382 research outputs found

    Functional programming with bananas, lenses, envelopes and barbed wire

    Get PDF
    We develop a calculus for lazy functional programming based on recursion operators associated with data type definitions. For these operators we derive various algebraic laws that are useful in deriving and manipulating programs. We shall show that all example functions in Bird and Wadler's Introduction to Functional Programming can be expressed using these operators

    Lazy Strong Normalization

    Get PDF
    AbstractAmong all the reduction strategies for the untyped λ-calculus, the so called lazy β-evaluation is of particular interest due to its large applicability to functional programming languages (e.g. Haskell [Bird, R., “Introduction to Functional Programming using Haskell,” Series in Computer Science (2nd edition), Prentice Hall, (1998)]). This strategy reduces only redexes not inside a lambda abstraction.The lazy strongly β- normalizing terms are the λ-terms that don't have infinite lazy β-reduction sequences.This paper presents a logical characterization of lazy strongly β-normalizing terms using intersection types. This characterization, besides being interesting by itself, allows an interesting connection between call-by-name and call-by-value λ-calculus.In fact, it turns out that the class of lazy strongly β-normalizing terms coincides with that of call-by-value potentially valuable terms. This last class is of particular interest since it is a key notion for characterizing solvability in the call-by-value setting

    C# 3.0 makes OCL redundant!

    Get PDF
    Other than its 'platform independence' the major advantages of OCL over traditional Object Oriented programming languages has been the declarative nature of the language, its powerful navigation facility via the iteration operations, and the availability of tuples as a first class concept. The recent offering from Microsoft of the "Orcas" version of Visual Studio with C# 3.0 and the Linq library provides functionality almost identical to that of OCL. This paper examines and evaluates the controversial thesis that, as a result of C# 3.0, OCL is essentially redundant, having been superseded by the incorporation of its advantageous features into a mainstream programming language

    Structural Induction Principles for Functional Programmers

    Full text link
    User defined recursive types are a fundamental feature of modern functional programming languages like Haskell, Clean, and the ML family of languages. Properties of programs defined by recursion on the structure of recursive types are generally proved by structural induction on the type. It is well known in the theorem proving community how to generate structural induction principles from data type declarations. These methods deserve to be better know in the functional programming community. Existing functional programming textbooks gloss over this material. And yet, if functional programmers do not know how to write down the structural induction principle for a new type - how are they supposed to reason about it? In this paper we describe an algorithm to generate structural induction principles from data type declarations. We also discuss how these methods are taught in the functional programming course at the University of Wyoming. A Haskell implementation of the algorithm is included in an appendix.Comment: In Proceedings TFPIE 2013, arXiv:1312.221

    Functional Baby Talk: Analysis of Code Fragments from Novice Haskell Programmers

    Get PDF
    What kinds of mistakes are made by novice Haskell developers, as they learn about functional programming? Is it possible to analyze these errors in order to improve the pedagogy of Haskell? In 2016, we delivered a massive open online course which featured an interactive code evaluation environment. We captured and analyzed 161K interactions from learners. We report typical novice developer behavior; for instance, the mean time spent on an interactive tutorial is around eight minutes. Although our environment was restricted, we gain some understanding of Haskell novice errors. Parenthesis mismatches, lexical scoping errors and do block misunderstandings are common. Finally, we make recommendations about how such beginner code evaluation environments might be enhanced

    Program transformation for functional circuit descriptions

    Get PDF
    We model sequential synchronous circuits on the logical level by signal-processing programs in an extended lambda calculus Lpor with letrec, constructors, case and parallel or (por) employing contextual equivalence. The model describes gates as (parallel) boolean operators, memory using a delay, which in turn is modeled as a shift of the list of signals, and permits also constructive cycles due to the parallel or. It opens the possibility of a large set of program transformations that correctly transform the expressions and thus the represented circuits and provides basic tools for equivalence testing and optimizing circuits. A further application is the correct manipulation by transformations of software components combined with circuits. The main part of our work are proof methods for correct transformations of expressions in the lambda calculus Lpor, and to propose the appropriate program transformations
    • …
    corecore