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Abstract. We model sequential synchronous circuits on the logical level
by signal-processing programs in an extended lambda calculus Lpor with
letrec, constructors, case and parallel or (por) employing contextual
equivalence. The model describes gates as (parallel) boolean operators,
memory using a delay, which in turn is modeled as a shift of the list
of signals, and permits also constructive cycles due to the parallel or.
It opens the possibility of a large set of program transformations that
correctly transform the expressions and thus the represented circuits and
provides basic tools for equivalence testing and optimizing circuits. A fur-
ther application is the correct manipulation by transformations of soft-
ware components combined with circuits. The main part of our work are
proof methods for correct transformations of expressions in the lambda
calculus Lpor, and to propose the appropriate program transformations.

1 Introduction

Sequential synchronous circuits can be modeled on the logical level by functional
programs in Haskell-style using the Lava-approach [BCSS98,CSS03,She05] where
wires are modelled as variables, signals as a stream of Boolean values, gates
as elementwise list-combining functions, memory by a delay operator, and the
circuit as a functional letrec-expression. Using this model, the issue of correctly
modifying a sequential circuit or detecting equality of two sequential circuits
can make use of the tool of program transformations of non-strict functional
programs.
There are lots of useful extensions. (i) As in the Lava-approach, one extension is
to have functional programs as circuit-generators; (ii) adding functions modeling
the behavior of sequential circuits as black boxes; (iii) adding functions that can
be interpreted as software-components in a circuit; (iv) extending the model to
cover also synchronous circuits with combinational cycles.



2 M. Schmidt-Schauß, D. Sabel

The Lava-system1 was developed to specify and manipulate hardware-
descriptions in a functional language, in fact it is a variant of Haskell. It is
designed to specify sequential circuits as programs. There are an interpreter and
further tools to manipulate the descriptions and test their functionality. The
Lava-system does not really exploit and investigate modifying the nets by pro-
gram transformations as a tool, since it emphasizes other aspects. There were lots
of conjectures on correctness of program transformations, but often the proofs
could not be provided. In a paper on the Hawk-system2, which aims at proces-
sor verification, the authors wrote: “ Engineers close to current processor design
teams inform us that designers purposefully forgo promising optimizations be-
cause they cannot guarantee the optimizations preserve correctness.”
Our work on extended call-by-need lambda-calculi with letrec, their equational
theories and program transformations where we adopt contextual preorder and
equivalence providing a maximal set of equations w.r.t. the observations (see
[SSSS05,SS06,SS03,SSS07a,SS07a]), match the formal needs. The calculi come
in different variants: a lambda-calculus with letrec; a lambda-calculus with letrec,
case and constructors which matches the model without combinational cycles if
the logical operators are strict; and a lambda-calculus Lpor with letrec, case, con-
structors and parallel or, which matches the model if combinational cycles are
allowed (see [SBT96,CP02]); and a lambda-calculus with letrec, case, construc-
tors, and an amb (or choice) (see [SSS07a,Mor98,KSS98]), which can be used
to encode parallel or and to derive equations in Lpor. It is easy to guess lots of
correct program transformations, however, it is an issue to rigorously prove their
correctness within each calculus, which is indispensable for their safe use. We ex-
plored several methods for proving an increasing set of program transformations
as correct, among them the basic ones [SSSS05,SSS07a]. Recently, we proved
that the unrestricted copy rule, (also called instantiation rule) is correct for call-
by-need calculi with letrec [SS06], also for a calculus with case and constructors
[SS07a] and as a further recent extension, also for Lpor, i.e., a letrec-calculus
with case, constructors and por [SS07b].
Among the circuit- and program transformations that can be justified by our ap-
proach are retiming, sharing introduction, partial evaluation, constant folding,
constant introduction and Boolean laws; this holds for all of the above men-
tioned variants of calculi, and hence for the corresponding hardware-software
combinations modeled in Lpor.
Future work is to investigate verification tools based on program transforma-
tions for the functional descriptions, to extend the formal methods to prove
correctness of more program transformations and to enhance the methods and
tools for proving equality of functional expressions. To switch between a por-
free lambda calculus (i.e. Haskell), and Lpor during transformation appears to
be inappropriate, since the corresponding semantics is different, and since in the
case that a proper asynchronous cycle is introduced using the por-free calculus
it is not correct to switch to a different semantics. So we propose to stick to the

1 Lava: see http://www.cs.chalmers.se/~koen/Lava/index.html
2 Hawk: see http://www.cse.ogi.edu/PacSoft/projects/Hawk
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Lpor-theory and transformations, even if there are no cycles. Modeling hardware
using lazy functional programming languages such as Haskell [Pey03] as done
in Lava, see also [BCSS98,CSS03,She05] opens the possibility after extending it
with por to combine hardware descriptions, abstract hardware descriptions and
software components, and to exploit the rich set of program transformations of
the call-by-need calculi Lpor to transform the hardware description, and also
the software part, perhaps also optimize them, where only correct transforma-
tions are used. This may enhance and extend the verification and transformation
methods based on Boolean algebra.

1.1 Overview

In section 2 we introduce the calculus Lpor and the equational theory based
on contextual equivalence. After proving correctness of the reductions involving
“parallel or”, we show how por can be implemented in an extended variant
of Haskell. In section 3 we present our encoding of hardware descriptions in
Lpor and motivate the introduction of parallel boolean operators on the basis
of an exemplary sequential circuit with a constructive cycle. In section 4 we
define program transformations for circuit descriptions and demonstrate their
usefulness by showing the equivalence of two synchronous circuits.

2 A Call-by-Need Calculus With Letrec, Case,
Constructors, and Parallel Or

We describe in detail a calculus that extends the fragment of Haskell used in Lava
by a parallel-or. The call-by-need calculus Lpor has as primitives binary appli-
cation, recursive let, por, lambda, seq, case and constructors, with a normal-
order reduction that defines evaluation to weak head normal forms. The calculus
Lpor is non-deterministic, where the non-deterministic primitive is weaker than
amb or choice, see also [SSSS04,MSC99] for non-deterministic calculi with case
and constructors.
We describe the syntax. There is an infinite set V of variables and a finite set
K = {c1, . . . , cn} of constructors with arities ar(ci). The 0-ary constructors True,
False, Nil and the binary constructor (:) for lists are among the constructors.
The constant Nil is not used in the further development. The syntax is as follows,
where E means expressions:

E ::= V | (E E) | λx.E | (letrec V1 = E1, . . . , Vn = En in E)
| (por E E) | (seq E E) | (ci E1 . . . Ear(ci))
| (case E ((c1 V1 . . . Var(c))→ E) . . . ((cn V1 . . . Var(cn))→ E))

The case-construct is assumed to have an alternative pattern (ci x1 . . . xar(ci))
for every constructor ci ∈ K, where the variables in a pattern have to be distinct.
The scoping rules are as usual, where letrec is recursive, and hence the scope
of x1 in (letrec x1 = s1, x2 = s2 in t) is the terms s1, s2 and t. The sequence
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(s t)M → (sS t)V

(letrec Env in t)T → (letrec Env in tS)V

(letrec x = s,Env in C[xS ]) → (letrec x = sS ,Env in C[xV ])
(letrec x = s, y = C[xS ],Env in r) → (letrec x = sS , y = C[xV ],Env in r)

if C[x] 6= x
(por s t)M → (por sS t)V (non-deterministically)
(por s t)M → (por s tS)V (non-deterministically)
(seq s t)M → (seq sS t)V

(case s alts)M → (case sS alts)V

Fig. 1. Unwinding using labels

of the bindings in the let-environment may be interchanged. We assume that
expressions satisfy the distinct variable assumption before reduction is applied,
which can be achieved by a renaming of bound variables.
We use labels indicating the normal order redex, where T means the top-term,
S means a subterm reduction, V means visited, and M matches S as well as T .
The shifting algorithm in figure 1 uses the rules exhaustively, where it fails, if
a loop is detected, which happens if a to-be-labelled position already is labeled
V , and otherwise it succeeds. The contexts where the hole will be labeled with
S are also called reduction contexts. In figure 2, a cv-expression is an expression
of the form (c x1 . . . xn) where c is a constructor and xi are variables. A value is
an abstraction or a constructor-expression (c t1 . . . tn). Normal-order reduction
rules are defined in figure 2, where we assume that the nondeterministic labeling
algorithm was used before. The normal-order reduction is non-deterministic due
to the label-shift, however, the result of a normal order reduction sequence is
deterministic under fairness assumptions for normal-order reductions.
A weak head normal form (WHNF) is value v or an expression
(letrec Env in v), where v is a value. A term s converges, iff s

∗−→ v for some
WHNF v by a normal order reduction, denoted as s⇓.

Remark 2.1. An evaluator for Lpor should ensure fairness when evaluating a por-
expression, i.e. no argument of por is always avoided during the unwinding when
finding the next redex; this can be reformulated as: in every fair normal-order
reduction, every normal-order redex will eventually be reduced or eliminated
by a normal-order reduction. Nevertheless, using the same argumentation as in
[SSS07a] the predicate ⇓ remains the same under fair evaluation.

Two terms s, t are related by contextual preorder: s ≤c t, iff ∀C : C[s]⇓ =⇒
C[t]⇓, and s, t are contextually equivalent, s ∼c t, iff s ≤c t and t ≤c s.
This contextual equivalence is w.r.t. may-convergence, which is no restriction,
since we will argue below that must-convergence is identical to may-convergence:
A term t must-converges: t⇓must , iff ∀t′ : t

∗−→ t′ =⇒ t′⇓. Our definition
of contextual equivalence is compatible with definitions using may- and must-
convergence as above, and also with may- and must-convergence using fair
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(lbeta) C[((λx.s)S r)] → C[(letrec x = r in s)]
(cp) (letrec x = vS in C[xV ]) → (letrec x = v in C[v])

where v is an abstraction, a variable or a cv-expression
(abs) (letrec x = (c t1 . . . tn)S ,Env in r) →

(letrec x1 = t1, . . . , xn = tn, x = (c x1 . . . xn),Env in r)
if (c t1 . . . tn) is not a cv-expression, where xi are fresh variables

(case) C[(case (c t1 . . . tn)S . . . ((c y1 . . . yn) → s) . . .)]
→ C[(letrec y1 = t1, . . . , yn = tn in s)]

(seq) C[(seq vS t)] → C[t] if v is a value
(porlT) C[(por TrueS t)V ] → C[True]
(porrT) C[(por s TrueS)] → C[True]
(porlF) (por FalseS s) → s
(porrF) (por t FalseS) → t
(llet-e) (letrec Env1, x = (letrec Env2 in s)S in t)

→ (letrec Env1,Env2, x = s in t)
(llet-in) (letrec Env1 in (letrec Env2 in s)S)

→ (letrec Env1,Env2 in s)
(lapp) C[((letrec Env in s)S t)] → C[((letrec Env in (s t))]
(lseq) C[(seq (letrec Env in s)S t)] → C[(letrec Env in (seq s t))]
(lporl) C[(por (letrec Env in s)S t)] → C[(letrec Env in (por s t))]
(lporr) C[(por s (letrec Env in t)S)] → C[(letrec Env in (por s t))]
(lcase) C[(case (letrec Env in t)S alts)] → C[(letrec Env in (case t alts))]

Fig. 2. Normal-order rules

normal-order reductions (for a similar discussion in another non-deterministic
calculus, see [SSS07a]). Note, however, that using strong must-convergence – i.e.
all normal order reduction sequences have to terminate with success – in the
definition would have the strange consequence that por True ⊥ is not equivalent
to True, whereas w.r.t. our definition por True ⊥ ∼c True holds.
There is a rich set of transformations for the calculus Lpor:
Partial evaluation: i.e. all reduction rules from figure 2 in any context ignoring the
S-labels can be used, including the por-rules. There are further transformation
rules in figure 3.
Proving correctness of the reduction rules as transformations can be done as e.g.
in [SSSS04] using diagrams and a context lemma. We are confident that this will
work out without problems. The context-lemma for Lpor states that it is sufficient
to take into account the class of reduction contexts for the proof of contextual
equivalence: (∀R : R[s]⇓ =⇒ R[t]⇓) =⇒ s ≤c t. Fortunately Lpor meets the
generic properties of [SSS07b] and hence the context lemma follows immediately
from the results in [SSS07b]. The correctness of (gc1), (gc2) can be proved using
the operational approach by diagrams as exemplified in [SSS07a]. The correctness
of (cpall1), (cpall2) follows from [SS07b], and the correctness of the por-rules is
proved in the next subsection. Correctness of common subexpression elimination
(csexel) follows by combining a reversed (cpall1) and (gc).
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(cpall1) (letrec x = s,Env in t) → (letrec x = s,Env [s/x] in t[s/x])
(cpall2) (letrec x = s,Env in t) → (letrec x = s[s/x],Env in t)
(gc1) (letrec Env in t) → t

if the defined variables in Env do not occur in t
(gc2) (letrec Env1,Env2 in t) → (letrec Env2 in t)

if the defined variables in Env1

do not occur in t nor in Env2

(csexel) C[s, s] → letrec x = s in C[x, x], where s is closed

Fig. 3. Correct transformations

2.1 Correctness of por-Reductions

The goal of this subsection is to prove that (por) := (porlT)∪(porlF)∪(porrT)∪
(porrF) is a correct program transformation provided the other transformations
are already proved as correct, i.e. if s

por−−→ t then s ∼c t. The proof of correctness
splits into two parts:

– If s
por−−→ t, then for all contexts C: C[s] ⇓ =⇒ C[t] ⇓

– If s
por−−→ t, then for all contexts C: C[t] ⇓ =⇒ C[s] ⇓

Due to the context lemma it is sufficient to show

– If s
por−−→ t, then for all reduction contexts R: R[s] ⇓ =⇒ R[t] ⇓

– If s
por−−→ t, then for all reduction contexts R: R[t] ⇓ =⇒ R[s] ⇓

The second part follows easily, since every (por)-reduction inside a reduction
context is also a normal order reduction, i.e. if s

por−−→ t then the reduction
R[s] → R[t] is always a normal order reduction. If R[t] ⇓ then there exists a
WHNF t′ with R[t]

no,∗−−−→ t′. Appending this sequence of normal order reductions

to R[s]
R,por−−−−→ R[t] we have R[s] ⇓.

The other direction is harder to prove. We need to compute the overlappings
of a normal order reduction with a (por)-reduction inside a reduction context.
Unfortunately the class of reduction contexts is to small for closing the over-
lappings, since normal-order redexes are not unique (see [SSS07a]). Therefore
we compute the overlappings w.r.t. to (por)-reduction inside surface contexts S,
where a surface context is a context where the hole is not inside the body of
abstraction.
A case analysis gives the following nontrivial overlappings, where full arrows are
given transformations and dashed arrows are existentially quantified:

· S,por //

no,a

��

·
no,a

���
�
�

·
S,por

//___ ·

· no,por //

no,a

��

·

·
no,por

@@�
�

�
�

· S,por //

no,a

��

·

no,a
���

�
�

�

·

· S,por //

no,lpor

��

·

· S,gc

88r
r

r

· S,por

88r
r

r
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The first diagram describes the commuting cases. The second diagram covers the
cases where the (S, por)-transformation removes the normal order redex, where
the (S, por)-reduction must be a normal order reduction. The third diagram
describes the cases where a normal order reduction removes the redex of the
(S, por)-transformation. An example for the last diagram is

por (letrec x1 = s1 in s2) True
S,por //

no,lpor

��

True

letrec x1 = s1 in True
S,gc

33hhhhhhh

letrec x1 = s1 in (por s2 True)
S,por

22eeeeeeeee

Now let s
por−−→ t, S be a surface context with S[s] ⇓. By induction on the length

of a sequence of normal order reductions S[s]
no,∗−−−→ s′ where s′ is a WHNF we

show that there exists a sequence of normal order reductions starting with S[t]
and ending in a WHNF. The base case of the induction is easy, since a (S, por)-
transformation preserves WHNFs. For the induction step we apply a (forking)
diagram from above to the first reduction of S[s]

no,∗−−−→ s′ and have the following
cases: If the first or the second diagram is applied, the existence of normal order
reduction for S[t] to a WHNF follows using the induction hypothesis. In case of
the third diagram the normal order reduction for S[t] obviously exists. If the last
diagram is applied, then let S[s]

no,a−−−→ s′′ be the first reduction of S[s]
no,∗−−−→ s′

and t′, t′′ be the terms with s′′
S,por−−−→ t′

S,gc−−−→ S[t]. Using the induction hypothesis
we have t′ ⇓. Finally the correctness of (gc) shows S[t] ⇓.
Summarizing we have shown, that if s

por−−→ t, then for all surface contexts S:
S[s] ⇓ =⇒ S[t] ⇓. Since every reduction context is also a surface context the
context lemma implies that if s

por−−→ t then s ≤c t.

Theorem 2.2. The transformation (por) is correct, i.e if s
por−−→ t then s ∼c t.

Theorem 2.3. For all expressions s: s ⇓ if and only if s ⇓must.

Proof. The implication s ⇓must =⇒ s ⇓ obviously follows from the definition of
must-convergence. The other direction holds since all normal order reductions
preserve contextual equivalence: We assume there exists an expression s with s ⇓
but ¬(s ⇓must). The latter assumption implies that there exists an expression t

with s
no,∗−−−→ t and t is must-divergent, i.e ¬(t ⇓), But since s ∼c t also for the

empty context, we have s ⇓ =⇒ t ⇓, which is a contradiction. ut

2.2 Implementing Parallel Or in Haskell

Figure 4 shows an ad-hoc encoding of (binary) parallel or in Concurrent Haskell
[PGF96] additionally using unsafePerformIO. The function creates an empty
mutable and synchronizing variable and starts the concurrent evaluation of both
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arguments using the forkIO primitive, where pre-emptive multitasking is neces-
sary to ensure fairness. The main thread now waits until one of the concurrent
threads finishes by writing into the MVar. The outer unsafePerformIO lifts the
IO-monadic code to pure code. Although the library documentation forbids to
use unsafePerformIO in combination with forkIO, this use does not break ref-
erential transparency, since the value of por s t is deterministic.

por a b =

unsafePerformIO $

do v <- newEmptyMVar

forkIO (if a == True then putMVar v True else putMVar v b)

forkIO (if b == True then putMVar v True else putMVar v a)

takeMVar v

Fig. 4. Encoding of por in Concurrent Haskell using unsafePerform

3 Describing Sequential Circuits with Constructive
Cycles in Lpor

Sequential circuits are modeled in Lpor as in Lava by recursive programs using
lists, where an element of a list means a boolean signal at a fixed clock tick.
Logical gates are list processing functions and memory is modelled using a func-
tion, which delays the signal by one clock tick by adding an element at the head
of the list. Figure 5 shows the encodings of parallel or, parallel and as well as
the function delay2. The latter function has as first argument a Boolean value
which is added at the head of the second argument. We omit case-alternatives
for some constructors, the right hand sides of these alternatives are ⊥.

3.1 Why Parallel Or is Required – Constructive Cycles

It is possible to represent constructive cycles without a delay element also in
Lava, but a sequential functional programming language, like Haskell 98, does
not match the semantics of those circuits. A correct modeling in a letrec calculus
has to use parallel Boolean operators like por and pand.
The circuit C4 of [SBT96] is shown in figure 6 where L1 is initialized with True
and L2 has False as initial value. The circuit C3 has the same layout with the
difference that L1 and L2 are initialized with True. The circuits C4, C3 can be
modeled in our letrec-calculus Lpor as follows:

C4 = letrec
x = a <&> (not y)
a = delay2 True y
y = b <&> (not x)
b = delay2 False x

in (x, y)

C3 = letrec
x = a <&> (not y)
a = delay2 True y
y = b <&> (not x)
b = delay2 True x

in (x, y)
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head = λxs.case xs (y : ys → y)
tail = λxs.case xs (y : ys → ys)
map = λf.λxs.(f (head xs)) : (map f (tail ys))
bid = λb.case b (True→ True) (False→ False)
tobl = λxs.map bid xs
zipWith = λop.λxs.λys. letrec out = (op (head xs) (head ys)),

res = (zipWith op (tail xs) (tail ys))
in (out : res)

not2 = λb.case b (True→ False) (False→ True)
not = λxs.(map not2 xs)
pand = λa.λb.not2(por (not2 a) (not2 b))
(<|>) = λxs.λys.zipWith por xs ys
(<&>) = λxs.λys.zipWith pand xs ys
delay2 = λa.λxs.(a : xs)

Fig. 5. Encodings of Parallel Or <|>, Parallel And <&> and delay2

Q D

QD

L1

L2

x

y

a

b

clk

clk

Fig. 6. The Circuit C4

We consider the circuit C4: If <&> would be implemented in a Haskell-like lan-
guage as (zipWith and) where (and) is Boolean and being strict in both argu-
ments then the values for x and y are undefined (i.e. ⊥) (as shown in table 1),
although the cycle is constructive. If and is the standard Haskell-operator (&&),
then the circuit C4 produces the expected behavior, i.e. table 2 shows how the
computation begins. But if we use a simple Boolean law and commute the and-
operator in the binding for x (i.e. x = (not y) <&> a instead of x = a <&> (not y)),
then x and y are undefined after the first step, i.e. the beginning of the computa-
tion is shown in table 3. The solution is to use an and-operator that is non-strict
in both of its arguments, i.e. “parallel and”. Then the behavior is as expected:
the circuit C4 produces the sequence of states as shown in table 2, where after
the initialization all values are defined.
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a b x y

step 1: True False ⊥ ⊥
step 2: ⊥ ⊥ ⊥ ⊥

Table 1. Execution of C4 with strict
and

a b x y

step 1: True False True False
step 2: False True False True
step 3: True False True False

Table 2. The Expected Behavior of C4

a b x y

step 1: True False True False
step 2: False True ⊥ ⊥
step 3: ⊥ ⊥ ⊥ ⊥

Table 3. Execution of C4 with
Haskell-like <&> after commuting the
arguments of an and-operator

a b x y

step 1: True True ⊥ ⊥
step 2: ⊥ ⊥ ⊥ ⊥

Table 4. The Expected Behavior of C3

This result does not change if we commute the arguments of the <&>-operators.
We now consider the circuit C3 which produces the sequence of states shown in
table 4, where due an inappropriate initialization the values for x, y are unde-
fined, which is the expected behavior.

4 Program Transformations for Hardware Descriptions

Apart from classical program transformations used in functional programming
languages e.g. during the compilation of functional programs (see e.g. [PS98]), we
need transformations operating on the logical layer of circuits descriptions. Since
logical gates are implemented as list processing functions, we need equivalences
on those functions.
Figure 7 shows program transformations, which are analogous to the classical
laws of Boolean algebra: (dne) eliminates a double negation, the transformations
(fdo-<|>) and (fdo-<&>) float a delay over por and pand resp., followed by two
distributivity laws; the last two transformations are adapted versions of the law
of de Morgan.
Note that the rules (fdo-<&>) and (fdo-<|>) are correct for b, d ∈
{True, False,⊥} and all expressions r, s, t that are tfb-lists, i.e. list of elements
of {True, False,⊥}, which can be achieved by requiring them to be of the form
(tobl xs) (or equivalent to such an expression). We have tobl s ∼c s for all tfb-
lists, and all resulting lists of our operators are also tfb-lists given the arguments
are tfb-lists. The correctness of the transformations follows using correctness of
partial evaluation and the copying rule. We demonstrate the part of the proof
for (fdo-<|>) and b, d being True:

delay2 True(s <|> t) −→ True : (s <|> t)
←− (True : s) <|> (True : t)
←− (delay2 True s) <|> (delay2 True t)

where → are reductions mixed with (cpall) transformations
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(dne) not (not s) → s
(fdo-<|>) (delay2 b s) <|> (delay2 d t) → delay2 (por b d) (s <|> t)
(fdo-<&>) (delay2 b s) <&> (delay2 d t) → delay2 (pand b d) (s <&> t)
(distr-<|>) r <|> (s <&> t) → (r <|> s) <&> (r <|> t)
(distr-<&>) r <&> (s <|> t) → (r <&> s) <|> (r <&> t)
(dm-<|>) not (s <|> t) → (not s) <&> (not t)
(dm-<&>) not (s <&> t) → (not s) <|> (not t)
Also commutativity, associativity, idempotence,
and absorption transformations are permitted for <|>, <&>

Fig. 7. Transformations for delay2, <|> and <&>

The remaining rules of figure 7 are correct for r, s, t being tfb-lists. The proofs
of correctness can be achieved using an approximation variant of Bird’s Take-
Lemma ([Bir98]), which is based on induction on lists, additionally approximat-
ing infinite lists with lists having ⊥ as last tail.

4.1 Equivalence of Circuits – An Example

As an illustrating example figure 8 shows two equivalent logical nets. In the
following we demonstrate for the example of the two circuits in figure 8, how
program transformations show the equivalence of f and g for tfb-list-arguments,
and on the other hand, also reduce the number of required wires.
We transform the expressions (f xs ys) and (g xs ys), where xs′ and ys′ are
arbitrary lists and xs = tobl xs′, ys = tobl xs′.

Transformation of f xs ys:

f xs ys
(1)−−→ letrec

d1 = d2 <|> d3

d2 = delay2 False d4

d3 = delay2 False d5

d4 = not xs
d5 = ys <&> d6

d6 = not d7

d7 = d2 <|> d3

in d1

(2)−−→ letrec
d2 = delay2 False d4

d3 = delay2 False d5

d4 = not xs
d5 = ys <&> d6

d6 = not d7

d7 = d2 <|> d3

in d7

(3)−−→ letrec
d4 = not xs
d5 = ys <&> d6

d6 = not d7

d7 = delay2 False (d4 <|> d5)
in d7

(4)−−→ letrec
d7 = delay2 False

((not xs) <|> (ys <&> (not d7)))
in d7

(5)−−→ letrec d7 = delay2 False (((not xs) <|> ys) <&> ((not xs) <|> (not d7)))
in d7
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g a b

clk

clk

Fig. 8. Two Equivalent Circuits

f = λa.λb. letrec
d1 = d2 <|> d3

d2 = delay2 False d4

d3 = delay2 False d5

d4 = not a
d5 = b <&> d6

d6 = not d7

d7 = d2 <|> d3

in d1

g = λa.λb. letrec
e1 = delay2 False e2

e2 = not (e3 <|> e4)
e3 = e1 <&> a
e4 = a <&> e5

e5 = not b
in e1

Fig. 9. The corresponding functional hardware descriptions

(1) (lbeta) and (cpall1) twice

(2) common subexpression elimination for the subexpression (d2 <|> d3), copy-
ing d1, and garbage collecting d1.

(3) copying d2 and d3, and floating delay over <|>

(4) copying d4, d5, and d6

(5) distributivity law
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Transformation of g xs ys:

g xs ys
(1)−−→ letrec

e1 = delay2 False e2

e2 = not (e3 <|> e4)
e3 = e1 <&> xs
e4 = xs <&> e5

e5 = not ys
in e1

(2)−−→ letrec
e1 = delay2 False e2

e2 = (not e3) <&> (not e4)
e3 = e1 <&> xs
e4 = xs <&> e5

e5 = not ys
in e1

(3)−−→ letrec e1 = delay2 False ((not (e1 <&> xs)) <&> (not ((xs <&> (not ys)))))
in e1

(4)−−→ letrec
e1 = delay2 False (((not e1) <|> (not xs)) <&> ((not xs) <|> (not (not ys))))

in e1

(5)−−→ letrec e1 = delay2 False (((not xs) <|> (not e1)) <&> ((not xs) <|> ys))
in e1

(6)−−→ letrec e1 = delay2 False (((not xs) <|> ys) <&> ((not xs) <|> (not e1)))
in e1

(1) (lbeta) and (cpall1) twice
(2) law of de Morgan
(3) copying e2, e3, e4 and e5

(4) law of de Morgan (two times)
(5) double negation elimination and commutativity of <|>
(6) commutativity of <&>

Since the results of the transformations of f xs ys and g xs ys are equal w.r.t.
to α-equivalence, f xs ys and g xs ys are contextually equivalent for all lists xs,
ys with xs = tobl xs′ and ys = tobl ys′.

5 Conclusion

We introduced the calculus Lpor – a call-by-need lambda-calculus with parallel
or – and showed how its semantics correctly models sequential circuits with con-
structive cycles. We proposed a set of program transformations to manipulate
functional circuit descriptions on the source code level and exemplarily demon-
strated their applicability. Future work is devoted to develop tools for automated
circuit transformation, to work out the proofs of correctness of all the transfor-
mations above, and to describe further useful program transformations and to
prove their correctness.
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of the safety of Nöcker’s strictness analysis. Frank report 20, Inst. f. Informatik,
J.W.Goethe-University, Frankfurt, 2005. submitted for publication.


	Program Transformation for Functional Circuit Descriptions
	Manfred Schmidt-Schauß and David Sabel

