1,046 research outputs found

    What’s Motivation Got to Do with It? A Survey of Recursion in the Computing Education Literature

    Get PDF
    One of the most challenging topics for both computing educators and students is recursion. Pedagogical approaches for teaching recursion have appeared in the computing education literature for over 30 years, and the topic has generated a significant body of work. Given its persistence, relatively little attention has been paid to student motivation. This article summarizes results on teaching and learning recursion explored by the computing education community, noting the relative lack of interest in motivation. It concludes by briefly discussing an approach to teaching recursion is appealing for students interested in web development

    An explicit formula for ndinv, a new statistic for two-shuffle parking functions

    Get PDF
    In a recent paper, Duane, Garsia, and Zabrocki introduced a new statistic, "ndinv'', on a family of parking functions. The definition was guided by a recursion satisfied by the polynomial ⟨ΔhmCp1Cp2...Cpk1,en⟩\langle\Delta_{h_m}C_p1C_p2...C_{pk}1,e_n\rangle, for Δhm\Delta_{h_m} a Macdonald eigenoperator, CpiC_{p_i} a modified Hall-Littlewood operator and (p1,p2,…,pk)(p_1,p_2,\dots ,p_k) a composition of n. Using their new statistics, they are able to give a new interpretation for the polynomial ⟨∇en,hjhn−j⟩\langle\nabla e_n, h_j h_n-j\rangle as a q,t numerator of parking functions by area and ndinv. We recall that in the shuffle conjecture, parking functions are q,t enumerated by area and diagonal inversion number (dinv). Since their definition is recursive, they pose the problem of obtaining a non recursive definition. We solved this problem by giving an explicit formula for ndinv similar to the classical definition of dinv. In this paper, we describe the work we did to construct this formula and to prove that the resulting ndinv is the same as the one recursively defined by Duane, Garsia, and Zabrocki

    Parking on transitive unimodular graphs

    Get PDF
    Place a car independently with probability pp at each site of a graph. Each initially vacant site is a parking spot that can fit one car. Cars simultaneously perform independent random walks. When a car encounters an available parking spot it parks there. Other cars can still drive over the site, but cannot park there. For a large class of transitive and unimodular graphs, we show that the root is almost surely visited infinitely many times when p≥1/2p \geq 1/2, and only finitely many times otherwise.Comment: 20 pages, 4 figures, revisio

    People tracking by cooperative fusion of RADAR and camera sensors

    Get PDF
    Accurate 3D tracking of objects from monocular camera poses challenges due to the loss of depth during projection. Although ranging by RADAR has proven effective in highway environments, people tracking remains beyond the capability of single sensor systems. In this paper, we propose a cooperative RADAR-camera fusion method for people tracking on the ground plane. Using average person height, joint detection likelihood is calculated by back-projecting detections from the camera onto the RADAR Range-Azimuth data. Peaks in the joint likelihood, representing candidate targets, are fed into a Particle Filter tracker. Depending on the association outcome, particles are updated using the associated detections (Tracking by Detection), or by sampling the raw likelihood itself (Tracking Before Detection). Utilizing the raw likelihood data has the advantage that lost targets are continuously tracked even if the camera or RADAR signal is below the detection threshold. We show that in single target, uncluttered environments, the proposed method entirely outperforms camera-only tracking. Experiments in a real-world urban environment also confirm that the cooperative fusion tracker produces significantly better estimates, even in difficult and ambiguous situations

    Feedback and Fluctuations in a Totally Asymmetric Simple Exclusion Process with Finite Resources

    Full text link
    We revisit a totally asymmetric simple exclusion process (TASEP) with open boundaries and a global constraint on the total number of particles [Adams, et. al. 2008 J. Stat. Mech. P06009]. In this model, the entry rate of particles into the lattice depends on the number available in the reservoir. Thus, the total occupation on the lattice feeds back into its filling process. Although a simple domain wall theory provided reasonably good predictions for Monte Carlo simulation results for certain quantities, it did not account for the fluctuations of this feedback. We generalize the previous study and find dramatically improved predictions for, e.g., the density profile on the lattice and provide a better understanding of the phenomenon of "shock localization."Comment: 11 pages, 3 figures, v2: Minor change

    Random and cooperative sequential adsorption

    Get PDF
    Irreversible random sequential adsorption (RSA) on lattices, and continuum car parking analogues, have long received attention as models for reactions on polymer chains, chemisorption on single-crystal surfaces, adsorption in colloidal systems, and solid state transformations. Cooperative generalizations of these models (CSA) are sometimes more appropriate, and can exhibit richer kinetics and spatial structure, e.g., autocatalysis and clustering. The distribution of filled or transformed sites in RSA and CSA is not described by an equilibrium Gibbs measure. This is the case even for the saturation jammed state of models where the lattice or space cannot fill completely. However exact analysis is often possible in one dimension, and a variety of powerful analytic methods have been developed for higher dimensional models. Here we review the detailed understanding of asymptotic kinetics, spatial correlations, percolative structure, etc., which is emerging for these far-from-equilibrium processes

    Working notes of the KI \u2796 Workshop on Agent Oriented Programming and Distributed Systems

    Get PDF
    Agent-oriented techniques are likely to be the next significant breakthrough in software development process. They provide a uniform approach throughout the analysis, design and implementation phases in the development life cycle. Agent-oriented techniques are a natural extension to object-oriented techniques, but while there is a whole pIethora of analysis and design methods in the object-oriented paradigm, very little work has been reported on design and analysis methods in the agent-oriented community. After surveying and examining a number of well-known object-oriented design and analysis methods, we argue that none of these methods, provide the adequate model for the design and analysis of multi-agent systems. Therefore, we propose a new agent-specific methodology that is based on and builds upon object-oriented methods. We identify three major models that need to be build during the development of multi-agent applications and describe the process of building these models
    • …
    corecore