
in collaboration with the New Hampshire Estuaries Project (NHEP) began developing 
nutrient criteria for NH’s estuaries with the formation of a workgroup in 2005. This 
workgroup adopted eelgrass survival as the water quality target for nutrient criteria 
development for NH’s estuaries. The results of the study will aid in the development of 
numeric nutrient criteria. A research goal of NHEP is to investigate if the proliferation of 
nuisance macroalgae is a result of eutrophication response (increase in nutrients) in the 
GBE. Eelgrass takes up a large portion of nitrogen from the water column, but as 
nitrogen levels have risen, researchers have observed a proliferation of green and red 
nuisance macroalgae. Macroalgae can eliminate eelgrass when it forms dense mats on 
the sediment (Short and Burdick 1996) and can prevent the reestablishment of eelgrass 
in potential habitat areas.   
 
This report presents the results of mapping eelgrass and macroalgae beds in GBE. The 
surveying technique used to map the eelgrass and macroalgae beds was airborne 
hyperspectral remote sensing. Hyperspectral Imaging is part of a class of remote 
sensing techniques commonly referred to as spectral imaging or spectral analysis. 
Hyperspectral sensors collect information as a set of 'images'. Each image represents a 
range of the electromagnetic spectrum and is also known as a spectral band. These 
'images' are then combined and form a three dimensional hyperspectral cube for 
processing and analysis. The ability of hyperspectral imaging to identify various minerals 
and other chemical compositions by spectral analysis makes it a useful tool for this 
study. 
 
In 2007, the NHEP received a 104(b)(3) grant from the U.S. Environmental Protection 
Agency (EPA) to collect water quality information including that from hyperspectral 
imagery data of the GBE (EPA Grant Award X7-97167001). The NHEP collected 
hyperspectral imagery and water quality data from the GBE in 2007 (August and 
October 2007) (Figure 3). Data was collected under an approved QAPP. This report 
summarizes the analysis of the hyperspectral imagery data conducted by researchers 
from NHEP and the University of New Hampshire. This is the first time that a quantified 
spatial macroalgae mapping has been conducted throughout the estuary using a 
standard, synoptic method. Results of this research will contribute to the development of 
numeric nutrient criteria for NH’s estuaries. In addition to New Hampshire, the research 
will benefit other states in New England because eutrophication responses in GBE can 
be used as a model for other northern, macrotidal estuaries. 
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Figure 5.1 Dissolved inorganic 
nitrogen concentrations in Great 
Bay (NHEP, 2006) 
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Figure 5.2 Eelgrass cover and biomass in Great Bay (NHEP, 2006) 

 
 
 

5.2 Hyperspectral Remote Sensing in Shallow waters 
 
Hyperspectral (HS) remote sensing theoretically contains continuous spectral 
observations and practically has observations every 5 to 10 nm typical of AVIRIS, AISA, 
PHILLS, and CASI airborne instruments.  These sensors typically have tens to hundreds 
of spectral channels in the ultraviolet (UV), visible, near infrared (NIR), and the short 
wave infrared (SWIR) wavelengths.  Successfully used for many years with terrestrial 
applications, this technology has only recently been applied to applications in aquatic 
systems including those of coastal oceans (Lee and Carder 2005).  Inversion of 
reflectance signatures in these environments is often complicated as the water column 
and bottom both contribute to the water leaving radiance with their relative contributions 
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being modulated by water depth (e.g., Lyzenga 1981; Maritorena et al. 1994).  A number 
of approaches have been used for such inversions including; reflectance ratio algorithms 
(Dierssen et al. 2003), neural networks (Sandage and Holyer 1998), spectral 
optimization (Lee et al. 2001; Lee et al. 1998; Lee et al. 1999), and spectrum matching 
and look-up table (LUT, Lesser and Mobley 2007; Louchard et al. 2003; Mobley et al. 
2005).  Most of these studies have been performed in relatively clear waters surrounding 
coral reef environments. 
 
 

New Hampshire Maine

Atlantic 
Ocean

#

Great Bay

N

2 0 2 4 6 8 10 Kilometers

 
Figure 5.3 The Great Bay Estuary 

 
 
Spectral optimization and the LUT protocols both need information on the range of 
Inherent Optical Properties (IOPs) of the water column and the bottom reflectance or 
albedo.  However, they differ in how these are used to model and invert remotely 
measured reflectance.  Of the IOPs the absorption and backscattering coefficients (a  
and bb, respectively) are most important in remote sensing (Gordon et al. 1988).  IOPs 
are determined in part by water but also by other optically important constituents and 
can be modeled as proportional to constituent concentrations (Mobley 1994).  Optically 
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important in-water constituents include phytoplankton, non-algal particles (both organic 
and inorganic), and colored dissolved organic matter (CDOM).  Bottom reflectance, ρ, 
depends on the relative contributions of differing substrate types (e.g. sand, seagrass, 
macrophytic algae, and coral).  The LUT approach uses ranges of constituents, bottom 
reflectance for differing substrates (and mixtures thereof), and depths with a radiative 
transfer model such as Hydrolight (Mobley 1994) to predict surface reflectances a priori 
for a range of conditions.  For example, 28 sets of IOPs, 84 depths, and 118 bottom 
reflectance spectra yielded 275,000 spectra in an LUT (Lesser and Mobley 2007).  By 
matching observed reflectance spectra to the nearest one in the LUT the water column 
and benthic properties as well as bathymetry are retrieved.  In contrast, spectral 
optimization techniques use a semi-analytical iterative inversion approach to vary water 
depth, water column optical constituents, and potentially bottom type to minimize 
differences between observed and predicted spectra.  Lee et al. (2001) only used two 
bottom types, sand and seagrass, with the bottom reflectance selected before 
minimization using the remotely sensed reflectance spectra.  Goodman and Ustin (2008) 
used a three-step process to further classify benthic composition. First, a generic bottom 
reflectance and spectral optimization to invert for water properties and bathymetry; 
second, these products were used to predict the actual bottom reflectance; and third a 
linear spectral unmixing model was used for benthic classification.   
 
Both LUT and spectral optimization (with unmixing) have demonstrated capacity to 
retrieve important water column and benthic properties.  For example, for each pixel a 
percent contribution to the bottom reflectance of different substrate and biological cover 
is possible allowing abundance estimates. However, knowledge of water column optical 
properties, bottom reflectance and / or bathymetry before the reflectance spectra 
inversion has the potential to decrease processing time (Mobley et al. 2005) and reduce 
uncertainties in the retrieved products. This can be expressed in a simple radiative 
transfer model for optically shallow waters of the general form (Philpot, 1989; Mobley, 
1994): 

Ld = Lb exp(-Kz) + Lw 
 
where Ld is the radiance observed at the remote detector, K is the effective attenuation 
coefficient of the water, z is depth of the water column, Lb = a radiance term which is 
sensitive to bottom reflectance, and Lw = remotely observed radiance over optically 
deep water (gz  ∞). 

5.3 Spectral responses of eelgrass and macroalgae  
 
The potential use of spectral instruments for mapping eelgrass and macroalgae has 
been recognized by studies conducted in the past (Haxo and Blinks, 1950; Gitelson, 
1992; Rundquist et al., 1996; Zimmerman, 2003; Alberotanza et al., 2006; Thorhaug et 
al., 2007). Most of the work employed data between 400 nm and 800 nm.   
Unfortunately, only limited work was done for defining a procedure to map eelgrass and 
macroalgae using airborne or satellite imagery (Alberotanza et al., 2006). 
 
Knowledge of light scattering by plant canopies is crucial for remote sensing 
quantification of vegetation abundance and distribution, as well as for the development 
of inversion techniques to infer plant chemical composition, which is important for 
ecosystem-scale estimates of plant growth and biogeochemical flux (Jacquemoud et al. 
1996; LaCapra et al.1996; Broge and Leblanc 2000). 



 15

 
Pigments, such as chlorophylls, carotenoids, and phycobilins are considered as the 
vegetation substances responsible for the absorption of light. Studies on submerged 
vegetation observed similar spectral characteristics. These characteristics as a function 
of wavelength are commonly summarized as follows: 

 
• 0.400 to 0.500 µm - Low reflectivity due to the absorption of blue light (maximum 

absorption at about 440 nm). 

• 0.550 to 0.570 µm - Maximum green reflectivity. 

• 0.660 to 0.690 µm - Low reflectivity due to red light absorption (maximum 
absorption between 670 and 680 nm). 

• 0.755 to 0.765 µm - Low reflectivity in the near infrared during pigmentation 
phase. An increasing of reflectivity occurs during blooming periods and in 
emerged vegetation conditions. 

 
Chlorophyll-a is also a predominant pigment in benthic macroalgae and similar 

absorption peaks are noticed at wavelength of 440, 675, 695 nm. Other major pigments 
are phycoerythrin found in red macroalgae (absorption peak at 565 nm), phycocyanin 
found in red and blue-green algae (absorption peak at 620 nm), fucoxanthin (absorption 
peak at 470 nm) (Wezermak et al., 1976). Examples of spectra of eelgrass and 
macroalgae are presented in Figures 5.4 and 5.5.  
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4 A) Absorption spectra of 
clean turtlegrass and eelgrass 
leaves. Leaf absorption coefficients 
(aL, left vertical axis) were 
expressed m-1 of leaf thickness. 
Optical densities, or absorbances 
(DL), normalized to the thickness of 
a single leaf, were scaled on the 
right vertical axis. (B) Reflectance 
spectra of clean turtlegrass and 
eelgrass leaves. Solid lines 
indicate mean spectra; dotted lines 
indicate standard errors of the 
means (from Zimmerman, 2003). 
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Figure 5.5 Radiance spectra of submersed vegetation and macroalgae (Alberotanza et 

al., 2006). 
 
 
 
 

6 Project Goals and Objectives 
 
The project goals were: 

 
a) Configure a procedure for identifying eelgrass and macroalgae based on AISA 

hyperspectral remote sensing imagery; 
 
b) Map eelgrass and macroalgae beds using data collected from 2008 NHDES 

hyperspectral survey; and 
 

c) Provide a recommendation for planning future hyperspectral surveys for eelgrass 
mapping based on the study experience. 
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7 Methods 

7.1. Introduction 
The hyperspectral imagery collected information for the Great Bay estuarine system of 
NH and Maine. This area encompassed the Great Bay, Little Bay, Piscataqua River and 
some or all of the tidal portions of the Winnicut, Squamscott, Lamprey, Oyster, Bellamy, 
Cocheco and Salmon Falls Rivers. Approximately 40 square kilometers of estuarine 
waters were part of the study area.  The initial plans were to collect imagery during two 
differing flow regimes for the estuarine system during low-flow summer and higher-flow 
fall conditions.  The goal was also to collect data at either high or low tide when temporal 
consistency would be maximal.   
 
The over-flights were conducted by SpecTIR (www.SpecTIR.com). SpecTIR proposed 
an airborne data collection with the VNIR sensor with a spatial resolution of 2.5 meters 
for the area of interest, and a nominal spectral resolution of 10 nm or 64 spectral 
channels from approximately 430 nm to 1000 nm (Table 7.1).  Navigation was performed 
with high speed airborne DGPS integrated with a laser ring gyro and deliverables were 
calibrated radiance and geographic lookup tables with navigation. Overlap of 30% was 
planned between two adjacent lines.  SpecTIR also recommended that over-flights 
should coincide with solar zenith angles less than 60º to minimize sun-glint 
contamination and have minimal cloud cover. The flight lines are presented in Figure 7.1 
and flight log details are provided in Appendix 11.1.   
 
 

Table 7.1 Acquisition parameters for the hyperspectral data collection 
 

Sensor System:  ProSpecTIR-V  (AISA eagle) 
Spectral Range:  400 nm - 1000 nm  
Spectral Resolution:  10 nm  
Number of Bands:  64  
Ground Spatial Distance 
(GSD):  

2.5 m  

 
The next sub-sections will discuss the steps required for processing the collected 
hyperspectral dataset.  An image-processing software (ENVI) was used for processing 
and analyzing the geospatial imagery dataset.  The produced class files (eelgrass and 
macroalgae) were exported into ArcMap shapefile format.  Unfortunately, no spectral 
ground truth measurements of eelgrass or macroalgae were taken as part of this study.   
Decision rules for processing were based on spectra collection from pixels identified of 
different features in the study site. 
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Figure 7.1 Schematic flight-line plan of the Great Bay Estuary hyperspectral survey. The 
start point and end point are shown in WGS-84 geographic coordinates and the altitude 

in feet (SpecTIR, 2007). 
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7.2. Preprocessing 
7.2.1. Radiance processing 

 
Radiometric calibration by SpecTIR was achieved through the use of a Labsphere USS-
2000-V uniform source. This 20-inch diameter integrating sphere was equipped with 
three internal 45 watt and one 75 watt externally mounted halogen light sources. Each 
lamp was powered by separate DC regulated constant current power supplies and the 
addition of a variable attenuator provided even more precise control of light levels. 
Luminance output was variable from 0 to 4000 foot-lamberts and measured uniformity 
was > 98% over the entire 8-inch exit port. This sphere carried a NIST traceable spectral 
radiance calibration from 400 nm to 2500 nm at a sampling interval of 10 nm. The 
resultant calibration allowed SpecTIR to provide data that was theoretically within +/- 5% 
of absolute radiance.  However, problems were associated with the calibration at blue 
wavelengths (see Appendix 11.2). 
 
Wavelength calibration was generated and monitored through a characterized Mercury-
Argon (HgAr) emission lamp source. HgAr lamps are a common spectral calibration 
source for spectrometers and provide several fine distinct emission lines in both the 
VNIR and SWIR spectral domain allowing for accurate wavelength mapping. During 
processing, flight data QA/QC procedures relied on well documented atmospheric 
features such as the Oxygen fraunhaufer line at 760 nm to ensure that accurate 
wavelength mapping was maintained. 
 
Dark current measurements were included at the end of each flight line. The first step of 
processing was to remove the dark current “signal” from the imagery. The calibration 
gain file was then applied to convert the raw data values to radiance units.  
 
 

7.2.2. Atmospheric correction 
 
The radiances provided by SpecTIR were those collected at the sensor which included 
both surface and atmospheric components. The TAFKAA atmospheric correction 
package was incorporated into the ENVI processing software and used to remove the 
atmospheric component and calculate the surface remote sensing reflectance (Gao et 
al. 2000; Montes et al. 2001). A spatially consistent atmosphere for the times of data 
collection was assumed as the wavelength range did not include SWIR channels 
necessary for the aerosol determination mode in turbid waters.   
 
For the August 29th data collection the ozone content was set to 289 atm-cm (289 DU, 
data from NASA Ozone processing team, TOMS).  Water vapor content (2.3 cm) and 
aerosol properties (aerosol optical depth of 0.17) were obtained from the Aeronet-
processed Thompson farm Cimel Sun photometer operated by the UNH AIRMAP group.  
Other atmospheric gases were left as default including NO2 which has a column value of 
5 x 1015 molecules. 
 
Results from the atmospheric correction and other evaluation procedures for the 
hyperspectral aerial information indicated that there were problems with data in the blue 
wavelengths. This was ultimately confirmed by the contractor so only information with 
wavelengths of 555 nm or above were suitable for the further analysis (further details of 
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the atmospheric correction and quality evaluation procedures are available in Appendix 
11.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2 Spectral analysis of the pixel-value distribution in Great Bay, NH as a 
function of wavelength including the mean, minimum (min), maximum (max), and the 
standard deviation (+/- stdev) values. The three ROIs presented are: 1) Deep water (no 
bottom contribution), 2) eelgrass bed, and 3) exposed bottom. 
 

7.3. End-member collection 
 
A spectral signature collected from a hyperspectral dataset that represents a spectrally 
“pure” feature (e.g, vegetation, soil, etc.) is defined as a spectral end-member. Regions 
of Interest (ROI) containing similar underwater features were identified.  Spectral 
analysis of the value distribution as a function wavelength was conducted for each ROI.  
Figure 7.2 shows the pixel distribution values of three ROIs: 1) Deep water (no bottom 
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contribution), 2) eelgrass bed, and 3) exposed bottom. It seems that all the exposed 
bottom regions contain chlorophyll pigments. This conclusion is based on the spectral 
characteristics produced from the analysis. The end-members collected were analyzed 
and aided in construction of decision rule for eelgrass/macroalgae classification. In the 
following sections only the mean value of the end-member (ROI spectra) and presented. 

 

7.4.  Submerged area isolation 
 
The hyperspectral (HS) imagery contained information not only on the waters of the 
Great Bay Estuary but also of the surrounding watershed.  The first task in processing 
the HS imagery was therefore masking out the land pixels.  This procedure is required in 
order to avoid similar features in the surrounding watershed (such as other water bodies 
or similar sand) to be classified in the next processing steps. The unsupervised 
classification was applied to each line (20-25 classes with a change threshold of 3.5%). 
The resulting output is a hyperspectral image that contains null values in all areas 
surrounding Great Bay Estuary (example in Figure 7.3)  
 

A 

B 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.3 Hyperspectral imagery (line 0829-0545) of Herods Cove (Northeast 
Great Bay) before (A) and after (B) masking out the land pixels of the 
surrounding watershed areas. 
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7.5.  Vegetation isolation 
 
Four ROIs were used for the vegetation isolation (Figure 7.4.): macroalgae, eelgrass, 
exposed bottom, and deep water. The maximum separation between the vegetation 
(macroalgae and eelgrass) and the non-vegetation areas was found using the 0.670 µm 
and the 0.717 µm channels. This was expected from areas containing the chlorophyll 
pigment that is characterized with a sharp elevation in reflectance value from 0.660 µm 
to 0.690 µm that peaks around 0.710 µm to 0.730 µm (section 5.3.). These 
characteristics are also found in the exposed-bottom ROI, where the value range 
between the 0.670 µm and the 0.717 µm channels is smaller than the macroalgae and 
eelgrass ROIs. This indicates that the exposed bottom is composed not only from non-
vegetation materials, but also contains some chlorophyll. It is important to note that the 
chlorophyll trace in exposed-bottom ROI might be suspended in the water column and 
not resting on the bottom. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.4 (A) ROIs overlaid on the hyperspectral imagery (line 0829-0545): 
macroalgae (yellow), eelgrass (green), exposed bottom (brown), and deep water (cyan), 
and (B) the produced end-members of each ROI, respectively. 
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The algorithm type used for the vegetation isolation was a normalized difference 
vegetation index (NDVI): 
 

_
(717) (670)
(717) (670)

rs rs
biota isolation

rs rs

R RNDVI
R R

−
=

+
 

 
where, Rrs is the remote sensing reflectance and the channel values are in nm. 
 
Figure 7.5 shows the NDVI-algorithm results. The bright areas in figure 7.5.A represent 
higher concentration of chlorophyll pigment. Two problems were noticed from the results 
from the vegetation isolation. The first issue was that there is wetland vegetation is in the 
data set. The contribution wetland vegetation is noticed in the NDVI-result image as 
bright regions along the edges of the masked image. The second issue was that water 
was significant enough to cause attenuation on the bottom reflectance. This issue can 
be noticed in the bright areas gradually becoming darker towards the channel (figure 
7.5.A) and also from the decreasing horizontal-value profile toward the channel (Figure 
7.5.B). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.5 Vegetation isolation results: A) result image using the NDVI algorithm; B) 
Horizontal-value profile from the NDVI image. Brighter areas represent higher 
concentration of chlorophyll pigment. 



 24

7.6.  Wetland isolation 
 
Additional end-members representing the wetland vegetation (such as, Spartina 
alterniflora) were collected (Figure 7.6A). A comparison between the wetland vegetation 
and the eelgrass/macroalgae beds showed a difference in spectra between 0.717 µm 
and 0.755 µm. Two methods were used for separation: NDVI and Spectral Angle 
Mapping (SAM). Both methods showed similar results. The best results achieved using 
NDVI with the 0.717 µm and 0.726 µm (Figure 7.6B). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.6 Wetland vegetation masking: A) ROIs overlaid on the hyperspectral 
imagery (line 0829-0545): macroalgae (yellow), eelgrass (green), and wetland 
vegetation (red) and the produced end-members of each ROI, respectively; B) result 
image using the NDVI algorithm (without vegetation removal). The white areas in the 
result image represent the wetland vegetation areas. 

Wetland 
vegetation Eelgrass

Macroalgae
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7.7. Eelgrass and macroalgae classification 
 
Due to the lack of spectral measurement of eelgrass and macroalgae at the time of the 
survey, it was decided to focus on identifying and classifying the eelgrass and 
macroalgae beds. The test site used was eastern Great Bay (line 0829-0545) and the 
results were checked on sites identified in western Great Bay (line 0829-0604) using 
expert opinion.  End-members were collected from eelgrass and macroalgae ROIs at 
different depth (Figure 7.7). A comparison between the two groups showed a difference 
in two spectra regions: 1) 0.574 µm to 0.630 µm, and 2) 0.717 µm to 0.755 µm.  
 
The spectral difference is more noticeable in the 0.717 µm to 0.755 µm range between 
eelgrass and macroalgae in shallow waters (when the eelgrass canopy is shallower than 
0.1 m from the surface). This can be noticed in the end-member comparison in Figure 
7.8. Unfortunately, due to the lack of water clarity in the region, the spectra received 
from eelgrass beds in greater depths (eelgrass canopy is deeper than 0.1 m from the 
surface) were very similar to the macroalgae beds (figure 7.9). 
 
 
The spectral difference in the 0.574 µm to 0.630 µm range is more subtle, but it is still 
noticed at greater water depths. Depth correction is required in order to distinguish 
between macroalgae and eelgrass in depths greater than 0.1 m. This depth correction 
was done manually due to a lack of an accurate digital elevation model (DEM) in Great 
Bay (Appendix 11.3). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.7 Eelgrass and macroalgae ROIs overlaid on the hyperspectral imagery 
(line 0829-0545).  
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Figure 7.8 Plot of the end-members produced from eelgrass and macroalgae ROIs in 
figure 7.7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.9 Plot of the eelgrass end-member as a function of water depth. Eelgrass beds 
that have canopy at water depth of 0.2 m and deeper will produce a reflectance spectra 
similar to macroalgae in the 0.717 µm to 0.755 µm wavelength range (Figure 7.8.). 
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7.8.  Georeferencing 

The resulting class files are in image space (no attitude corrections or referencing to 
a known datum). Input geographic lookup tables (GLTs) that were provided by 
SpecTIR were used to georeference the class files to WGS-84 datum with a UTM 
projection (Zone 19N). The georeferenced images have null values around their 
edges. This is required for merging the class files together.  

After georeferencing of the class files, all 8 individual class files (one class file per 
line) were merged into a single file. Aircraft attitude (yaw, pitch, and roll) can be 
noticed at the edges of the georeferenced image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.10 Georeferencing line 0829-0545. The line is projected from image space 
(X,Y) into a known datum (latitude and longitude or easting and northing).  
 

Image space Georeferenced to a datum 
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7.9.  Data export (ArcMap shapefile format) 

The ENVI class files were exported to an ArcMap-polygon shapefile, which 
shapefiles were subset into the NHDES estuary assessment zones (Figure 7.11). All 
files were georeferenced in WGS-84 UTM (zone 19) and New Hampshire State 
Plane NAD 1983 (FIPS 2800). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.11 Overview map of Great Bay Estuary hyperspectral project 2008 with the 
NHDES estuary assessment zones color coded and the eelgrass and macoalgae beds. 
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8 Results and Discussion 

8.1. Eelgrass and macroalgae mapping procedure based on the AISA 
hyperspectral remote sensing imagery 

 
The procedure developed for macroalgae and eelgrass mapping based on AISA 
hyperspectral imagery from the 2008 survey (Figure 8.1) is as follows: 
 

1) The hyperspectral dataset at the reflectance level should undergo a quality 
assurance (QA) before processing. The QA will include inspection of sprectra 
received from known features in hyperspectral dataset to spectra from field 
measurements or a spectral library.  

 
2) In case the QA results from the reflectance level are not good, an 

atmospheric correction processing should be applied to the dataset at the 
radiance level (e.g., TAFKAA). This is assuming the dataset at the radiance 
level is good. 

 
3) The water body is isolated from the surrounding areas. This is done by 

applying unsupervised classification on the dataset and selecting the classes 
containing the water body. The selected classes are then merged and are 
used to mask the surrounding areas. 

 
4) The vegetation is separated from the exposed bottom and the deep water 

using the 0.670 µm and 0.717 µm channels. 
 

5) Wetland and land vegetation that is found at the edges of the isolated 
vegetation dataset is separated using the 0.717 µm and 0.726 µm channels. 

 
6) The final stage classifies the remaining pixels to macroalgae and eelgrass 

using the 0.574 µm to 0.630 µm channels, and with the input of expert 
opinion. Depth correction is required for a applying successful classification 
algorithm. 

 
7) The resulting class files are georeferenced using geographic lookup tables 

(GLTs). 
 

8) The georeferenced class files are exported into ArcMap polygon shapefiles 
and are subset to the NHDES estuary zones. 

 
 

It is important to note here, that this procedure is not a robust automatic procedure and it 
requires the operator’s interaction and guidance of experts on macroalgae and eelgrass 
in the field. Also, this procedure is adequate to the specific data set of this study and 
more work with the guidance of experts is required for increased accuracy in image 
detection. 
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Figure 8.1 Flow chart for eelgrass and macroalgae mapping using the AISA 
hyperspectral dataset.  

 

8.2. Eelgrass and macroalgae maps using data collected from 2008 
NHDES hyperspectral survey 

 

8.2.1. NHDES hyperspectral survey 2008 
 
Two hyperspectral missions were flown with replicate 8 lines of data collection 
oriented approximately north-south.  On August 29 the center time for the central 
line over Great Bay was 08:57 local time (12:57 GMT) and on October 17 the 
center time for the same line was 14:11 local time (18:11 GMT).  Conditions on 
August 29 were near perfect with nearly cloud free skies and a low tide at the 
Squamscott Railroad Bridge predicted for 08:49.  The plan to coincide the 
second mission in October with the time of high tide was complicated by 
availability of the aircraft and sensor.  A compromise time for a low tide of 12:03 
on October 17 was chosen.  Unfortunately heavily overcast conditions at the 
departure airport delayed the hyperspectral flight approximately two hours.  The 
weather conditions were not quite as perfect as the previous collection period 
with some being clouds apparent. 
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8.2.2. Data quality and atmospheric correction 
 
A variety of techniques were used to assess the quality of the remotely sensed 
data.  A Tafkaa atmospheric correction and other methods that are detailed in 
Appendix 11.2 concluded that there were large uncertainties associated with 
wavelengths less than approximately 0.550 µm. Recent communication from 
SpecTIR, the contractor for the aerial imagery, indicated concerns with the 
radiometric calibration at these blue wavelengths. Mapping of eelgrass and 
macroalgae is possible above 0.550 µm, but more advanced classification, such 
as macroalgae type, requires information below 0.550 µm (Haxo and Blinks 
1950).  As such, we were unable to classify the macroalgae type. Given the time 
constraints associated with funding available for the work, only the overflight on 
August 29, 2007 was able to be analyzed. 

 

8.2.3. Eelgrass and macroalgae distribution as a function of NHDES 
Estuary assessment zones 

The eelgrass and macroalgae distribution results from the August 29, 2007 
survey are summarized in Table 8.1.  Macroalgae digital signatures on the 
hyperspectral image were based on interpretation for Great Bay only; additional 
macroalgae occurring in other parts of the GBE were not specifically assessed 
and the values in Table 8.1 are an underestimate of total macroalgal abundance 
in the estuary.  The small eelgrass areas in Little Bay and the Piscataqua River in 
2007 were not detected in the HS imagery. 
 

Table 8.1 Eelgrass and macroalgae distribution as a function of NHDES Estuary 
assessment zones 

Zone Macroalgae
(Acres) 

Macroalgae
(M²) 

Eelgrass 
(Acres) 

Eelgrass 
(M²) 

Great Bay (GB) 207.75 765,578 1158.94 4,690,081
Little Bay (LB) 0.67 2700 0 0
Squamscott River (SQM) 0.76 3050 0 0
Winnicut River (WNC) 0 0 0 0
Bellamy River (BLM) 17.38 70,324 0 0
Chocheco River (CCH) 37.78 156,949 0 0
Lamprey River (LMP) 6.31 25,540 0 0
Oyster River (OYS) 13.31 53,894 0 0
Upper Pistaqua River (UPR) 7.66 31,008 0 0
Lower Pistaqua River (LPR) 8.90 36,035 0 0
Salmon Falls River (SFR) 60.71 245,682 0 0
Sturgeon Creek (Sturgeon) 0.59 2400 0 0
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Expert guidance (Drs. Fred Short and Art Mathieson) helped to outline the variety 
of macroalgae, wetland vegetation and eelgrass distribution and identify locations 
where vegetation patches are not mixed and contain only one type of vegetation. 
The resulting mapping product is presented in Figure 8.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.2 Eelgrass (green) and macroalgae (yellow) distribution overlaid on the survey 
project mosaic.  
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8.3. Recommendations 
 
Recommendation for planning future hyperspectral surveys are provided in 
section 10. 
 
 

9 Conclusions 
 
A final version of the process was configured after several interactions with eelgrass and 
macroalgae experts. Additional end-members were identified in the hyperspectral 
dataset (such as wetland vegetation). Also, the expert guidance aided in the algorithm 
threshold selection according to the resulting spatial distribution of the class. The final 
results of the process showed good results that correlate with independent manual 
analysis of the experts for eelgrass; however, macroalgae in the Great Bay was not fully 
detected with the final process and additional guidance is needed to capture the 
complete macroalgal groups.   
 
Without reference spectra of eelgrass and macroalgae and a detailed DEM of the 
estuary, it is hard to resolve between eelgrass and macroalgae in the inferred vegetation 
areas. This is mainly to the water attenuation that affects the reflectance as a function of 
depth. Manual segmentation is able to provide a partial solution, where the depth 
location is subjective to the operator’s decision.   
 
 

10 Recommendations (for future work or management strategies) 
 
This work together with associated work on the spatial distributions of eelgrass and 
macroalgae in the Great Bay Estuary has highlighted the potential of HS aerial imagery 
for management of coastal waters.   However, eelgrass and macroalgae mapping was 
limited due to the complexities associated with the inclusion of remotely detectable 
bottom reflection underwater. Three major issues that can improve the classification 
results and allow more advance applications, such as identification of macroalgae types 
are: conducting more ground truth measurement at the time of the HS survey, acquiring 
current DEM model of GBE, and examining additional HS datasets with expert guidance.  
As yet, it is not possible to fully distinguish all eelgrass and macroalgal beds using HS 
imagery and mixed areas of the two are problematic.  Also, without the DEM model the 
deep edge of the eelgrass beds is not always clearly delineated.  Further work should 
include: 
 
Ground truth measurements-  Field measurements of the reflectance spectra are 
highly valuable for QA of the dataset, applying water depth correction to the dataset, and 
constructing decision rules for classification. The field measurements should be 
conducted at the time of the HS survey (up to a few days before or after the survey). A 
comparison of the field measurements to the HS dataset will provide information if a 
correction is required. Also, the spectral change as a function of water depth can be 
investigated. A comparison between the different features (e.g., eelgrass, different types 
of macroalgae, wetland vegetation, and exposed bottom) will allow identifying spectral 
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characteristics of the different features for producing more accurate decision rules for 
classification in the future. 
 
Digital elevation model of the Great Bay Estuary- The existing elevation model of 
Great Bay Estuary does not contain accurate and high resolution bathymetry. A more 
updated elevation model that also covers the shallow areas, especially in Great Bay, is 
required. The bathymetry will allow correcting the HS dataset attenuation at different 
water depths. This will provide classification products that can be more accurate (spatial 
coverage in deeper water depths).  
 
Examination of additional HS datasets with expert guidance- It is recommended to 
examine additional HS datasets on the same survey area and also to investigate sites 
near the mouth of the GBE (Portsmouth Harbor). Environmental conditions may vary in 
location and at different seasons that may affect the procedure configuration. It is also 
recommended that this work should be done with expert guidance on vegetational types 
and possible scenarios for change in the environmental conditions. 
 
 
Uncertainties associated with water depth and the inversion of the HS imagery could be 
further decreased if concurrent HS imagery and LIDAR information can be fused 
together.  Such data has already been collected for the mouth of the Great Bay Estuary / 
Portsmouth Harbor where additional eelgrass beds exist.  This data could provide 
valuable information of future techniques for remote sensing of water quality and benthic 
habitat characteristics. 
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11 Appendixes 

11.1. Flight log details 
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11.2. Quality evaluation of the hyperspectral data set 

11.2.1. Introduction 

A quality assurance (QA) of the hyperspectral (ASIA) data was done in order to evaluate 
the AISA dataset. Good QA results would allow processing the data “as is” and bad QA 
results would require pre-processing procedures or considering a different approach to 
process the data (instead of processing the data in the reflectance level). The 
reflectance data inside the water body was problematic for this specific study. There was 
no spectral information above 900 nm (i.e. the values were the same for all channels 
between 902 nm and 951 nm, Figure 10.1). In addition, the spectral signatures do not 
correlate with those of characteristic of estuarine environments available from an 
historical spectral library or measurements using a field spectrometer.   
 

 
Figure 11.1 Two spectral-signatures bottom two panels from a reflectance-
level image with image details in top panel (0829-0545 is the flight line). The 
spectral signatures on the bottom left (red box in the overview image) is a 
sandy exposed bottom and spectral signatures on the bottom right (green box 
in the overview image) is a vegetated bottom 
{red box is in the wrong place} 
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Following these results, an evaluation was conducted on the imagery at a radiance level. 
The evaluation was conducted in two independent methods: simulated atmospheric 
model independent from the dataset (MODO) and simulated atmospheric model based 
on the hyperspectral dataset (TAFKAA). Oxygen mapping test was also conducted on 
the dataset.  

11.2.2. MODO simulation 
The MODO (MODTRAN4 Interface) simulation software was used in this study to 
simulate spectral signatures at a radiance level. The inputs provided are the 
environmental conditions (sample location, time, and atmospheric condition) and an end-
member of interest. The goal of the MODO processing was to produce an independent 
signature dataset that could indicate the quality of the AISA data. 
 
The methodology used in the MODO simulation was: field measurement of reference 
targets, simulate synthetic-spectral signatures from the targets collected in the field 
measurements, and compare between the synthetic-spectral signatures and the 
signatures from the radiance datasets. These steps are elaborated as follows: 
 
1. Spectral signatures (reflectance) of different targets were collected. The signatures 

were mainly, sand, gravel, concrete, old (fair colored) asphalt, and new (dark) 
asphalt (Table 11.2). All signatures were collected around Great Bay (4.3.2008). 
Asphalt and concrete target are can be considered as ideal QA targets, since their 
spectral signature does not vary much with time (over a period of months) and can 
be considered stable. 

 
Table 11.2 Summary table of the spectral signatures collected for the study 
Target number Location Target measured 
Target 1 Dover DMV Parking Lot Asphalt 
Target 2 Newick’s Parking Lot Asphalt 

Sand 
Concrete 

Target 3 Hilton Park Gravel 
Asphalt 

Target 4  Northwest Scammel Bridge Asphalt 
Target 5 Durham’s New Landing Sand 
Target 6 Durham’s Old Landing Sand 
Target 7 Adam’s Point Asphalt 
Target 8 New Market’s Municipal Parking Lot Gravel 

Asphalt 
 
2. Spectral signatures (reflectance) of the different targets were imported into the 

software.  
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Figure 11.2  
Spectral plot 
reflectance 
(value of 1 is 
100 %) as a 
function of 
wavelength of 
the collected 
field 
measurement 
signatures and 
of the synthetic 
spectrum (white 
reference) 

 
3. The sun geometry was calculated for the time of the HS survey (morning time) and 

was also calculated at evening for observing spectral changes. 
 
4. The atmospheric conditions at the time of the survey were simulated. 

Figure 11.3 Spectral 
plot of the atmosphere 
in the transmittance 
level (transmittance 
value [%] as a 
function of wavelength 
[nm]) at the time of 
the survey. The black 
line in the plot 
represents the 
atmospheric 
transmittance.   

 
 
5. The sensor’s radiation as a function of wavelength was simulated based on the 

atmospheric conditions. The resulting product was a radiance plot (radiance value 
[W/m2sr·nm] as a function of wavelength [nm]) that can translate the field 
measurements to radiance values at the time of the survey. 
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Figure 11.4 The 
radiance plot (radiance 
value [W/m2sr·nm] as a 
function of wavelength 
[nm]). The black line 
represents the total 
radiance. 

 
6. Radiance values for the different targets as a function of wavelength were simulated 

for morning time at 8:30 local time (blue spectrum) and for the afternoon time at 
15:30 local time (red spectrum). 

Figure 11.5 Simulated-spectral signatures in radiance [W/m2sr·nm] of two targets measured 
in the field: new asphalt (left plot) and concrete (right plot). The blue line and the red line are 
the spectral signatures in radiance level for a morning survey (8:30 local time) and an 
afternoon survey, respectively. 
 
7. The most prominent results were observed in the comparison of asphalt where a 

gain value in the blue to green-blue (400 nm to 550 nm) is noticed. The spectral 
signitured were compared in the radiance level and were also compared after a 
continuum removal normalization of the radiance values.  
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A  

B

Figure 11.6 Simulated-spectral signatures in radiance [W/m2sr·nm] of two targets measured 
in the field: new asphalt (left plot) and concrete (right plot). The blue line and the red line are 
the spectral signatures in radiance level for a morning survey (8:30 local time) and an 
afternoon survey, respectively. 
 
 
The results from the MODO simulation showed a good correlation between the spectral 
signatures of targets sampled from the AISA image and the field measurements in the 
570 nm - 800 nm region. The correlation is both on the spectral values and the location 
of various spectral features along the signature. The correlation of the two datasets in 
the 400 nm – 550 nm region did not show a good correlation. A gain artifact was noticed 
that might be caused due to a problem in the band configuration or the calibration files. 
Also, some spectral features varied between the two data sets. This might be due to a 
spectral re-sampling.  
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11.2.3. TAFKAA Atmospheric Correction of SPEC-TIR 
AISA/Eagle over-flight 08/29/2007 

 
The example is for a smaller subset 
of the main over-flight line that 
passed overhead of the buoy in 
Great Bay, NH. The calculated 
atmospheric correction corrected 
remote sensing reflectances from 
the HS over-flight (white and blue 
lines) were compared to those 
calculated at the buoy with in-situ 
sensors with hyperspectral sensors 
(HyperOCR, Satlantic Inc).  These 
included sensors on the buoy 
(redline on Figure 11.7, surface Es 
as well as an Lu and Ed pair at ~1m) 
as well as a submersible profiling 
radiometer (Hyperpro-II, green line). 
 
The atmospheric correction was 
performed with Tafkaa – 6S with 
fixed values for atmospheric 
components over the whole scene.  
Tafkaa input files are provided 
below.  Data sources for these 
values were: Column ozone (289 
DU) from NASA Ozone processing 
team (TOMS).  Water vapor (2.3 
cm) and aerosol properties (aerosol 
optical thickness was 0.17) were 
from the Aeronet processed 
Thompson farm Cimel Sun 
photometer. Other atmospheric 
gasses were left as default including 
the NO2 which has a column value 
of 5e15 molecules.   
 
Results:  There appears to be good 
agreement with the spectra above ~ 
0.55 microns (550 nm) but below 
this the HS imagery reflectances 
(and water leaving radiances) 
diverge significantly.  Three possible 
causes for this disagreement at 
lower wavelengths include: 

9) Overcorrection for aerosols,  
10) High NO2 concentrations 

with its associated increase 

Figure 11.7 Remote sensing reflectance (Rrs 
* 10000) with wavelength.  Tafkaa retrieved 
values (white line) and in-water 
measurements (red – buoy, green – profiling 
radiometer).  The blue line is a nearby pixel. 
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in absorption at wavelengths below 600 nm (high NO2 is associated with 
atmospheric pollution), or 

11) Problems associated with instrument performance / calibration issues at these 
blue wavelengths. 

 
Three additional Tafkaa runs were performed to assess the possible contribution of the 
first aerosol overcorrection and NO2 pollution:   
1) For aerosol overcorrection the aerosol optical depth was set to zero such that no 
aerosol correction would be performed (Figure 11.8A). 2) For NO2 pollution the 
background concentration was increased by a factor of 90.  NOy data from the UNH 
AIRMAP facility at Thompson Farm indicated that there was a potential pollution event at 
the time (Figure 11.8B). 3) To assess the combined potential impact of the aerosol over 
correction and NO2 pollution the aerosol optical depth was set to zero and NO2 
increased by a factor of 90 (Figure 11.8C).  For all three additional atmospheric 
correction scenarios negative remote sensing reflectances were retrieved. 
 

A 

 

B C 

Figure 11.8 Remote sensing reflectances retrieved from three atmospheric correction 
scenarios.  A) No aerosol correction, B) increased NO2 by a factor of 90, and C) a combination 
of the other two. 
 

11.2.4. Oxygen mapping 
Oxygen (O2) is a well mixed gas in the atmosphere. The oxygen absorption is in 765 nm 
and can be used as a good indicator for several radiometric calibration issues. A shift in 
location between the MODO-simulated oxygen absorption and the hyperspectral dataset 
would indicate if there is a problem with the hyperspectral data. Results from the AISA 
dataset show that the there was a good match between the two absorption locations.  
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Figure 11.9 Spectral comparison of an 
oxygenabsorption (Adam’s Point) after 
a continuum removal normalization of 
the radiance values.  The blue and red 
lines represent the AISA image and the 
field measurement simulated by 
MODO, respectively.  In addition to the 
oxygen absorption (765 nm ) the water 
(H2O) absorption (726 nm and 824 nm) 
is also noticed. 
 

 

11.2.5. QA summary 
The evaluation of the hyperspectral dataset was conducted by two independent 
methods: simulated atmospheric model independent from the dataset (MODO) and 
simulated atmospheric model based on the hyperspectral dataset (TAFKAA). Oxygen 
mapping test was also conducted on the dataset. Both methods showed AISA spectra 
above 0.55 microns (550 nm). The AISA imagery reflectance below 0.55 microns 
diverge significantly from both the comparison methods.   
 
These results were indicative of problems associated with instrumentation and not the 
atmospheric correction at these blue wavelengths.  To verify the approach taken we 
consulted with Marcos Montes of the Naval Research Laboratory who is the research 
physicist responsible for the current development of the Tafkaa atmospheric correction 
software.  He agreed that this issue was probably an instrument/calibration/processing 
problem.  This conclusion was shared by Oliver Weatherbee of SpecTIR and appears to 
be due to problems associated with their calibration source for the instrument and it 
traceability to NIST.  SpecTIR are working to fix this problem but at the time of writing 
this report no solution was available. 
 
The approach taken in order to continue with the study was to re-process the radiance 
level dataset and convert it to a reflectance dataset using TAFKAA. The spectral 
information below 0.55 microns cannot be used. According to data provided, the 
processing and analysis for the study focused only upon the spectral range above 0.55 
microns. 
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11.3. Available digital elevation model (DEM) of Great Bay Estuary 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.10 NHDES (2008) available DEM 
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 Figure 11.10 USACE (1953) available DEM. 
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