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Abstract

Among all the reduction strategies for the untyped λ-calculus, the so called lazy β-evaluation
is of particular interest due to its large applicability to functional programming languages (e.g.
Haskell [3]). This strategy reduces only redexes not inside a lambda abstraction.
The lazy strongly β- normalizing terms are the λ-terms that don’t have infinite lazy β-reduction
sequences.
This paper presents a logical characterization of lazy strongly β-normalizing terms using intersec-
tion types. This characterization, besides being interesting by itself, allows an interesting connec-
tion between call-by-name and call-by-value λ-calculus.
In fact, it turns out that the class of lazy strongly β-normalizing terms coincides with that of
call-by-value potentially valuable terms. This last class is of particular interest since it is a key
notion for characterizing solvability in the call-by-value setting.
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1 Introduction

An evaluation is called lazy if the body of a function is evaluated only when
an argument is supplied. In the λ-calculus setting, this kind of evaluation is
modelled by a reduction strategy that does not reduce β-redexes occurring
under the scope of a λ-abstraction. Lazy evaluation has been introduced
by Plotkin [6] in order to capture into λ-calculus the conceptual difference
between the notion of evaluation and that one of code optimization. 3

The notion of strong β-normalization can be extended to the lazy case in
a natural way (see [8]). Namely: a lazy β-redex is a β-redex not occurring
under the scope of a λ-abstraction, and a term is in lazy β-normal form if and
only if it has no occurrences of lazy β-redexes. So a term is lazy strongly β-
normalizing if and only if it has lazy β-normal form and there are not infinite
lazy β-reduction sequences starting from it.

In this paper we give a complete characterization of the class of lazy
strongly β-normalizing terms in a logical way, using a suitable intersection
type assignment system.

This characterization, besides being interesting by itself, allows an inter-
esting connection between call-by-name and call-by-value λ-calculus. Let us
remember that the classical λ-calculus is a model for the call-by-name eval-
uation, while the call-by-value evaluation can be modelled by a variant of
λ-calculus, the λβv-calculus, introduced in [6]. The λβv-calculus is obtained
from the λ-calculus by restricting the β-rule to the case where the argument
is a value, i.e., it is either a variable or a λ-abstraction. The fact that all
the λ-abstractions are values, independently from their bodies, implies that
the natural evaluation for such a calculus is a lazy one. Some syntactical
properties of the λβv-calculus have been studied in [5], where the notion of
solvability has been adapted to this calculus, and the set of solvable terms has
been completely characterized, in a logical way.

In particular, in order to give such a characterization, an intermediate
class of terms has been introduced: the potentially valuable terms. A term
M is potentially valuable if and only if there is a substitution s, replacing free
variables by closed values, such that s(M) reduces to a value. The importance
of such a class becomes clearer when we note that, in the λβv-calculus, the
restriction to the β-rule imposes that every term (or subterm), in order to be
manipulated, must be first transformed into a value. The potentially valuable
terms have been completely characterized in a logical way in [5], and it has
been proved that the call-by-value solvable terms form a proper subclass of

3 This must not be confused with the notion of lazy evaluation used in functional program-
ming corresponding to a call-by-need evaluation strategy.
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the class of the potentially valuable terms.

It turns out that the class of potentially valuable terms coincides with the
class of strongly β-normalizing terms. We think that this relationship is an
interesting bridge between the call-by-name and the call-by-value evaluation.

Besides, the type assignment used in the present work for the character-
ization of lazy β-strong normalization, if enriched by a suitable subtyping
relation, coincides with the one in [4], which induces a filter model for the
call-by-value λ-calculus. This is a further semantic witness of the relationship
between call-by-name and call-by-value evaluation.

2 Language

Definition 2.1 Let Var be a countable set of variables. The set Λ of λ-terms
is defined by the following grammar:

M ::= x | MM | λx.M

As usual, terms will be considered modulo α-conversion, i.e., modulo names of
bound variables. α-conversion will be denoted by ≡. We will use the syntactic
conventions as in [2]. λ-terms will be ranged over by Latin capital letters.

The evaluation of a term is said lazy if no reduction is made under the
scope of a λ-abstraction. It is possible to define directly the lazy reduction,
as shown in the next definition.

Definition 2.2 i) The β-rule is defined as (λx.M)N → M [N/x].

ii) The β-reduction is the contextual closure of the β-rule. We will denote
by →β the β-reduction, by →∗

β its reflexive and transitive closure, and
by =β its symmetric, reflexive and transitive closure.

iii) The lazy β-reduction is the applicative closure of the β-rule. We will
denote by →β� the lazy β-reduction, by →∗

β� its reflexive and transitive
closure, and by =β� its symmetric, reflexive and transitive closure.

iv) The η-reduction is defined as the contextual closure of the following rule:

λx.Mx →η M

and →∗

η is its reflexive and transitive closure.

Notice that the definition of lazy β-reduction, at point iii), is not stand-
ard. In fact, the reduction is defined by closing the reduction rule only under
application, while in the standard case the closure is under abstraction too.
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The notion of normal form can be adapted for the lazy β-reduction in the
following way.

Definition 2.3 i) A term M is in lazy β-normal form if and only if it has
no occurrences of β-redexes, but under the scope of a λ-abstraction.

ii) A term M has lazy β-normal form if and only if there is a term N in lazy
β-normal form such that M →∗

β� N .

Clearly β-normal forms are lazy β-normal form.

Note that the lazy β-normal form of a term, if there exists, may not be
unique. In fact, (λxy.x)(II) →∗

β� λy.II and (λxy.x)(II) →∗

β� λy.I where both
λy.II and λy.I are lazy β-normal forms.

Now we can define the key notion of β�-strong normalization.

Definition 2.4 A term M is β�-strongly normalizing if and only if it has
lazy β-normal form, and moreover there is not an infinite sequence of lazy
β-reductions starting from it.

3 An intersection type assignment system

Definition 3.1 i) Let C be a countable set of type-constants (ranging over
α, β, ..) containing at least the type constant ν.
The set T (C) of types, ranging over by σ, τ, π, ρ, .. is inductively defined
as follows:

σ ∈ C ⇒ σ ∈ T (C)

σ, τ ∈ T (C) ⇒ (σ → τ) ∈ T (C)

σ, τ ∈ T (C) ⇒ (σ ∧ τ) ∈ T (C).

Types will be considered modulo associativity, commutativity and idem-
potency of the constructor ∧ (i.e., modulo an equivalence � which is
the contextual, reflexive and transitive closure of the following rules:
σ ∧ τ � τ ∧ σ, σ � σ ∧ σ and (σ ∧ τ) ∧ π � σ ∧ (τ ∧ π)). We use
the convention that the constructor ∧ take precedence over →.

ii) A basis is a partial function from Var to T (C) having a finite domain of
definition. If B is a basis then B[σ/x] denotes the basis such that

B[σ/x](y) =

⎧⎪⎨
⎪⎩

σ if y ≡ x,

B(y) otherwise.
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Furthermore, the basis B such that dom(B) = {x1, ..., xn} and B(xi) =
σi, for 1 ≤ i ≤ n will be denoted by [σ1/x1, ..., σn/xn].

iii) The type assignment system �ν is a formal system proving typing judg-
ments of the shape:

B �ν M : σ

where M is a term, σ ∈ T (C) and B is a basis.

The type assignment system �ν consists of the following rules:

(var)

B[σ/x] �ν x : σ
(ν)

B �ν λx.M : ν

B[σ/x] �ν M : τ
(→I)

B �ν λx.M : σ → τ

B �ν M : σ → τ B �ν N : σ
(→E)

B �ν MN : τ

B �ν M : σ B �ν M : τ
(∧I)

B �ν M : σ ∧ τ

B �ν M : σ ∧ τ
(∧El)

B �ν M : σ

B �ν M : σ ∧ τ
(∧Er)

B �ν M : τ

If B, B′ are bases then B ∩ B′ is the basis defined as follows:

(B ∩ B′)(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

B(y) ∧ B′(y) if both B(y) and B′(y) are defined,

B(y) if B(y) is defined and B′(y) is undefined,

B′(y) if B′(y) is defined and B(y) is undefined,

undefined otherwise.

The type assignment system �ν enjoys some interesting properties.

Lemma 3.2 (Generation)

i) If B �ν M : σ then B ∩ B′ �ν M : σ, for any basis B′.

ii) If B �ν MN : σ then there are types ρi and τi with 1 ≤ i ≤ n, such that
σ � ρ1 ∧ . . . ∧ ρn, B �ν M : τi → ρi and B �ν N : τi.

iii) B �ν λx.M : σ → τ if and only if B[σ/x] �ν M : τ .

Proof

i) Easy, by induction on the derivation d proving B �ν M : σ.

ii) Easy, b induction on the derivation d proving B �ν MN : σ.
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iii) (⇐) By rule (→ I).

(⇒) It is easy to prove that B �ν λx.M : σ → τ ∧ π1 ∧ ... ∧ πn (n ∈ N)
implies B[σ/x] �ν M : τ , by induction on derivations.

�

The type system �ν enjoys the subject-reduction property and a restricted
form of subject-expansion.

Property 3.3 (Subject-reduction)

If B �ν M : σ and M →β N then B �ν N : σ.

Proof Standard. �

Property 3.4 (Typed subject-expansion)
Let C[.] be a context. Then B �ν C[P [Q/x]] : σ and B′ �ν Q : τ imply
B ∩ B′ �ν C[(λx.P )Q] : σ.

Proof The proof is by induction on C[.]. Let d be a derivation proving
B �ν C[P [Q/x]] : σ. We may assume, without loss of generality, that B is
undefined on x and that all typings in d have the same basis B. Indeed, (→ I)
is the only rule having a basis, in the premises, different from the basis in the
conclusion; but we can assume that free and bound variables have different
names in M .
In case C[.] = [.], there are two cases to analyze.

a) Suppose that either x �∈ FV(P ) (hence P [Q/x] ≡ P ) or Q occurs in sub-
terms of P which are subjects of an application of the rule (ν).
In both cases, B �ν P : σ; therefore B[τ/x] �ν P : σ, by Lemma 3.2.i).
Then B �ν λx.P : τ → σ, by rule (→ I) and, by Lemma 3.2.i), both
B ∩ B′ �ν λx.P : τ → σ and B ∩ B′ �ν Q : τ . Hence, by rule (→ E),

B ∩ B′ �ν (λx.P )Q : σ.

b) Suppose that Q occurs in P [Q/x] and there is a subderivation of d hav-
ing Q as subject of the typing of its conclusion. The derivation d can be
transformed into a derivation d′ proving B[τ/x] �ν P : σ by performing the
following operations.
- Replace each typing B �ν Q : τ occurring in the derivation d by:

(var)

B[τ/x] �ν x : τ .

- Replace each typing B �ν P ′[Q/x] : µ occurring in the derivation d by the
typing B[τ/x] �ν P ′ : µ.

It is easy to see by induction on d that d′ is well defined. Thus the proof
proceeds as in case (a).
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For the general case, where C[.] = λx.C ′[.] or C[.] = C1[.]C2[.], the result
follows easily by induction. �

Note that typing in the type assignment system �ν is not preserved by
η-expansion if the set C has any type constants other than ν. Besides, �ν is
not preserved by η-reduction. In fact,

∅ �ν λy.xy : ν

while x : ν is not provable from the empty context.

Moreover, the η-reduction is not valid even in the case that we consider
only terms having a functional type, as shown in the next example.

Example 3.5 Let π = (σ → τ0) ∧ (σ → τ1) and B = [π/x, σ/y]. Then
[π/x] �ν λy.xy : σ → τ0 ∧ τ1 since:

(var)

B �ν x : π
(∧El)

B �ν x : σ → τ0

(var)

B �ν y : σ
(→E)

B �ν xy : τ0

(var)

B �ν x : π
(∧Er)

B �ν x : σ → τ1

(var)

B �ν y : σ
(→E)

B �ν xy : τ1
(∧I)

B �ν xy : τ0 ∧ τ1
(→I)

[π/x] �ν λy.xy : σ → τ0 ∧ τ1

But it is easy to check that there isn’t a derivation proving [π/x] �ν x : σ →
τ0 ∧ τ1.

It occurs that the standard proofs of the strong normalization property
usually depend on the fact that the considered system enjoys a restricted
form of η-reduction, namely that the η-reduction holds in the case of arrow
types.

A similar situation can be found in, for example, Pottinger [7], that solved
the problem by adding to the type system an explicit η-rule. We use a differ-
ent technical approach to this problem noting that, although typings are not
preserved by η-reduction, typability is preserved.

Lemma 3.6 Let B �ν M : σ and x �∈ FV (M).

If M →∗

η P [Q/x]
−→
Q and B′ �ν Q : ρ then there is a term M ′ such that

M ′ →∗

η (λx.P )Q
−→
Q and B ∩ B′ �ν M ′ : σ.

Proof The proof is by induction on the number m of η-reductions with sub-
ordinate induction on the derivation d proving B �ν M : σ. If m = 0 then the
result follows from Property 3.4.
Let m ≥ 1. There are three cases to analyze.
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a) M ≡ P ′[Q′/x]
−→
Q′ with P ′ →∗

η P , Q′ →∗

η Q and
−→
Q′ →∗

η

−→
Q . Then the result

follows from Property 3.4.

b) M ≡ (λu.M̄u)
−→
Q′ where

−→
Q′ is a sequence of n > 0 terms and M̄

−→
Q′ →∗

η

P [Q/x]
−→
Q . Then,

M →β� M̄
−→
Q′ →∗

η P [Q/x]
−→
Q

hence B �ν M̄
−→
Q′ : σ by Property 3.3. The proof follows by induction.

c) M ≡ λx1.M̄x1 with λx1.M̄x1 →η M̄ →∗

η P [Q/x]
−→
Q .

Then the last rule applied in d can only be: (→ I), (∧I), (∧El), (∧Er) or
(ν). The only not trivial case is the first one. So suppose that σ � π → µ
and d ends with

B[π/x1] �ν M̄x1 : µ
(→I)

B �ν λx1.M̄x1 : π → µ

Clearly Mx1 →
∗

η P [Q/x]
−→
Qx1, thus by inductive hypothesis on d there exists

a term M ′′ such that M ′′ →∗

η (λx.P )Q
−→
Qx1 and B[π/x1] ∩ B′ �ν M ′′ : µ.

Without loss of generality, we may assume that B′(x1) is undefined; so
B[π/x1] ∩ B′ = (B ∩ B′)[π/x1] and (B ∩ B′)[π/x1] �ν M ′′ : µ.
Therefore B ∩ B′ �ν λx1.M

′′ : π → µ, by rule (→ I). The proof is done,
since

λx1.M
′′ →∗

η (λx.P )Q
−→
Q.

�

Consider the type assignment system obtained from �ν by erasing the rule
(ν): it is well known that it characterizes the β-strongly normalizing terms
(see [7]). We will prove that the whole system �ν characterizes the β�-strong
normalizing terms.

Theorem 3.7 There are B, σ such that B �ν M : σ if and only if M is
β�-strongly normalizing.

Proof The proof is given in Subsections 3.1 and 3.2. �

3.1 Typability in �ν implies β�-strong normalization

Let S(B, σ, M) be the following predicate:“M is β�-strongly normalizing and
there exists a λ-term M ′ such that M ′ →∗

η M and B �ν M ′ : σ”.

The following property holds.

Property 3.8 S(B, σ → τ, x
−→
M) and S (B′, σ, N) imply S(B ∩ B′, τ, x

−→
MN).

Proof Trivial, since
−→
M and N are independent. �

L. Paolini et al. / Electronic Notes in Theoretical Computer Science 136 (2005) 103–116110



The predicate S is used to define a computability predicate.

Definition 3.9
The predicate Comp is defined by induction on types as follows:

• Comp(B, α, M) if and only if S(B, α, M), for all α ∈ C;

• Comp(B, σ → τ, M) if and only if, for all N ∈ Λ, B′ �ν N : σ and
Comp(B′, σ, N) imply Comp(B ∩ B′, τ, MN);

• Comp(B, σ ∧ τ, M) if and only if Comp(B, σ, M) and Comp(B, τ, M).

Comp is closed under β�-reduction and under a restricted form of β�-
expansion.

Property 3.10 Let Q be β�-strongly normalizing.

If Comp(B, σ, P [Q/x]
−→
Q ) and B′ �ν Q : µ then Comp(B′ ∩ B, σ, (λx.P )Q

−→
Q).

Proof The proof is given by induction on the structure of types.

Assume σ ∈ C. Then, by definition, Comp(B, σ, P [Q/x]
−→
Q) implies that there

exists a term M →∗

η P [Q/x]
−→
Q such that B �ν M : σ and P [Q/x]

−→
Q is

β�-strongly normalizing. As (λx.P )Q
−→
Q =β� P [Q/x]

−→
Q and Q is β�-strongly

normalizing, we have that (λx.P )Q
−→
Q is also β�-strongly normalizing and by

Lemma 3.6 there exists M ′ →∗

η (λx.P )Q
−→
Q such that B �ν M ′ : σ . Hence,

Comp(B, σ, (λx.P )Q
−→
Q) by definition.

Let σ � τ → ρ. Then Comp(B, τ → ρ, P [Q/x]
−→
Q ) implies that ∀N such that

B′ �ν N : τ and Comp(B′, τ, N) we have Comp(B ∩ B′, ρ, P [Q/x]
−→
QN).

Hence Comp(B∩B′, ρ, (λx.P )Q
−→
QN) by induction, and therefore by definition

Comp(B ∩ B′, τ → ρ, (λx.P )Q
−→
Q ).

The case σ � τ ∧ ρ is trivial, by induction. �

We prove that B �ν M : σ implies Comp(B, σ, M), which in turn implies
S(B, σ, M).

Lemma 3.11 i) S(B, σ, x
−→
M ) implies Comp(B, σ, x

−→
M ).

ii) Comp(B, σ, M) implies S(B, σ, M).

Proof The proof is done by mutual induction on σ.
The only not obvious case is when σ � τ → ρ

i) We will prove that Comp(B′, τ, N) and B′ �ν N : τ imply Comp(B ∩

B′, ρ, x
−→
MN), thus Comp(B, τ → ρ, x

−→
M) follows by definition.

Comp(B′, τ, N) implies S(B′, τ, N), by induction on ii).
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By hypothesis S(B, τ → ρ, x
−→
M); thus S(B∩B′, ρ, x

−→
MN) by Property 3.8.

The proof follows, since by induction Comp(B ∩ B′, ρ, x
−→
MN).

ii) Let z �∈ FV(M), and let B be such that B(z) is undefined. Note
that, for any x, [τ/x] �ν x : τ ; so in particular, S([τ/z], τ, z). Hence
Comp([τ/z], τ, z) by induction on i). Thus Comp(B[τ/z], ρ, Mz) by defin-
ition of Comp and this implies S(B[τ/z], ρ, Mz), by induction. That is,
Mz is β�-strongly normalizing and clearly also M is β�-strongly normal-
izing. Moreover, there exists a term M ′ such that both M ′ →∗

η Mz and
B[τ/z] �ν M ′ : ρ. Hence B �ν λz.M ′ : τ → ρ and since

λz.M ′ →∗

η λz.Mz →η M

S(B, τ → ρ, M) follows by definition.

�

Lemma 3.12 Let FV(M) ⊆ {x1, ..., xn} and B = B∗[σ1/x1, ..., σn/xn].
If Comp(Bi, σi, Ni), Bi �ν Ni : σi (1 ≤ i ≤ n) and B � M : τ , then

Comp(B∗ ∩ B1 ∩ ... ∩ Bn, τ, M [N1/x1, ..., Nn/xn]).

Proof By induction on the derivation d of B � M : τ . The most interesting
case is when the last rule applied of d is (→ I). Let M ≡ λx.M ′, τ � µ → ρ
and

B[µ/x] � M ′ : ρ
(→I)

B � λx.M ′ : µ → ρ

Let Comp(B′, µ, N) and B′ �ν N : µ. So S(B′, µ, N) by Lemma 3.11.ii); hence
N is β�-strong normalizing. By induction

Comp(B∗ ∩ B′ ∩ B1 ∩ ... ∩ Bn, ρ, M ′[N1/x1, ..., Nn/xn, N/x])

which implies Comp(B∗∩B′∩B1∩ ...∩Bn, ρ, (λx.M ′[N1/x1, ..., Nn/xn])N) by
Property 3.10. Hence, Comp(B∗ ∩ B1 ∩ ... ∩ Bn, µ → ρ, M [N1/x1, ..., Nn/xn])
by definition of Comp. All other cases follow directly from the inductive
hypothesis. �

Proof of Theorem 3.7 (⇒ part).
Suppose that B �ν M : σ and let FV(M) ⊆ {x1, ..., xn}, and B(xi) = σi.
Since Comp(B, σi, xi) (1 ≤ i ≤ n) by Lemma 3.11.i), then Comp(B, σ, M) by
Lemma 3.12. Hence the proof is done due to Lemma 3.11.ii). �
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3.2 β�-strong normalization implies typability in �ν

Let M be in lazy β-normal form. It is easy to see that either M ≡ λx.M ′

or M ≡ xM1 . . .Mn with n ≥ 0 where Mi are in lazy β-normal form for all
1 ≤ i ≤ n.

Lemma 3.13 If M is in lazy β-normal form, then there are a basis B and a
type σ ∈ T (C) such that B �ν M : σ.

Proof Let M be in lazy β-normal form. The proof is done by induction on
the shape of M . If M ≡ λx.M ′ then B �ν M : ν for any basis B.
Let M ≡ xM1 . . .Mn. If n = 0, then M is a variable and

(var)

x : σ �ν x : σ

for any σ ∈ T (C). Suppose n > 0. By inductive hypothesis there are
B1, . . . , Bn and σ1, . . . , σn such that:

Bi �ν Mi : σi

Then M has type σ in the basis B′ = B1 ∩ . . .∩Bn ∩ [σ1 → . . . → σn → σ/x]
since:

B′ �ν x : σ1 → . . . → σn → σ
(∧Er)/(var)

B′ �ν Mi : σi

B′ �ν xM1 . . .Mn : σ
(→E)

�

Remember that a lazy β-redex is a β-redex that does not occur under the
scope of a λ-abstraction.

Property 3.14 Let M be not in lazy β-normal form.
Then there are subterms P, Q of M such that Q in lazy β-normal form and
(λx.P )Q is a lazy β-redex of M .

Proof The proof is by induction on M . �

Proof of Theorem 3.7 (⇐ part).
Suppose that M is β�-strong normalizing, that is, there is not an infinite
sequence of β�-reductions starting from M .
Without loss of generality, by Property 3.14, we can assume that there is a
lazy β-reduction sequence

M ≡ M0 →β� . . . →β� Mn ≡ N
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reducing only lazy β-redexes of the shape (λx.P )Q such that Q in lazy β-
normal form.

The proof is given by induction on n.
If n = 0, the result follows from Lemma 3.13. Suppose n ≥ 1. By induction
hypothesis, there are a base B1 and a type σ such that B1 �ν M1 : σ. Moreover,
there is a basis B2 and a type τ such B2 �ν Q : τ by Lemma 3.13. Then the
result follows trivially from Property 3.4. �

4 β�-strong normalization and call-by-value solvability

The notion of β�-strong normalization allows for stating an interesting rela-
tionship between call-by-name and call-by-value evaluation of λ-calculus.

Let us recall the definition of call-by-value λ-calculus [6].

Definition 4.1 Let the set Val of values be Var ∪ {λx.M | M ∈ Λ}.

i) The βv-reduction (→βv) is the contextual closure of the following rule:

(λx.M)N → M [N/x] if and only if N ∈ Val.

ii) →∗

βv
and =βv

are respectively the reflexive and transitive closure of →βv

and the symmetric, reflexive and transitive closure of →βv
.

iii) The λβv-calculus is the language Λ equipped with the βv-reduction

Plotkin proved that the λβv-calculus is confluent. The notion of solvability
can be extended to the λβv-calculus in the following way.

Definition 4.2 A term M is βv-solvable if and only if there is a sequence
−→
P

of values such that:
(λx1...xn.M)

−→
P =βv

I

where FV(M) = {x1, ...xn} and I = λx.x is the identity term.

The main problem on reasoning in an operational way in the λβv-calculus
has to do with the fact that every term (or subterm) must be transformed into
a value in order to be manipulated. In fact, in [5], in order to prove syntactical
properties of the λβv-calculus, it was introduced the key notion of potential
valuability.

Definition 4.3 i) A term M is valuable if and only if it βv-reduces to a
term belonging to Val.

ii) A term M is potentially valuable if and only if there is a substitution s,
replacing variables by closed terms belonging to Val, such that s(M) is
valuable.
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In [5] it was proved that the set of βv-solvable terms is a proper subset of
the set of potentially valuable terms. Moreover, a logical characterization of
both the potentially valuable and the βv-solvable terms is given, through an
intersection type assignment system which is equivalent (with respect to typ-
ability power) to the system �ν . More precisely, the system in [5] is obtained
from �ν by restricting the set of types, allowing the use of the intersection only
in the left side of an arrow. It is well known that two intersection type assign-
ment systems related to each other by this relation have the same typability
power (see for example [1]).

In order to show this characterization, we need to introduce a definition.

Definition 4.4 A type σ is proper if it is of the following shape:

σ � τ1 → ... → τn → α

where n ≥ 0 and α is a type constant different from ν.

The following theorem holds.

Theorem 4.5 [5]

i) M is potentially valuable if and only if there are B, σ such that B �ν M :
σ.

ii) M is βv-solvable if and only if there B, σ such that σ is proper and B �ν

M : σ.

On the basis of this result, and of the Theorem 3.7, we can state the
following relation between call-by-name and call-by-value λ-calculi.

Corollary 4.6 M is β�-strongly normalizing if and only if M is potentially
valuable.
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