559 research outputs found

    Supervised and Semi-Supervised Self-Organizing Maps for Regression and Classification Focusing on Hyperspectral Data

    Get PDF
    Machine learning approaches are valuable methods in hyperspectral remote sensing, especially for the classification of land cover or for the regression of physical parameters. While the recording of hyperspectral data has become affordable with innovative technologies, the acquisition of reference data (ground truth) has remained expensive and time-consuming. There is a need for methodological approaches that can handle datasets with significantly more hyperspectral input data than reference data. We introduce the Supervised Self-organizing Maps (SuSi) framework, which can perform unsupervised, supervised and semi-supervised classification as well as regression on high-dimensional data. The methodology of the SuSi framework is presented and compared to other frameworks. Its different parts are evaluated on two hyperspectral datasets. The results of the evaluations can be summarized in four major findings: (1) The supervised and semi-Supervised Self-organizing Maps (SOM) outperform random forest in the regression of soil moisture. (2) In the classification of land cover, the supervised and semi-supervised SOM reveal great potential. (3) The unsupervised SOM is a valuable tool to understand the data. (4) The SuSi framework is versatile, flexible, and easy to use. The SuSi framework is provided as an open-source Python package on GitHub

    Fusion of hyperspectral and ground penetrating radar to estimate soil moisture

    Full text link
    In this contribution, we investigate the potential of hyperspectral data combined with either simulated ground penetrating radar (GPR) or simulated (sensor-like) soil-moisture data to estimate soil moisture. We propose two simulation approaches to extend a given multi-sensor dataset which contains sparse GPR data. In the first approach, simulated GPR data is generated either by an interpolation along the time axis or by a machine learning model. The second approach includes the simulation of soil-moisture along the GPR profile. The soil-moisture estimation is improved significantly by the fusion of hyperspectral and GPR data. In contrast, the combination of simulated, sensor-like soil-moisture values and hyperspectral data achieves the worst regression performance. In conclusion, the estimation of soil moisture with hyperspectral and GPR data engages further investigations.Comment: This work has been accepted to the IEEE WHISPERS 2018 conference. (C) 2018 IEE

    Development and Applications of Machine Learning Methods for Hyperspectral Data

    Get PDF
    Die hyperspektrale Fernerkundung der Erde stützt sich auf Daten passiver optischer Sensoren, die auf Plattformen wie Satelliten und unbemannten Luftfahrzeugen montiert sind. Hyperspektrale Daten umfassen Informationen zur Identifizierung von Materialien und zur Überwachung von Umweltvariablen wie Bodentextur, Bodenfeuchte, Chlorophyll a und Landbedeckung. Methoden zur Datenanalyse sind erforderlich, um Informationen aus hyperspektralen Daten zu erhalten. Ein leistungsstarkes Werkzeug bei der Analyse von Hyperspektraldaten ist das Maschinelle Lernen, eine Untergruppe von Künstlicher Intelligenz. Maschinelle Lernverfahren können nichtlineare Korrelationen lösen und sind bei steigenden Datenmengen skalierbar. Jeder Datensatz und jedes maschinelle Lernverfahren bringt neue Herausforderungen mit sich, die innovative Lösungen erfordern. Das Ziel dieser Arbeit ist die Entwicklung und Anwendung von maschinellen Lernverfahren auf hyperspektrale Fernerkundungsdaten. Im Rahmen dieser Arbeit werden Studien vorgestellt, die sich mit drei wesentlichen Herausforderungen befassen: (I) Datensätze, welche nur wenige Datenpunkte mit dazugehörigen Ausgabedaten enthalten, (II) das begrenzte Potential von nicht-tiefen maschinellen Lernverfahren auf hyperspektralen Daten und (III) Unterschiede zwischen den Verteilungen der Trainings- und Testdatensätzen. Die Studien zur Herausforderung (I) führen zur Entwicklung und Veröffentlichung eines Frameworks von Selbstorganisierten Karten (SOMs) für unüberwachtes, überwachtes und teilüberwachtes Lernen. Die SOM wird auf einen hyperspektralen Datensatz in der (teil-)überwachten Regression der Bodenfeuchte angewendet und übertrifft ein Standardverfahren des maschinellen Lernens. Das SOM-Framework zeigt eine angemessene Leistung in der (teil-)überwachten Klassifikation der Landbedeckung. Es bietet zusätzliche Visualisierungsmöglichkeiten, um das Verständnis des zugrunde liegenden Datensatzes zu verbessern. In den Studien, die sich mit Herausforderung (II) befassen, werden drei innovative eindimensionale Convolutional Neural Network (CNN) Architekturen entwickelt. Die CNNs werden für eine Bodentexturklassifikation auf einen frei verfügbaren hyperspektralen Datensatz angewendet. Ihre Leistung wird mit zwei bestehenden CNN-Ansätzen und einem Random Forest verglichen. Die beiden wichtigsten Erkenntnisse lassen sich wie folgt zusammenfassen: Erstens zeigen die CNN-Ansätze eine deutlich bessere Leistung als der angewandte nicht-tiefe Random Forest-Ansatz. Zweitens verbessert das Hinzufügen von Informationen über hyperspektrale Bandnummern zur Eingabeschicht eines CNNs die Leistung im Bezug auf die einzelnen Klassen. Die Studien über die Herausforderung (III) basieren auf einem Datensatz, der auf fünf verschiedenen Messgebieten in Peru im Jahr 2019 erfasst wurde. Die Unterschiede zwischen den Messgebieten werden mit qualitativen Methoden und mit unüberwachten maschinellen Lernverfahren, wie zum Beispiel Principal Component Analysis und Autoencoder, analysiert. Basierend auf den Ergebnissen wird eine überwachte Regression der Bodenfeuchte bei verschiedenen Kombinationen von Messgebieten durchgeführt. Zusätzlich wird der Datensatz mit Monte-Carlo-Methoden ergänzt, um die Auswirkungen der Verschiebung der Verteilungen des Datensatzes auf die Regression zu untersuchen. Der angewandte SOM-Regressor ist relativ robust gegenüber dem Rauschen des Bodenfeuchtesensors und zeigt eine gute Leistung bei kleinen Datensätzen, während der angewandte Random Forest auf dem gesamten Datensatz am besten funktioniert. Die Verschiebung der Verteilungen macht diese Regressionsaufgabe schwierig; einige Kombinationen von Messgebieten bilden einen deutlich sinnvolleren Trainingsdatensatz als andere. Insgesamt zeigen die vorgestellten Studien, die sich mit den drei größten Herausforderungen befassen, vielversprechende Ergebnisse. Die Arbeit gibt schließlich Hinweise darauf, wie die entwickelten maschinellen Lernverfahren in der zukünftigen Forschung weiter verbessert werden können

    Comparative analysis of machine and deep learning models for soil properties prediction from hyperspectral visual band

    Get PDF
    Estimating various properties of soil, including moisture, carbon, and nitrogen, is crucial for studying their correlation with plant health and food production. However, conventional methods such as oven-drying and chemical analysis are laborious, expensive, and only feasible for a limited land area. With the advent of remote sensing technologies like multi/hyperspectral imaging, it is now possible to predict soil properties non-invasive and cost-effectively for a large expanse of bare land. Recent research shows the possibility of predicting those soil contents from a wide range of hyperspectral data using good prediction algorithms. However, these kinds of hyperspectral sensors are expensive and not widely available. Therefore, this paper investigates different machine and deep learning techniques to predict soil nutrient properties using only the red (R), green (G), and blue (B) bands data to propose a suitable machine/deep learning model that can be used as a rapid soil test. Another objective of this research is to observe and compare the prediction accuracy in three cases i. hyperspectral band ii. full spectrum of the visual band, and iii. three-channel of RGB band and provide a guideline to the user on which spectrum information they should use to predict those soil properties. The outcome of this research helps to develop a mobile application that is easy to use for a quick soil test. This research also explores learning-based algorithms with significant feature combinations and their performance comparisons in predicting soil properties from visual band data. For this, we also explore the impact of dimensional reduction (i.e., principal component analysis) and transformations (i.e., empirical mode decomposition) of features. The results show that the proposed model can comparably predict the soil contents from the three-channel RGB data

    Soil Texture Classification with 1D Convolutional Neural Networks based on Hyperspectral Data

    Get PDF
    Soil texture is important for many environmental processes. In this paper, we study the classification of soil texture based on hyperspectral data. We develop and implement three 1-dimensional (1D) convolutional neural networks (CNN): the LucasCNN, the LucasResNet which contains an identity block as residual network, and the LucasCoordConv with an additional coordinates layer. Furthermore, we modify two existing 1D CNN approaches for the presented classification task. The code of all five CNN approaches is available on GitHub (Riese, 2019). We evaluate the performance of the CNN approaches and compare them to a random forest classifier. Thereby, we rely on the freely available LUCAS topsoil dataset. The CNN approach with the least depth turns out to be the best performing classifier. The LucasCoordConv achieves the best performance regarding the average accuracy. In future work, we can further enhance the introduced LucasCNN, LucasResNet and LucasCoordConv and include additional variables of the rich LUCAS dataset

    Soil Texture Classification with 1D Convolutional Neural Networks based on Hyperspectral Data

    Get PDF
    Soil texture is important for many environmental processes. In this paper, we study the classification of soil texture based on hyperspectral data. We develop and implement three 1-dimensional (1D) convolutional neural networks (CNN): the LucasCNN, the LucasResNet which contains an identity block as residual network, and the LucasCoordConv with an additional coordinates layer. Furthermore, we modify two existing 1D CNN approaches for the presented classification task. The code of all five CNN approaches is available on GitHub (Riese, 2019). We evaluate the performance of the CNN approaches and compare them to a random forest classifier. Thereby, we rely on the freely available LUCAS topsoil dataset. The CNN approach with the least depth turns out to be the best performing classifier. The LucasCoordConv achieves the best performance regarding the average accuracy. In future work, we can further enhance the introduced LucasCNN, LucasResNet and LucasCoordConv and include additional variables of the rich LUCAS dataset.Comment: Accepted to the ISPRS Geospatial Week 2019 in Enschede (NL

    Soil moisture, organic carbon, and nitrogen content prediction with hyperspectral data using regression models

    Get PDF
    Soil moisture, soil organic carbon, and nitrogen content prediction are considered significant fields of study as they are directly related to plant health and food production. Direct estimation of these soil properties with traditional methods, for example, the oven-drying technique and chemical analysis, is a time and resource-consuming approach and can predict only smaller areas. With the significant development of remote sensing and hyperspectral (HS) imaging technologies, soil moisture, carbon, and nitrogen can be estimated over vast areas. This paper presents a generalized approach to predicting three different essential soil contents using a comprehensive study of various machine learning (ML) models by considering the dimensional reduction in feature spaces. In this study, we have used three popular benchmark HS datasets captured in Germany and Sweden. The efficacy of different ML algorithms is evaluated to predict soil content, and significant improvement is obtained when a specific range of bands is selected. The performance of ML models is further improved by applying principal component analysis (PCA), a dimensional reduction method that works with an unsupervised learning method. The effect of soil temperature on soil moisture prediction is evaluated in this study, and the results show that when the soil temperature is considered with the HS band, the soil moisture prediction accuracy does not improve. However, the combined effect of band selection and feature transformation using PCA significantly enhances the prediction accuracy for soil moisture, carbon, and nitrogen content. This study represents a comprehensive analysis of a wide range of established ML regression models using data preprocessing, effective band selection, and data dimension reduction and attempt to understand which feature combinations provide the best accuracy. The outcomes of several ML models are verified with validation techniques and the best- and worst-case scenarios in terms of soil content are noted. The proposed approach outperforms existing estimation techniques

    Machine Learning Framework for the Estimation of Average Speed in Rural Road Networks with OpenStreetMap Data

    Get PDF
    Average speed information, which is essential for routing applications, is often missing in the freely available OpenStreetMap (OSM) road network. In this contribution, we propose an estimation framework, including different machine learning (ML) models that estimate rural roads’ average speed based on current road information in OSM. We rely on three datasets covering two regions in Chile and Australia. Google Directions API data serves as reference data. An appropriate estimation framework is presented, which involves supervised ML models, unsupervised clustering, and dimensionality reduction to generate new input features. The regression performance of each model with different input feature modes is evaluated on each dataset. The best performing model results in a coefficient of determination R2^{2}=80.43%, which is significantly better than previous approaches relying on domain-knowledge. Overall, the potential of the ML-based estimation framework to estimate the average speed with OSM road network data is demonstrated. This ML-based approach is data-driven and does not require any domain knowledge. In the future, we intend to focus on the generalization ability of the estimation framework concerning its application in different regions worldwide. The implementation of our estimation framework for an exemplary dataset is provided on GitHub
    corecore