33 research outputs found

    Encoding Markov Logic Networks in Possibilistic Logic

    Get PDF
    Markov logic uses weighted formulas to compactly encode a probability distribution over possible worlds. Despite the use of logical formulas, Markov logic networks (MLNs) can be difficult to interpret, due to the often counter-intuitive meaning of their weights. To address this issue, we propose a method to construct a possibilistic logic theory that exactly captures what can be derived from a given MLN using maximum a posteriori (MAP) inference. Unfortunately, the size of this theory is exponential in general. We therefore also propose two methods which can derive compact theories that still capture MAP inference, but only for specific types of evidence. These theories can be used, among others, to make explicit the hidden assumptions underlying an MLN or to explain the predictions it makes.Comment: Extended version of a paper appearing in UAI 201

    Cumulative Scoring-Based Induction of Default Theories

    Get PDF
    Significant research has been conducted in recent years to extend Inductive Logic Programming (ILP) methods to induce a more expressive class of logic programs such as answer set programs. The methods proposed perform an exhaustive search for the correct hypothesis. Thus, they are sound but not scalable to real-life datasets. Lack of scalability and inability to deal with noisy data in real-life datasets restricts their applicability. In contrast, top-down ILP algorithms such as FOIL, can easily guide the search using heuristics and tolerate noise. They also scale up very well, due to the greedy nature of search for best hypothesis. However, in some cases despite having ample positive and negative examples, heuristics fail to direct the search in the correct direction. In this paper, we introduce the FOLD 2.0 algorithm - an enhanced version of our recently developed algorithm called FOLD. Our original FOLD algorithm automates the inductive learning of default theories. The enhancements presented here preserve the greedy nature of hypothesis search during clause specialization. These enhancements also avoid being stuck in local optima - a major pitfall of FOIL-like algorithms. Experiments that we report in this paper, suggest a significant improvement in terms of accuracy and expressiveness of the class of induced hypotheses. To the best of our knowledge, our FOLD 2.0 algorithm is the first heuristic based, scalable, and noise-resilient ILP system to induce answer set programs

    Synergies between machine learning and reasoning - An introduction by the Kay R. Amel group

    Get PDF
    This paper proposes a tentative and original survey of meeting points between Knowledge Representation and Reasoning (KRR) and Machine Learning (ML), two areas which have been developed quite separately in the last four decades. First, some common concerns are identified and discussed such as the types of representation used, the roles of knowledge and data, the lack or the excess of information, or the need for explanations and causal understanding. Then, the survey is organised in seven sections covering most of the territory where KRR and ML meet. We start with a section dealing with prototypical approaches from the literature on learning and reasoning: Inductive Logic Programming, Statistical Relational Learning, and Neurosymbolic AI, where ideas from rule-based reasoning are combined with ML. Then we focus on the use of various forms of background knowledge in learning, ranging from additional regularisation terms in loss functions, to the problem of aligning symbolic and vector space representations, or the use of knowledge graphs for learning. Then, the next section describes how KRR notions may benefit to learning tasks. For instance, constraints can be used as in declarative data mining for influencing the learned patterns; or semantic features are exploited in low-shot learning to compensate for the lack of data; or yet we can take advantage of analogies for learning purposes. Conversely, another section investigates how ML methods may serve KRR goals. For instance, one may learn special kinds of rules such as default rules, fuzzy rules or threshold rules, or special types of information such as constraints, or preferences. The section also covers formal concept analysis and rough sets-based methods. Yet another section reviews various interactions between Automated Reasoning and ML, such as the use of ML methods in SAT solving to make reasoning faster. Then a section deals with works related to model accountability, including explainability and interpretability, fairness and robustness. Finally, a section covers works on handling imperfect or incomplete data, including the problem of learning from uncertain or coarse data, the use of belief functions for regression, a revision-based view of the EM algorithm, the use of possibility theory in statistics, or the learning of imprecise models. This paper thus aims at a better mutual understanding of research in KRR and ML, and how they can cooperate. The paper is completed by an abundant bibliography

    Efficient Maximum A-Posteriori Inference in Markov Logic and Application in Description Logics

    Full text link
    Maximum a-posteriori (MAP) query in statistical relational models computes the most probable world given evidence and further knowledge about the domain. It is arguably one of the most important types of computational problems, since it is also used as a subroutine in weight learning algorithms. In this thesis, we discuss an improved inference algorithm and an application for MAP queries. We focus on Markov logic (ML) as statistical relational formalism. Markov logic combines Markov networks with first-order logic by attaching weights to first-order formulas. For inference, we improve existing work which translates MAP queries to integer linear programs (ILP). The motivation is that existing ILP solvers are very stable and fast and are able to precisely estimate the quality of an intermediate solution. In our work, we focus on improving the translation process such that we result in ILPs having fewer variables and fewer constraints. Our main contribution is the Cutting Plane Aggregation (CPA) approach which leverages symmetries in ML networks and parallelizes MAP inference. Additionally, we integrate the cutting plane inference (Riedel 2008) algorithm which significantly reduces the number of groundings by solving multiple smaller ILPs instead of one large ILP. We present the new Markov logic engine RockIt which outperforms state-of-the-art engines in standard Markov logic benchmarks. Afterwards, we apply the MAP query to description logics. Description logics (DL) are knowledge representation formalisms whose expressivity is higher than propositional logic but lower than first-order logic. The most popular DLs have been standardized in the ontology language OWL and are an elementary component in the Semantic Web. We combine Markov logic, which essentially follows the semantic of a log-linear model, with description logics to log-linear description logics. In log-linear description logic weights can be attached to any description logic axiom. Furthermore, we introduce a new query type which computes the most-probable 'coherent' world. Possible applications of log-linear description logics are mainly located in the area of ontology learning and data integration. With our novel log-linear description logic reasoner ELog, we experimentally show that more expressivity increases quality and that the solutions of optimal solving strategies have higher quality than the solutions of approximate solving strategies
    corecore