
158 Book reviews 

its stimulating presentation, especially to those concerned with the teaching of any 

of this material. Further editions or teaching notes using other programming 

languages might be useful. 

Peter WALLIS 

University of Bath 

Bath, United Kingdom 

Introduction to Functional Programming. By R. Bird and P. Wadler. Prentice-Hall 

International, Hemel Hempstead, United Kingdom, 1988, Price f15.95, ISBN 

O-13-484197-2. 

The significance of Introduction to Functional Programming, by Richard Bird and 

Philip Wadler is that with its publication, the necessary revoiution in Computer 

Science/Software Engineering education, long overdue, at last becomes feasible. 

That the revolution is overdue is testified to by the long-standing gap between correct 

programming practices revealed by decades of research into programming 

methodology on the one hand, and the (at best) half-hearted support they receive 

in the typical curriculum on the other. To verify that claim, consider the extent to 

which, for example, formal methods of specification, derivation and verification are 

practised in final-year software projects. Moreover, this new feasibility (which 

derives from the book’s considerable intrinsic merits) poses a significant ethical 

challenge to those of us who remain compelled to teach according to the rubrics 

now rendered patently obsolete. But more of this below. 

Pedagogy 

To begin however, let’s consider the context that mandates such radicalism. For 

some two decades now, software engineers have become ever more aware that 

formal (mathematical) methods of software development are the only means by 

which adequate (i.e. both correct as well as efficient) solutions can be crafted. How 

should the curriculum foster the adoption of such methods by its students? 

To this reviewer, the following general pedagogical observations seem self-evident. 

(1) If there is a “better” way to do something, then some things should be done 

in that better way from the outset. 

(2) It is curious to require that of some course of study, ostensibly designed to 

sustain its eventual graduates for another forty-or-so professional years, the precise 

content of the introductory component should be determined by contemporary 

technological fads. Rather, what the student eventually needs to understand is lasting 

truths, plus how these truths may need to be compromised by current circumstances 

as a pardigm for the different compromises that ongoing changes in circumstances 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82034446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Book reviews 159 

will inevitably entail. This suggests that more absolute fundamentals be taught first, 

and subsequently, the skills more “relevant” to the day be introduced with the 

compromises they entail pointed out. 

(3) It is an understandable yet unjustified arrogance on the part of educators to 

assume that their lucky students retain all or even most of what they are explicitly 

taught, especially from their introduction to a topic. Introductions are surely 

primarily for learning methods of working, with factual accretion secondary and 

incidental (other than the necessary acquisition of the vocabulary of the field). In 

these circumstances, what instructors do, even when opposed to what they may say, 

is of supreme importance. 

Let’s now instantiate the three points with the specifics of Computer Programming 

(the essence of Computer Science/Software Engineering to which this journal is 

devoted). 

(1) Formal methods are not trivial. They do not come easily or “naturally”, but 

have to be consciously learned, and with effort. The more time available for this 

(e.g., as from the start of the curriculum), the better. 

(2) The complete rigour that formal methods conceivably allow may not be feasible 

in the context of the languages and tools with which software engineers currently 

must work. Nevertheless, the greater rigour that can be economically applied, the 

better. If there is one “lasting truth” of Software Engineering that has been discovered 

in two decades of research, this is it. (At the same time, the extent to which rigour 

is possible need not be understated.) 

(3) Because programming knowledge is a “process” skill, it can only be learnt 

from observation and by practice. The introductory programming course must allow 

students to appreciate the potential of the abovementioned fundamental truth of 

software engineering, by experiencing rigour at the outset. As well as controlling 

the (software) environment so that rigour is possible, the particular facet of program- 

ming being addressed rigorously must not demand too much in the way of incidental 

factual knowledge (e.g. the supporting mathematical vocabulary). 

As regards the development of a vocabulary of programming and programming 

language issues, it is important not to overconstrain the environment so that simple 

concepts, omitted at first, seem exceptional and complicated when eventually 

encountered. 

Critique 

The typical curriculum of today, founded on Pascal or some derivative (Moduia-2, 

Ada, etc.) cannot satisfy these requirements. If the incompatibility between nontrivial 

procedural languages (in the sense that a comprehensive set of control, data and 

information-hiding structures is provided) and fully rigorous methodology (at least 



160 Book reviews 

insofar as a beginning student could cope) is recognised by abandoning formalism, 

the cause is lost from the outset. When (if ever) students meet formal methods, will 

their attitude not be one along the lines of “I’ve done OK so far without them”? 

Of course, some will realise that there must be a better way than online debugging 

etc., but the “code first, think never” attitude will be hard to wear down. 

If, on the other hand, a valiant effort is made to marry Pascal etc. with formal 

methods from the outset, either the range of constructs actually covered and available 

to students will have to be unduly restricted as to mislead about the wide applicability 

of rigour, or the formalism will have to be so diluted as to divest the exercise of 

credibility. The latter approach actually does a disservice, with its implication that 

formal methods aren’t all that helpful. 

Finally, Pascal etc. are not pure pedagogical instruments. In spite of contrary 

claims, they represent conscious compromises between design elegance and the 

prospects of efficient implementation, with the objective balance moving increasingly 

and unsatisfactorily more towards the latter as the constraints under which the 

language designers operated vanish as better implementation techniques emerge. 

(Who can really believe that the requirement that a Pascal program terminate with 

a “.I’ is anything other than a nuisance?) Entire dimensions of experience in software 

construction (higher-order functions, polymorphic typing) are ignored. From 

experience, the mind-set imposed by this ignorance is very difficult to overcome. 

The alternative is to adopt for introductory programming teaching a broad- 

spectrum software environment, which mirrors “real” languages, but which is 

controlled to make formalism credible. Functional languages provide such an 

environment. They have simple mathematical structures (especially referential trans- 

parency) which make rigorous methods easy to employ. They (usually) have flexible 

structuring mechanisms which allow interesting motivating examples to be 

addressed, and a wide range of linguistic constructs exposed. Moreover, they are 

of current practical utility in Software Engineering practice, in prototyping, and 

should be treated somewhere in the curriculum-there’s no intrinsic harm in doing 

so at the start! Of course, the concept of assignable store, undoubtedly one of 

ultimate significance, is not immediately presented. (The celebrated “naturalness” 

of the von Neumann architecture would, if true, imply that it doesn’t need much 

explicit teaching at all!) When eventually introduced, as part of the “computer 

systems” stream of the curriculum, it could be grafted onto a functional language 

using the expository style of denotational semantics, providing as well both an 
excellent case study of the use of functional programming in prototyping interpreters, 

and an introduction to the study of programming language theory. 

The hook 

Having said all that, there is little to add but that Bird and Wadler is most 

satisfactory, in the strict sense of the word. A particular advantage accrues from 



Book reviews 161 

the employment of Miranda’ (or language so close thereto to make distinction 

almost pointless) as the language of illustration. Every once in a while in every field 

of endeavour there appears an artefact of advanced design that happily avoids 

ill-judged speculation. In programming language design, twenty years ago, it was 

Pascal (compared to Algol-68). Today, it’s Miranda. As well as showing the cleanness 

of design that results from the cumulative effort of a capable (to say the least) 

individual for more than a decade, it has good implementations on many of the 

systems available to academic users (e.g. SUNS, VAXes, maybe Macintoshes before 

too long). 

Early chapters give the basic vocabulary of function and constant definitions, 

data types and structures. Because of Miranda’s simplicity (compared to Pascal 

etc.) yet expressiveness, these chapters are both brief and interesting. The presenta- 

tion of computation as an extension of the pocket-calculator style makes the 

introduction very painless. The definition of interesting functions without the compli- 

cations of recursion is accomplished with the help of a library of higher-order 

functions, analogous to Backus’ “combining forms”. 

The chapter entitled “Recursion and Induction” forms the core where the reader 

learns to appreciate how formal methods contribute to the development of correct 

programs. Inductive proof is the paradigm to which the authors choose to attend. 

The examples are presented in an appealing sequence, from functions over single 

numbers to those over multiple lists. Note that not all steps are explicated-there 

is still some work for the instructor to do in support. Supporting exercises match 

the case studies, but for solutions the instructor again has a role to play. Maybe the 

authors will produce an instructor’s handbook for the mass market? 

Remaining chapters: consider the little operational knowledge needed to believe 

that infinite structures can be programmed safely; prove and derive programs 

involving infinite lists; introduce Miranda’s type definition mechanisms; and use 

them to prove and derive programs that process trees. The reader is left with the 

clear impression that formal methods work, plus a wide knowledge of basic concepts 

of programming languages and their implementation. What more could be wanted? 

No alternatives 

To date, none of the books on Functional Programming known to this reviewer 

are viable competition for Bird and Wadler. Like, for example, Functional Program- 

ming by A. Field and P. Harrison (Addison-Wesley, 1988), most cover less program- 

ming and more language implementation, as well as being pitched at more advanced 

students. Even The Structure and Interpretation of Computer Programs by H. Abelson 

and G. Sussman (MIT Press, 1985), which is used for introductory teaching at MIT, 

does not compare. Its emphasis is not so much on formal methods of software 

’ “Miranda” is a trademark of Research Software Ltd. 



162 Book reviews 

development, but on language technology (which it does well). However, in this 

regard it is more akin to Field and Harrison than to Bird and Wadler. Moreover, 

its employment of Scheme (a lexically scoped LISP variant) as expository vehicle is 

a distracting idiosyncracy. 

No sustainable objections 

Some of the objections to the adoption of our teaching policy (and hence Bird 

and Wadler as text), with the refutations that expose their ill-foundednesses, follow. 

“It’s too hard!” 

To be sure, the intellectual level of Bird and Wadler is quite above that of other 

introductory programming texts. However, given that its mathematical sophistication 

is nothing much beyond proof by induction, as found in any elementary Analysis 

text/course, surely it lies within the grasp of students of Programming, as exemplified 

by those at Oxford University already being taught so? To the objection that this 

experience is not universally valid, that Oxford undergraduates are clever enough 

to cope with material that others are not, the reply is that Bird and Wadler provides 

the simplest approach yet to formal methods. If that is regarded as to hard for one’s 

own students, they might as well be given up on forthwith. Also, several other 

institutions, even as far away as the University of New South Wales, have decided 

to follow suit. 

Another facet of this objection is that not just students but instructors will be 

overextended. It’s true that computer science departments embrace a range of talents, 

but surely departmental heads who pride themselves on their administrative talents 

should be able to arrange duties so that staff teach the courses to which they are 

suited. If there aren’t enough of these, and moreover if the others are to be revitalised, 

the example of MIT (in mounting staff training programs to accompany the adoption 

of Abelson and Sussman) can be followed. Another tack is to hire pure 

mathematicians. Nothing better demonstrates the intellectual bankruptcy of the 

current Computer Science/Software Engineering curriculum than the ease with 

which pure mathematicians with negligible Computer Science training (the term is 

deliberately used instead of “education”, because that seems about the level at 

which the typical curriculum operates) are able to contribute to teaching and research 

in the serious side of Computer Science, almost at will. 

“It’s too expensive!” 

Imagine the following. “Functional programming language implementations as 

available today are not always cheap to use. The advent of implementations using 



Book reviews 163 

the latest compilation techniques may be soon, but this review advocates adoption 

of functional prgramming now! Why not wait a while, until David Turner puts 

Miranda on a TRS-80?” 

In response, the initiative facilitated by Bird and Wadler is only one of a number 

of potential resource demands facing institutions wishing to keep up in Computer 

Science/Software Engineering education. If we (as a society) want good software, 

we’ve got to have good practitioners, and to be prepared to pay for it. In this 

reviewer’s own environment, funding Computer Science departments at the same 

level as Engineering departments would provide enough cash to replace the current 

first-year Macintosh equipment (still running Pascal. I’m ashamed to admit) with 

SUN workstations for Miranda, one-for-one. 

“What about Prolog?’ 

The basis for this seems to be “If you’re going to use a fancy language to teach 

introductory programming, why not use something which allows really clever (i.e., 

AI) examples?” The response is that our embrace of functional programming is not 

on account of a desire for something, anything, different. Rather, it is the result of 

calculation of pedagogical needs and their implementation. The cleverness of the 

examples that logic programming facilitates is of no import by comparison. 

Prolog itself incorporates many features that make it definitely unsuitable as an 

introductory vehicle: lack of sophisticated data structuring; the need to employ 

nondeclarative constructs in nontrivial programming; an evaluation mechanism that 

needs to be understood in great detail in order to explain the behaviour of simple 

programs. 

Action 

For those with authority over curriculum developments, your responsibility is 

clear. First, contact your local Prentice-Hall representative for a copy of this 

marvellous book. Second, buy some Miranda licences and get rid of Pascal today. 

Reform! 

For the rest of us in education, the dual courses of persuasion and resistance 

beckon. No opportunity to put the case for curriculum reform can be let pass. Don’t 

get discouraged-if when future generations wonder why we didn’t do a better job, 

are we happy to have it said that after being told by our unenlightened colleagues 

to keep quiet, that’s all we did? Likewise, we need to behave like professionals, not 

prostitutes. As professionals, we have wider responsibilities than to the organisations 

that currently pay our salaries. When assigned teaching duties in support of 

dangerously obsolete curricula, should not refusal be a legitimate ethical response? 

Certainly, meek complicity is not! 



164 Book reviews 

Conclusions 

The length of this review measures the significance attached by this reviewer to 

the challenge posed by the appearance of this book. The attempt has been made to 

identify curriculum requirements through analysis, not habit/prejudice. 

History shows that revolutions stem from good ideas, the implementation of which 

has suddenly become possible. Only now have Bird and Wadler made possible the 

realisation of the revolution in programming pending for twenty years, by facilitating 

the transmission of its central idea, the necessity of formal methods, to the core of 

the curriculum. A few scholars across the world are already lucky enough to get 

this “first-class” treatment. Let’s hope the rest don’t get left behind for too long. 

Paul A. BAILES 

University of Queensland 

Brisbane, Australia 

Compiling Functional Languages. By A. Diller. Wiley, Chichester, United Kingdom, 

1988, Price X15.95 (paperback). ISBN o-471-920274. 

This text describes a number of different techniques which can be used in the 

implementation of functional programming languages. The style of writing is intelli- 

gible; each chapter has an introductory synopsis and is structured into sections and 

subsections. Suggestions of suitable books and papers for further reading are 

scattered liberally throughout. 

After a brief introduction to Lispkit we are treated to a lengthy exposition of 

combinatory logic, followed by a demonstration of the translation of a functional 

language (Lispkit) into combinators. The lambda calculus and its relationship with 

combinatory logic is discussed briefly. 

The motivation behind the inclusion of chapter of somewhat esoteric bracket 

abstraction algorithms and another on supercombinator algorithms is not at all 

obvious. In contrast the section on program transformation, which is based on the 

work of Darlington, is well written, as is the section on partial evaluation. 

The ubiquitous “rule of signs” example is given to illustrate abstract interpreta- 

tion, followed by a short introduction to domain theory and some simple examples 

of the use of abstraction rules in strictness analysis. One third of the chapter on 

type systems is devoted to a section entitled “Motivation”. After reading the rest 

of the chapter the reader may well feel motivated to look elsewhere for a more 

extensive treatment of this material. 

The author includes in an appendix the Pascal source code of a compiler and 

reducer for Lispkit, prefacing the appendix with excuses for the code’s inefficiency 

and inelegance. The reader is invited to improve upon it, which would certainly not 

be difficult for most Pascal programmers. 


