
DePaul University DePaul University

Via Sapientiae Via Sapientiae

Technical Reports College of Computing and Digital Media

2-2014

What’s Motivation Got to Do with It? A Survey of Recursion in the What’s Motivation Got to Do with It? A Survey of Recursion in the

Computing Education Literature Computing Education Literature

Amber Settle
DePaul University, asettle@cdm.depaul.edu

Follow this and additional works at: https://via.library.depaul.edu/tr

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Settle, Amber. (2014) What’s Motivation Got to Do with It? A Survey of Recursion in the Computing
Education Literature.
https://via.library.depaul.edu/tr/23

This Article is brought to you for free and open access by the College of Computing and Digital Media at Via
Sapientiae. It has been accepted for inclusion in Technical Reports by an authorized administrator of Via
Sapientiae. For more information, please contact digitalservices@depaul.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Via Sapientiae: The Institutional Repository at DePaul University

https://core.ac.uk/display/232966231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://via.library.depaul.edu/
https://via.library.depaul.edu/tr
https://via.library.depaul.edu/cdm
https://via.library.depaul.edu/tr?utm_source=via.library.depaul.edu%2Ftr%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=via.library.depaul.edu%2Ftr%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/tr/23?utm_source=via.library.depaul.edu%2Ftr%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu

What’s Motivation Got to Do with It? A Survey of

Recursion in the Computing Education Literature
Amber Settle

DePaul University
243 S. Wabash Avenue

Chicago, IL 60604
+1 (312) 362-5324

asettle@cdm.depaul.edu

ABSTRACT

One of the most challenging topics for both computing educators

and students is recursion. Pedagogical approaches for teaching

recursion have appeared in the computing education literature for

over 30 years, and the topic has generated a significant body of

work. Given its persistence, relatively little attention has been

paid to student motivation. This article summarizes results on

teaching and learning recursion explored by the computing

education community, noting the relative lack of interest in

motivation. It concludes by briefly discussing an approach to

teaching recursion is appealing for students interested in web

development.

1. INTRODUCTION
One of the most widely studied topics among computing

educators is programming pedagogy. While the mix of topics

studied changes, some subjects continue to elicit interest from

researchers after many decades of work. Typically these problems

are the ones that elude straightforward solutions, and a

programming topic that has proven to be one of the most difficult

to master is recursion [8]. Nearly every computing educator who

writes about recursion notes that it is difficult to teach [9, 14], that

it is difficult for students to learn [10, 12, 13, 15, 17, 18, 19, 25,

26, 29, 32, 36, 37, 38, 40] or both [16, 20, 27, 39], although one

dissenter claims students only think recursion is difficult when

instructors suggest it [2]. Regardless of whether it is the teaching

or the learning that constitutes the main challenge, the

combination of approaches for teaching recursion and the degree

to which students master the topic has generated a significant

body of work in the computing education community.

This interest in recursion is natural since recursion is a

fundamental topic in the computing curriculum [6] and included

in the information technology curriculum [21]. While it is a long-

standing and prominent approach to solving problems, there is no

single approach that appears to work for all audiences. Perhaps

more interesting is the lack of attention paid to the motivational

aspects of learning recursion. It has been shown that there is a

relationship between student motivation and learning to program

[4], and authors who consider broader programming pedagogy

consistently discuss motivational aspects. It is therefore

surprising that relatively little attention has been paid to student

motivation and recursion. In this article we summarize results on

teaching and learning recursion explored by the computing

education community, discussing various approaches that have

been taken for improving pedagogy and student learning. We

note the relative lack of focus on student motivation, which

suggests that motivational aspects of learning recursion may be

understudied, and conclude by summarizing an approach to

recursion that uses web development as a motivator.

2. LITERATURE REVIEW
Recursion is a well-studied topic in computing education, with

articles dating to at least the 1980s. The focus of each researcher

varies, with novel pedagogical approaches, fruitful and

illuminating problems, students’ mental models for recursion, the

relationship between non-traditional populations and recursion,

and the impact of recursion on interest in computing the main

themes for the overall body of research. In this section we

summarize the contributions to these areas.

2.1 Novel Pedagogical Approaches
Many authors consider novel pedagogical approaches to teaching

recursion. CS Unplugged [7] activities are one venue for teaching

recursion, both to traditional college-age students [14] and to 11-

14 year-olds [17]. A notable paper suggests that problems

lending themselves to dramatization with a clear link to the

algorithm have promise for improving student understanding of

recursion [1].

One line of research suggests that a focus on structural recursion

is crucial [2, 3, 14] rather than the more common method-based

recursion. As a part of a larger paper on approaches to teaching

linked lists, Bloch argued that the most natural way to introduce

recursion is using recursive data structures [2]. Bruce and his

colleagues argue that structural recursion should be taught in CS1

courses prior to arrays, both as a way to better motivate the

development of recursive approaches and as a way of reinforcing

encapsulation during object-oriented design [3]. Other authors

followed with class activities that developed a recursive list class

in Python, building on students’ knowledge of the built-in list

class and employing active-learning techniques [14].

2.2 Effective Problems
Finding effective recursion problems is a focus of some authors.

An early article considered the use of Prolog in combination with

fractals, such as Koch’s snowflake [10], and another suggested

that the use of trees would enable students to decide when

recursion could be effectively employed [24].

It has been suggested that combinatorial problems [31] or

combinatorial counting equivalence problems [30] are particularly

well-suited to recursive decomposition. One researcher

hypothesizes that recursion graphs, modified trees that represent a

sequence of recursive calls in a detailed and formal way, are

productive in helping students visualize recursion [20]. Another

approach for helping students to visualize recursion is the use of

recursively-generated geometric designs where the visual output

of all the recursive calls can be seen [15]. The idea is to help

convey state information to the students in as clear a way as

possible. One study found that the animation of algorithms was

helpful in engendering transfer for recursion problems but only

when the approach was taken as a part of the overall learning

environment [23].

The argument that the problem should lend itself naturally to

recursion is made by an author who suggests that the problem of

randomly parking cars is particularly effective in this regard [38].

This idea is also considered by an author who suggests that

graphical problems for which iterative solutions are complex can

be highly motivating, including Sierpinski’s Triangle [37]. His

argument is that visual problems with recursive solutions that are

at least as simple as iterative ones provide students with early

examples of the strength of recursive techniques.

In a connection to unusual pedagogical approaches, one author

suggests that real-world problems with a strong connection to

situations that can be acted out by students have the potential to

improve understanding of recursion [1]. The problems mentioned

include recognizing balanced parentheses, computing factorials,

and searching an array.

2.3 Designing Pedagogical Approaches
Productive approaches to convey recursive thinking to students is

the focus of numerous studies. Earlier work especially

emphasizes the importance of taking a high-level approach to

recursion, one that separates it as much as possible from the

machine-level implementation [13], with one article arguing that

showing the correctness of recursive algorithms could be done

using abstraction and mathematical induction [11].

A suggestion that ML is the best language for teaching recursion

was made by one pair of authors, who argued that the language

lends itself naturally to experimentation, allows polymorphism,

and provides mechanisms for defining recursive data structures

[19].

One author found that an emphasis on the declarative, abstract

level when teaching recursion considerably improved recursive

program formulation [13], a result echoed by another researcher

who suggested that a template emphasizing the practical use of

recursion over the details of how recursion works showed promise

in helping students to overcome comprehension difficulties [36].

Another author suggests that the analogy of delegation, that is,

imagining recursion as a sort of task assigned by a boss to

subordinates, is a productive approach for teaching students in

majors outside of computer science [9]. Yet another analogy used

to convey recursion is that of dominos tipping over, which was

suggested by one author as a fruitful approach for any type of

linear recursion problem [40].

An interesting line of research considered the relative difficulty of

learning iteration versus learning recursion [26]. The author

compared students who learned recursion first in a functional

programming class to students who learned iteration first in a

more traditional approach to CS1. He concluded that students

learning recursion first were at least as skilled as students who

learned iteration first, although he noted several caveats about the

two populations and was hesitant to draw strong general

conclusions because of confounding factors like motivation [26].

In another line of work relating recursion and iteration a

researcher found that tail-recursive programming can be more

effectively learned by applying a formal methodology for deriving

the functions, although he cautioned that the approach should

only be applied in a CS2 course due to the mathematics required

[29].

Another area of student confusion is the development and

understanding of base cases [18]. Their suggestions were to

emphasize the declarative and abstract aspects of recursion, to be

cautious in adapting or designing concrete models (such as the

Russian Dolls model) so that they illustrate boundary values, and

to make students explicitly aware of the issues in understanding

base cases [18].

2.4 Mental Models
A large body of research in educational approaches to recursion is

the study of student mental models. One of the earliest papers on

the subject established that the mental model held by experts is

the copies model where each process is capable of triggering a

new instantiation of itself, but that novices most often held other

incorrect models such as the looping model, null model, odd

model, or magic model [22].

One paper focused on the relationship between cognitive learning

styles and conceptual models of recursion [39] providing a

particularly good survey of conceptual models for teaching

recursion (including Russian Dolls, process tracing, stack

simulation, mathematical induction, and structure template). The

authors found that students with an abstract learning style

performed better than those with concrete learning styles in

learning recursion, that concrete conceptual models were better

than abstract conceptual models in helping novice programmers to

learn recursion, that abstract learners did not necessarily benefit

more from abstract conceptual models, and that concrete learners

did not necessarily benefit more from concrete conceptual models

in learning recursion [39].

As an initial piece of a larger body of work, a group of researchers

explored the types of mental models students develop about

recursion, paying close attention to student understanding of the

active flow (when control is passed to new instantiations) and

passive flow (when control flows back from terminated recursive

calls) in recursion [16]. They identified 8 student mental models,

identifying which models were viable (led to correct

understanding of recursion) and which were not and drawing

connections between the recursion activities students perform and

the mental models they develop. In related work [27], a

questionnaire was developed to allow the assessment of student

mental models of recursion, and four more general mental models

consistent with previous work were suggested. Experimental

results found that it was more fruitful to focus on declarative

aspects of programming in helping students to develop correct

mental models for recursion [27].

2.5 Connecting Pedagogy and Mental Models
There are a series of papers that draw together work in mental

models and designing recursion problems. As described in the

paragraph above, a group of researchers classified the types of

mental models developed by students learning recursion [16],

considered the impact of introducing more complex recursive

algorithms earlier [33], investigated the impact of a language

switch from Scheme to Python [32], and considered the

relationship between being able to trace a recursive function and

write correct recursive solutions [34]. They concluded that the

language switch had not had an impact, but that the changes to the

lecture, labs, and tutorials placing a greater emphasis on

algorithms that require an understanding of both the active and

passive flow did improve students’ ability to develop viable

mental models for recursion [33]. They also recommended that

instructors show students a variety of recursive problems to avoid

instilling the belief that all recursive algorithms are similar in

structure to mathematically-based algorithms [34].

One interesting study considered whether advanced students who

had previously learned recursion in multiple classes were able to

apply the technique to problems without being prompted to do so

[12]. The author found that only a minority of students employed

backward-reasoning approaches for problems made easier by that

algorithmic technique, suggesting that recursion had not been

assimilated sufficiently well to be retained.

One unusual study analyzed learners’ discourse surrounding

recursive phenomena as a way of understanding recursion through

the students’ eyes, discovering that learners see recursion in very

different ways than educators and experts [25].

2.6 Non-traditional Populations
Several authors focus on projects that address non-traditional

populations. K-12 students are one target audience, with one

study focusing on teaching students aged 11-14 in an

extracurricular program in the university setting [17]. Other

authors consider teaching end-user programmers, that is, coders

who do not program as the main function of their job [9].

2.7 Motivation
Given the widely acknowledged difficulty of learning recursion, it

is surprising that few researchers consider the issue of student

motivation. Based on the results of their study of students aged

11-14 in an extracurricular program teaching recursion, Gunion

and her collaborators suggested that recursion activities can

improve student interest in computing [17]. As a footnote to a

study on whether iteration or recursion first made a difference in

student comprehension, one researcher noted that it was difficult

to draw the conclusion that teaching recursion first before

iteration led to deeper learning because the motivational levels

between the two populations studied may have differed [26].

Motivation for learning recursion has been directly considered by

a group of researchers involved in the Game2Learn project, who

as part of their work developed EleMental: The Recurrence [5], a

game for teaching recursion. In the game students complete three

recursion puzzles on a binary tree helped by Ele, a programmable

avatar. The study showed that students achieved statistically

significant learning gains while playing the game, and that most of

the students were enthusiastic about learning with the game, and

about the possibility of using more such games in learning

complex computing topics [5].

Motivation was also an important consideration for an author who

detailed three graphical problems that are more easily solved

using recursion than using iteration [37]. He hypothesized that

showing students in CS1 or CS2, who have yet to see trees or

sorting algorithms, problems for which recursion is a valuable

problem-solving tool was likely to be motivating for them. The

recursive solutions to these problems demonstrated that the

approach could be both clear and efficient.

3. A MOTIVATIONAL APPROACH
As seen in the summary above the papers addressing student

motivation represent a small fraction of the body of work on

teaching recursion. It can be argued that effective pedagogy

should take precedence over motivation for students learning

recursion, who are, after all, typically more advanced in their

studies. But even a study focused on other aspects could consider

motivation as one of the outcomes of its interventions, and this

appears to not be the case for most researchers.

A workshop presented at an information technology education

conference considered an approach that has significant

motivational aspects [35]. In the text from which this approach is

taken [28] the chapter on recursion appears immediately before

the chapter on web application development. The recursion

chapter begins with a series of simple functions that operate on

integers, and a discussion of recursive function calls and the stack

is presented next. The following section has multiple examples of

recursive functions including another pattern printing problem

and a function that prints Koch’s curve. The section concludes

with a function that simulates a virus-scanning program,

introducing the Python os module. A later section considers

searching, describing first linear search and then binary search. A

chapter on web application development and web searching

immediately follows the recursion chapter and discusses the

Python WWW API where three important modules are discussed.

The module urllib.request allows HTML files to be opened in

much the same way that files are opened. The module html.parser

provides a parent class HTMLParser that can be overridden to

parse HTML files in various ways. The final module is

urllib.parse which contains a method urljoin that allows a

programmer to construct absolute URLs from relative URLs

found in web pages. With all of the pieces in place the final

section is a case study of the development of a web crawler. The

chapter concludes with a discussion of how to do web page

analysis using ideas about text processing introduced in earlier

chapters.

This approach to teaching recursion employs multiple best

practices seen in the literature. A multitude of recursion problems

of various types are considered, including visually-oriented

examples [10, 15] including printing functions and Koch’s

snowflake, problems that lend themselves to tail-recursive

solutions [29, 31] such as several of the printing functions and

factorial, combinatorial problems like Fibonacci and combinations

[31], problems that fail to utilize recursion well such as Fibonacci,

and problems for which recursion allows for easier development

of efficient recursive solutions [37] such as exponentiation. As is

common in most modern textbooks the approach is high-level

with relatively little time spent discussing the mechanics of the

stack and activation records [13]. The various problems discussed

lend themselves to a variety of base cases [18], including some for

which the function does nothing at all. There is no concrete

model of recursion used in the chapter [39], with the explanation

instead relying on a wealth of different examples to illustrate

various aspects of the development of recursive functions. The

examples presented require the use of passive and active flow

during recursion in multiple ways [33, 34], with factorial, pattern

printing, Koch’s snowflake, and the virus scanner all

demonstrating various approaches to decomposing and

reconstructing solutions using recursion. The text does not

employ all of the ideas found in the literature, which to be fair,

would be difficult given that several of them are incompatible.

For example, there is no discussion of recursive data structures [2,

3, 14]. Trees [24] or arbitrarily nested lists are not used as

examples, and recursion trees [20] are not provided as a part of

the explanations. Many of the examples have iterative solutions

that are equally simple as the recursive solutions [37]. Tracing

recursive functions [34] is not a focus of the chapter.

This approach is particularly appealing for information

technology students or for computing students with an interest in

web development. The use of recursion is very natural in certain

contexts in web development, and students who understand the

utility of an approach are more likely to spend the time necessary

to reach the all-important ‘aha’ moment that comes with mastery

of that technique.

4. CONCLUSION
Recursion is a particularly well-studied problem in the computing

education literature. Articles dating from the 1980s have

considered various aspects of teaching recursion including novel

pedagogical approaches, fruitful and illuminating problems,

understanding and influencing students’ mental models of

recursion, the relationship between non-traditional populations

and recursion, and the impact of recursion on interest in

computing. Results found in the literature were summarized in

this article, drawing connections between related lines of work.

Interestingly and despite the demonstrated relationship between

student motivation and learning to program [4], very little

attention is paid to the issue of student motivation for learning

recursion. One possible explanation for this could be that students

learning recursion are typically more advanced in their studies,

making motivation less of an issue. But this is not the case for

some branches of recursion research, such those interested in

spurring interest in computing or in reaching non-traditional

populations. This gap in the recursion literature is surprising. We

briefly described an approach to using web development as a

motivator for recursion, but there are no doubt many other ways

students can be encouraged to tackle the complex and difficult

subject. Finding effective ways to motivate students to learn

recursion is clearly an open problem and should be addressed by

computing education researchers.

5. ACKNOWLEDGEMENTS
We thank Ljubomir Perković for his support in writing this article

and for his comments on earlier drafts. We also thank André

Berthiaume for his feedback on earlier drafts.

6. REFERENCES
[1] Ben-Ari, M. 1997. Recursion: From Drama to Program.

Computer Science Education, 11:3, pp. 9 – 12.

[2] Bloch, S. 2003. Teaching Linked Lists and Recursion

Without Conditionals or Null. Journal of Computing

Sciences in Colleges, 18:5, pp. 96-108.

[3] Bruce, K.B., Danyluk, A., and Murtagh, T. 2005. Why

Structural Recursion Should Be Taught Before Arrays in CS

1. In Proceedings of the 35th SIGCSE Technical Symposium

on Computer Science Education (St. Louis, Missouri, USA,

February 2005).

[4] Carbone, A., Hurst, J., Mitchell, I., and Gunstone, D. 2009.

An Exploration of Internal Factors Influencing Student

Learning of Programming. In Proceedings of the 11th

Australasian Computing Education Conference,

(Wellington, New Zealand, January 2009).

[5] Chaffin, A., Doran, K., Hicks, D., and Barnes, T. 2009.

Experimental Evaluation of Teaching Recursion in a Video

Game. In Proceedings of the 2009 ACM SIGGRAPH

Symposium on Video Games (New Orleans, Louisiana,

August 2009).

[6] Computer Science Curricula 2013: Ironman Draft (Version

1.0) February 2013. The Joint Task Force on Computing

Curricula, Association for Computing Machinery, IEEE-

Computer Society, CS2013 Steering Committee, accessed

August 2013.

[7] CS Unplugged, http://csunplugged.org/, accessed August

2013.

[8] Dale, N.B. 2006. Most Difficult Topics in CS1: Results on

an Online Survey of Educators. ACM SIGCSE Bulletin,

38:2, pp. 49 – 53.

[9] Edgington, E. 2007. Teaching and Viewing Recursion as

Delegation. Journal of Computing Sciences in Colleges,

23:1, pp. 241-246.

[10] Elenbogen, B.S. and O’Kennon, M.R. 1988. Teaching

Recursion Using Fractals in Prolog. In Proceedings of the

19th SIGCSE Technical Symposium on Computer Science

Education (Atlanta, Georgia, USA, February 1988).

[11] Ford, G. 1984. An Implementation-Independent Approach

to Teaching Recursion. In Proceedings of the 15th SIGCSE

Technical Symposium on Computer Science Education

(Philadelphia, Pennsylvania, USA, February 1984).

[12] Ginat, D. 2004. Do Senior CS Students Capitalize on

Recursion? In Proceedings of 9th Annual Conference on

Innovation and Technology in Computer Science Education

(Leeds, United Kingdom, June 2004).

[13] Ginat, D. and Shifroni, E. 1999. Teaching Recursion in a

Procedural Environment – How much should we emphasize

the Computing Model? In Proceedings of the 30th SIGCSE

Technical Symposium on Computer Science Education (St.

Louis, Missouri, USA, March 1999).

[14] Goldwasser, M.H. and Letscher, D. 2007. Teaching

Strategies for Reinforcing Structural Recursion with Lists.

Companion to the 22nd Annual ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA Educators’ Symposium) (Montreal,

Quebec, Canada, October 2007).

[15] Gordon, A. 2006. Teaching Recursion Using Recursively-

Generated Geometric Designs. Journal of Computing

Sciences in Colleges, 22:1, pp. 124-130.

[16] Götschi, T., Sanders, I., and Galpin, V. 2003. Mental

Models of Recursion. In Proceedings of the 34th SIGCSE

Technical Symposium on Computer Science Education

(Reno, Nevada, USA, February 2003).

[17] Gunion, K., Mildford, T., and Stege, U. 2009. Curing

Recursion Aversion. In Proceedings of 14th Annual

Conference on Innovation and Technology in Computer

Science Education (Paris, France, July 2009).

[18] Haberman, B. and Averbuch, H. 2002. The Case of Base

Cases: Why are They so Difficult to Recognize? Student

Difficulties with Recursion. In Proceedings of 7th Annual

Conference on Innovation and Technology in Computer

Science Education (Aarhus, Denmark, June 2002).

[19] Henderson, P.B. and Romero, F. J. 1989. Teaching

Recursion as a Problem-Solving Tool Using Standard ML.

In Proceedings of the 20th SIGCSE Technical Symposium on

Computer Science Education (Louisville, Kentucky, USA,

February 1989).

[20] Hsin, W.J. 2008. Teaching Recursion Using Recursion

Graphs. Journal of Computing Sciences in Colleges, 23:4,

pp. 217-222.

[21] Information Technology 2008. Curriculum Guidelines for

Undergraduate Degree Programs in Information Technology.

Association for Computing Machinery and IEEE Computer

Society.

http://www.acm.org//education/curricula/IT2008%20Curricu

lum.pdf, accessed August 2013.

[22] Kahney, H. 1983. What Do Novice Programmers Know

About Recursion. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, (Boston,

Massachusetts, USA, December 1983).

[23] Kann, C., Lindeman, R.W., and Heller, R. 1997. Integrating

Algorithm Animation into a Learning Environment.

Computers & Education, 28:4, pp. 223 – 228.

[24] Kruse, R.L. 1982. On Teaching Recursion. In Proceedings

of the 13th SIGCSE Technical Symposium on Computer

Science Education (Indianapolis, Indiana, USA, February

1982).

[25] Levy, D. 2001. Insights and Conflicts in Discussing

Recursion: A Case Study. Computer Science Education,

11:4, pp. 305-322.

[26] Mirolo, C. 2012. Is Iteration Really Easier to Learn than

Recursion for CS1 Students? In Proceedings of

International Computing Education Research Workshop

(Auckland, New Zealand, September 2012).

[27] Mirolo, C. 2010. Learning (through) Recursion: A

Multidimensional Analysis of the Competences Achieved by

CS1 Students. In Proceedings of 15th Annual Conference on

Innovation and Technology in Computer Science Education

(Ankara, Turkey, July 2010).

[28] Perković, L. 2012. Introduction to Computing using

Python: An Application Development Focus. John Wiley &

Sons.

[29] Rubio-Sánchez, M. 2010. Tail Recursive Programming by

Applying Generalization. In Proceedings of 15th Annual

Conference on Innovation and Technology in Computer

Science Education (Bilkent, Ankara, Turkey, June 2010).

[30] Rubio-Sánchez, M. 2008. An Introduction to Problem

Equivalence with Combinatorics. In Proceedings of 13th

Annual Conference on Innovation and Technology in

Computer Science Education (Madrid, Spain, June/July

2008).

[31] Rubio-Sánchez, M. and Hernán-Losada, I. 2007. Exploring

Recursion with Fibonacci Numbers. In Proceedings of 12th

Annual Conference on Innovation and Technology in

Computer Science Education (Dundee, Scotland, United

Kingdom, June 2007).

[32] Sanders, I. and Galpin, V. 2007. Students’ Mental Models

of Recursion at Wits. In Proceedings of 12th Annual

Conference on Innovation and Technology in Computer

Science Education (Dundee, Scotland, United Kingdom,

June 2007).

[33] Sanders, I., Galpin, V., and Götschi, T. 2006. Mental

Models of Recursion Revisited. In Proceedings of 11th

Annual Conference on Innovation and Technology in

Computer Science Education (Bologna, Italy, June 2006).

[34] Scholtz, T. and Sanders, I. 2010. Mental Models of

Recursion: Investigating Students’ Understanding of

Recursion. In Proceedings of 15th Annual Conference on

Innovation and Technology in Computer Science Education

(Ankara, Turkey, July 2010).

[35] Settle, A. 2013. Reaching the ‘Aha!’ Moment: Web

Development as a Motivator for Recursion. In Proceedings

of the 14th Annual Conference in Information Technology

Education (Orlando, Florida, October 2013).

[36] Sooriamurthi, R. 2001. Problems in Comprehending

Recursion and Suggested Solutions. In Proceedings of 6th

Annual Conference on Innovation and Technology in

Computer Science Education (Canterbury, United Kingdom,

June 2001).

[37] Stephenson, B. 2009. Using Graphical Examples to

Motivate the Study of Recursion. Journal of Computing

Sciences in Colleges, 25:1, pp. 42-50.

[38] Wirth, M. 2008. Introducing Recursion by Parking Cars.

ACM SIGCSE Bulletin, 40:4, pp. 52-55.

[39] Wu, C., Dale, N.B., and Bethel, L.J. 1998. Conceptual

Models and Cognitive Learning Styles in Teaching

Recursion. In Proceedings of the 19th SIGCSE Technical

Symposium on Computer Science Education (Atlanta,

Georgia, USA, February 1988).

[40] Yang, F-J. 2008. Another Outlook on Linear Recursion.

ACM SIGCSE Bulletin, 40:4, pp. 38-41.

	What’s Motivation Got to Do with It? A Survey of Recursion in the Computing Education Literature
	Recommended Citation

	Proceedings Template - WORD

