20,726 research outputs found

    Pervasive Displays Research: What's Next?

    Get PDF
    Reports on the 7th ACM International Symposium on Pervasive Displays that took place from June 6-8 in Munich, Germany

    Telepresence and the Role of the Senses

    Get PDF
    The telepresence experience can be evoked in a number of ways. A well-known example is a player of videogames who reports about a telepresence experience, a subjective experience of being in one place or environment, even when physically situated in another place. In this paper we set the phenomenon of telepresence into a theoretical framework. As people react subjectively to stimuli from telepresence, empirical studies can give more evidence about the phenomenon. Thus, our contribution is to bridge the theoretical with the empirical. We discuss theories of perception with an emphasis on Heidegger, Merleau-Ponty and Gibson, the role of the senses and the Spinozian belief procedure. The aim is to contribute to our understanding of this phenomenon. A telepresence-study that included the affordance concept is used to empirically study how players report sense-reactions to virtual sightseeing in two cities. We investigate and explore the interplay of the philosophical and the empirical. The findings indicate that it is not only the visual sense that plays a role in this experience, but all senses

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented

    Personal data broker instead of blockchain for students’ data privacy assurance

    Get PDF
    Data logs about learning activities are being recorded at a growing pace due to the adoption and evolution of educational technologies (Edtech). Data analytics has entered the field of education under the name of learning analytics. Data analytics can provide insights that can be used to enhance learning activities for educational stakeholders, as well as helping online learning applications providers to enhance their services. However, despite the goodwill in the use of Edtech, some service providers use it as a means to collect private data about the students for their own interests and benefits. This is showcased in recent cases seen in media of bad use of students’ personal information. This growth in cases is due to the recent tightening in data privacy regulations, especially in the EU. The students or their parents should be the owners of the information about them and their learning activities online. Thus they should have the right tools to control how their information is accessed and for what purposes. Currently, there is no technological solution to prevent leaks or the misuse of data about the students or their activity. It seems appropriate to try to solve it from an automation technology perspective. In this paper, we consider the use of Blockchain technologies as a possible basis for a solution to this problem. Our analysis indicates that the Blockchain is not a suitable solution. Finally, we propose a cloud-based solution with a central personal point of management that we have called Personal Data Broker.Peer ReviewedPostprint (author's final draft

    Rethinking affordance

    Get PDF
    n/a – Critical survey essay retheorising the concept of 'affordance' in digital media context. Lead article in a special issue on the topic, co-edited by the authors for the journal Media Theory

    SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection

    Full text link
    Vision-based vehicle detection approaches achieve incredible success in recent years with the development of deep convolutional neural network (CNN). However, existing CNN based algorithms suffer from the problem that the convolutional features are scale-sensitive in object detection task but it is common that traffic images and videos contain vehicles with a large variance of scales. In this paper, we delve into the source of scale sensitivity, and reveal two key issues: 1) existing RoI pooling destroys the structure of small scale objects, 2) the large intra-class distance for a large variance of scales exceeds the representation capability of a single network. Based on these findings, we present a scale-insensitive convolutional neural network (SINet) for fast detecting vehicles with a large variance of scales. First, we present a context-aware RoI pooling to maintain the contextual information and original structure of small scale objects. Second, we present a multi-branch decision network to minimize the intra-class distance of features. These lightweight techniques bring zero extra time complexity but prominent detection accuracy improvement. The proposed techniques can be equipped with any deep network architectures and keep them trained end-to-end. Our SINet achieves state-of-the-art performance in terms of accuracy and speed (up to 37 FPS) on the KITTI benchmark and a new highway dataset, which contains a large variance of scales and extremely small objects.Comment: Accepted by IEEE Transactions on Intelligent Transportation Systems (T-ITS

    A framework for interpreting experimental errors in VISIR

    Get PDF
    Students usually do errors while performing experiments. In traditional, hands-on labs, instructors are able to help students surpass those errors. In non-traditional labs, like virtual labs or simulations, the support is usually provided by built-in mechanisms that prevent erroneous actions or that provide some sort of online assistance. In remote labs, like the Virtual Instruments Systems in Reality (VISIR) remote lab, the same principle applies. This paper describes the very initial stage of a framework for interpreting experimental errors done in VISIR. It considers the course syllabus of electrical circuits and situates the work done till the moment, in relation to that syllabus. Future work is also addressed.Partially supported by the European Commission, through grant 561735-EPP-1-2015-1-PT-EPPKA2-CBHE-JP, and by the Foundation for Science and Technology Project, FCT UID/EQU/04730/2013.info:eu-repo/semantics/publishedVersio
    • …
    corecore