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Abstract 18 

Crop Water Stress Index (CWSI) is a reliable indicator of water status in plants and has been utilized 19 

for stress monitoring, yield prediction, and irrigation scheduling. Despite this, however, its use is limited 20 

because its estimation requires the baseline temperatures under similar environmental conditions, which 21 

can be problematic. In this study, field crop experiments were performed to monitor the canopy 22 

temperature of Indian mustard (Brassica Juncea) from crop development through harvest under 23 

different irrigation treatment levels during 2017 and 2018 growing seasons. Kohonen Self-Organizing 24 

Map (KSOM), feed-forward neural network (FFNN) and multiple linear regression (MLR) models were 25 

developed for estimating the well-watered canopy temperature (Tc-ww) using air temperature and relative 26 

humidity as input predictor variables. Comparisons were performed between model estimated and 27 

measured Tc-ww values. The findings indicate that the KSOM-modelled values presented a better 28 

agreement with the measured values in comparison to MLR and FFNN based estimates, with R2 values 29 

of 0.978, 0.924 and 0.923 for KSOM, MLR and FFNN, respectively during model validation. The dry 30 

canopy temperature was estimated to be air temperature plus 2 °C. The CWSI computed using KSOM 31 

based estimates of Tc-ww was compared with the CWSI obtained from measured values of Tc-ww. The 32 

results suggest a significant potential of KSOM for reliable estimation of the Tc-ww for calculating the 33 

CWSI that can be automated for developing precision irrigation systems. 34 

Keywords: Neural computing; multiple linear regression; Unsupervised learning; Model 35 

performance; Plant water status. 36 
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1. Introduction 37 

Indian mustard (Brassica Juncea) accounts for nearly 90% of the rapeseed mustard cultivated area of 38 

India (MoEFCC 2016). It is a widely grown crop and the most prominent winter oilseed crop primarily 39 

producing vegetable oil along with vegetable, spice and fodder (Shekhawat et al. 2012). Although 40 

Indian mustard has a reputation of being tolerant to water stress (Wright et al. 1996; Kumar et al. 2020), 41 

irrigation schedule significantly affects its yield (Boomiraj et al. 2010; Mishra et al. 2019). Previous 42 

studies have indicated that frequent irrigation significantly increases stover yield but hampers the 43 

fruiting (Singh and Singh 2019). Moreover, the seed yield decreases significantly during drought or 44 

water-stressed conditions (Singh et at. 2018; Rana et al. 2019). This necessitates a thorough 45 

understanding of plant water status and associated degree of water stress, crop and water use efficiency. 46 

Monitoring tools capable of providing precise information regarding the water status of crops would, 47 

therefore, be useful for efficient irrigation scheduling and management (Adeyemi et al. 2018). 48 

Infrared thermometry-based measurements of canopy temperature (Tc) have been 49 

acknowledged as a non-destructive and reliable plant water status indicator (Osroosh et al. 2015; 50 

Ihuoma and Madramotoo 2017; Romero-Trigueros et al. 2019). The utility of Tc for determining the 51 

water status in plants is based on the effect of relative transpirational cooling (Ehrler 1973; Hou et al. 52 

2019). Apart from its dependence on plant water status, Tc is also governed by the prevailing 53 

environmental conditions including air temperature, wind speed, humidity and solar radiation (Poirier-54 

Pocovi and Bailey 2020). Thus, Tc must be normalized before its application to account for the 55 

prevailing environmental dynamics (Gerhards et al. 2019). The most common approach to normalize 56 

the Tc is to use the crop water stress index (CWSI), initially proposed by Jackson et al. (1981).  57 

CWSI is a simple tool that quantifies the crop water status for scheduling irrigation in crops 58 

(King and Shellie 2016). It has been used for monitoring water status in plants, detecting onset of 59 

moisture stress, predicting yield and scheduling irrigation in different crops (Yuan et al. 2004; Gontia 60 

and Tiwari 2008; Yildirim et al. 2012; Akkuzu et al. 2013; Gonzalez-Dugo et al. 2014; Bellvert et al. 61 

2016; Kumar et al. 2020b; Anda et al. 2020). The limits of CWSI are 0 and 1, with 0 indicating the 62 

well-watered or non-water stressed condition and 1 representing the non-transpiring or severely water-63 

stressed condition. CWSI is basically defined as (Jackson et al. 1981), 64 

𝐶𝑊𝑆𝐼 =
[(𝑇𝑐−𝑇𝑎)−(𝑇𝑐−𝑤𝑤−𝑇𝑎)]

[(𝑇𝑐−𝑑𝑟𝑦−𝑇𝑎)−(𝑇𝑐−𝑤𝑤−𝑇𝑎)]
    (1) 65 

Where, Tc is the actual canopy temperature (°C); Ta is the air temperature (°C); Tc-ww is the canopy 66 

temperature of a plant transpiring at full potential when the soil water is adequate (°C); and Tc-dry is the 67 

canopy temperature of a non-transpiring plant due to stomatal closure when the soil becomes dry (°C). 68 

The terms (Tc-ww - Ta) and (Tc-dry - Ta) represent the lower and upper baseline temperatures, respectively. 69 

There are two versions of CWSI in the literature, theoretical CWSI, and empirical CWSI. The 70 

difference in the versions is how the upper and lower baseline temperatures are calculated. The 71 
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theoretical approach, initially given by Jackson et al. (1981) is based on the energy balance model. The 72 

baseline temperatures are calculated using Equation 2 and 3, respectively. 73 

(𝑇𝑐−𝑤𝑤 − 𝑇𝑎) =
𝑟𝑎𝑅𝑛

𝜌 𝑐𝜌
 

𝛾(1 + (𝑟𝑐−𝑤𝑤 𝑟𝑎⁄ ))

𝛥 + 𝛾(1 + (𝑟𝑐−𝑤𝑤 𝑟𝑎⁄ ))
 − 

(𝑒𝑠 − 𝑒𝐴)

𝛥 + 𝛾(1 + (𝑟𝑐−𝑤𝑤 𝑟𝑎⁄ ))
 (2) 

(𝑇𝑐−𝑑𝑟𝑦 − 𝑇𝑎) =
𝑟𝑎𝑅𝑛

𝜌 𝑐𝜌
 

𝛾 (1 + (𝑟𝑐−𝑑𝑟𝑦 𝑟𝑎⁄ ))

𝛥 + 𝛾 (1 + (𝑟𝑐−𝑑𝑟𝑦 𝑟𝑎⁄ ))
 − 

(𝑒𝑠 − 𝑒𝐴)

𝛥 + 𝛾 (1 + (𝑟𝑐−𝑑𝑟𝑦 𝑟𝑎⁄ ))
 (3) 

Where, γ = psychrometric constant (kPa °C-1); Rn = net radiation (W m-2); rc-dry = crop canopy resistance 74 

under dry conditions (sm-1); rc-ww = crop canopy resistance under well-watered conditions (sm-1); ra = 75 

aerodynamic resistance (sm-1); ρ = mean air density at constant pressure (Kg m-3); cρ = heat capacity of 76 

air (J Kg-1 °C-1); es = saturated vapour pressure (kPa); ea = actual vapour pressure (kPa); and Δ = slope 77 

of saturated vapour pressure (kPa °C-1). 78 

The empirical approach was introduced by Idso et al. (1981) and considers the experimental 79 

observations of the baseline canopy temperatures. The lower baseline is generally obtained through a 80 

linear regression between (Tc – Ta) and vapor pressure deficit for potentially transpiring or well-watered 81 

crops, however, direct observations of Tc-ww provide more accurate estimates of CWSI (Yuan et al. 82 

2004). Previous studies have shown that the upper baseline which indicates a non-transpiring crop is 83 

well represented by air temperature plus a constant value (King and Shellie 2018; Adeyemi et al. 2018).  84 

As seen above, the theoretical approach involves numerous complex meteorological data to 85 

compute the CWSI baselines. Although, the model has been found to precisely assess the crop water 86 

stress (Yuan et al. 2004; Heydari et al. 2019), its application in commercial crop production is limited 87 

due to requirement of complex input model parameters, particularly crop canopy resistance, 88 

aerodynamic resistance, and net radiation values (Al-Faraj et al. 2001). The empirical approach is 89 

simple to use and gives a reliable indication of crop water stress. It has, however, been shown that the 90 

Tc-ww depends on the crop growth and the agro-climate in which it is grown (Kumar et al. 2019). Further, 91 

direct measurements of Tc-ww and Tc-dry under similar environmental conditions as the Tc are practically 92 

unfeasible due to experimental constraints, as both involve field soil water that is either undesirable (Tc-93 

dry) or unattainable (Tc-ww) in practical conditions (Kumar et al. 2020a). 94 

Artificial reference surfaces for estimating the baseline temperatures have been developed and 95 

successfully used under similar environmental conditions (Agam et al. 2013). These include the use of 96 

well-watered and water-stressed plots, leaves sprayed with water and covered with petroleum jelly and 97 

the application of wet and dry filter papers (Meron et al. 2010; Alchanatis et al. 2010). However, they 98 

require extensive maintenance and intensive data acquisition, which limits their use in precision 99 

irrigation systems (Maes and Steppe 2012). Numerical estimation of the baseline temperatures through 100 

physical models has also been found to give reliable results. Jones (1999) used the leaf energy balance 101 

model to develop the predictive equations for the baseline temperatures. The numerical estimation of 102 
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the baseline temperature eliminates the need for an artificial reference surface, but it involves 103 

measurements of the equation parameters, routine observation of which is not feasible owing to the 104 

expensive instrumentation and lack of technical know-how (Park 2018). Hence, estimation of the 105 

baseline temperature through parsimonious predictive models using limited climatic data will enhance 106 

the utilization of CWSI as a tool for scheduling irrigation and monitoring crop stress (Osroosh et al. 107 

2016; Egea et al. 2017).  108 

The application of multiple linear regression (MLR) using climatic data including wind speed, 109 

vapor pressure deficit (VPD), air temperature, and solar radiation has been found to improve Tc-ww 110 

prediction for a soybean crop, with the correlation coefficients ranging between 0.69-0.84 (Payero and 111 

Irmak 2006). The value of Tc-dry has been observed to be equal to the air temperature plus a constant 112 

temperature, which varies with the crop type (O’Shaughnessy et al. 2011). King and Shellie (2016) 113 

reported on the application of artificial neural networks (ANN) in improving the Tc-ww prediction using 114 

wind speed, air temperature, VPD, and solar radiation as input data. Although the ANN and MLR 115 

approaches have been successful in modeling complex, unknown relationships to predict physical 116 

variables, their predictions are sensitive to the availability and quality of input data used in model 117 

development. In other words, missing values or outliers in the input data can infuse large errors in their 118 

predictions (Adeloye et al. 2012). Indeed, ANN has been observed to give unrealistic results when such 119 

a noise is present in the input data (Rustum 2009).  120 

On the contrary, unsupervised neural networks, known as Kohonen Self-Organizing Maps 121 

(KSOM) (Kohonen 1990; Kohonen et al. 1996) have no specific input or output arguments. KSOM 122 

clusters a large dimensional data into a small dimensional map, thus making any inherent correlations 123 

between the variables much more visible (Kothari and Islam 1999). The clustering enables effective 124 

replacement of the missing values or outliers by their corresponding features in the map, thereby causing 125 

no hindrance to the predictions of the model. Due to its versatility, the KSOM has been widely used in 126 

hydrological modeling including evapotranspiration modeling (Adeloye et al. 2011), global water flows 127 

assessment (Clark et al. 2015), water quality modeling (Rustum and Adeloye 2007; Ramachandran et 128 

al. 2019), streamflow forecasting (Mwale et al. 2014), rainfall-runoff modeling (Adeloye and Rustum 129 

2012), soil moisture (Riese and Keller 2018), irrigation management (Ohana-Levi et al. 2019) and 130 

groundwater studies (Chen et al. 2018).  131 

To the best of our knowledge, a KSOM has never been used to predict the baseline temperature 132 

(Tc-ww) for calculating the CWSI. Let alone the KSOM, even the application of ANN in this field has 133 

been reported only by King and Shellie (2016). Hence, the study aims to investigate the performance 134 

of KSOM to estimate the Tc-ww for CWSI determination. The specific objectives are to: 135 

1. Develop and validate a KSOM model to estimate the Tc-ww and compare its values with 136 

experimentally derived Tc-ww. 137 

2. Evaluate the performance of the KSOM model with multiple linear regression and feed-forward 138 

neural network models developed for estimating Tc-ww. 139 
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3. Apply the KSOM estimated Tc-ww for predicting the CWSI in Indian mustard. 140 

2. Materials and Methods 141 

2.1 Agricultural plot and experimental details 142 

The study was carried out during the 2017 and 2018 growing seasons at the agricultural experimental 143 

station of the National Institute of Technology, Hamirpur, India (altitude: 900 m asl; longitude: 76° 31' 144 

33''; latitude: 31° 42' 40''). Field crop experiments were performed on Indian mustard (Brassica Juncea) 145 

from September to December. The climate of the study area is humid sub-tropical with seasonal mean 146 

values of relative humidity, air temperature, solar radiation and wind speed of 74.2 %, 19.10 °C, 0.16 147 

kW m-2, and 1.8 m s-1 respectively. The average seasonal rainfall is 65 mm. The soil in the experimental 148 

station had uniform sandy loam texture (silt = 24%, sand = 55% and clay = 21%) up to 1.6 m depth. 149 

The permanent wilting point (PWP) and field capacity (FC) of the soil obtained using pressure plate 150 

apparatus were 0.07 cm3 cm-3 and 0.22 cm3 cm-3 respectively. The available soil water (ASW), defined 151 

as the difference between FC and PWP, was estimated to be 0.15 cm3 cm-3. This is a relatively low 152 

ASW which should accelerate the drying up of the soil and hence make the determination of the Tc-dry 153 

much more rapid. For soils with more water retention capacity, the drying process will be much slower 154 

especially during wet periods. 155 

The experimental layout was designed using the randomized complete block design (RCBD). 156 

The field was divided into eight treatment plots (T1 to T8) with three replications (R1 to R3). Figure 1 157 

shows the layout of the experimental plot. Irrigation in each trial was identical and provided for the 158 

application of eight levels of treatments, one for each of the 2m × 2m sized plots. The plots were 159 

separated from each other by embedding asbestos sheets 2m deep to prevent the horizontal flow of soil 160 

water.  161 

Figure 1 162 

The irrigation treatments were based on a specific level of soil water depletion (SWD) of the 163 

ASW in the crop root zone. Treatment T8 was not provided with any supplemental irrigation (except 164 

for pre-sowing and one for the crop survival) during the entire crop season. Treatment T1 was provided 165 

with frequent irrigations to maintain the water content near the FC. Treatments T8 and T1 were 166 

deliberately kept dry and well-watered, to allow the estimation of Tc-dry and Tc-ww, respectively. The 167 

maximum level of SWD allowed in the treatments T2, T3, T4, T5, T6, and T7 was 10%, 20%, 30%, 168 

40%, 50% and 60% of ASW, respectively. The soil water was monitored daily using a capacitance 169 

probe (Sentek Sensor Technologies, SA, Australia), which recorded the volumetric water content 170 

(VWC) every 0.1 m interval up to 1.6 m depth. The percentage SWD of ASW in the effective root zone 171 

was estimated using the relation SWD =  (FC − VWC)/ASW. Water was supplied to respective plots 172 

with the help of a water hose (surface irrigation) in calculated amounts (water meter installed at the 173 

inlet). A tipping bucket rain gauge was used for recording the rainfall. 174 
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The field was prepared using tilling and harrowing operations. At the beginning of the crop 175 

period, farmyard green manure was applied in all the plots. The crops were suitably fertilized during 176 

the growth stages with 100:40:40 Nitrogen-Phosphorus-Potassium (NPK) fertilizers. The crops were 177 

adequately spaced through the thinning process at 15-20 days after sowing (DAS). Treatment plots 178 

consisted of approximately 60 plants with five rows having twelve plants per row. Table 1 presents the 179 

relevant crop details. The crop growth period was divided into 4 stages viz. vegetative (initial stage), 180 

flowering (crop development stage), pod formation and seed development (mid-season stage) and 181 

maturity and harvest (late-season stage) as given in FAO-56 (Allen et al. 1998).  182 

Table 1 183 

2.2 Canopy temperature and weather monitoring 184 

A multi-meter weather monitoring and data logging system (METER Group Inc., Pullman, WA, USA) 185 

installed near the field was utilized for recording relative humidity (RH) and air temperature (Ta). The 186 

climatic data were recorded at an interval of 10 minutes. The canopy temperature (Tc) was measured 187 

using a portable hand-held infrared thermometer (IRT) (MI-2H0, Apogee Instruments Inc, North Logan, 188 

UT, USA). The IRT operates within an atmospheric window of 8µm to 14µm with a response time less 189 

than 600 milliseconds and was accurate to ±0.3 °C. The Tc values were recorded between 12 PM and 2 190 

PM under clear sky conditions. Each Tc observation was recorded from four directions (north, south, 191 

west and east) to avoid radiation effects. The recorded observations were averaged to determine the Tc 192 

of the treatment. The measurement of Tc began at 20 DAS when 70% of crop cover was achieved. The 193 

Tc measured from treatment T1 represented the Tc-ww value. The value of Tc-dry was based on Tc 194 

measurements made from T8 only when the crop was severely stressed and about to wilt. The collected 195 

data in 2017 was used for model development (training or calibration) while the data in 2018 was used 196 

for model validation. The statistical summary of the development and validation data sets is presented 197 

in Table 2.  198 

Table 2  199 

2.3 Kohonen Self-organizing maps 200 

2.3.1 Basics of the Kohonen self-organizing maps 201 

KSOM is a widely used neural network, which utilizes clustering for converting non-linear complex 202 

relationship between a high dimensional input data into a simple relationship on a low dimensional 203 

output display (Kohonen et al. 1996). The KSOM is also known as the Kohonen map or feature map. 204 

The units (nodes or neurons) of the map become tuned to input signal patterns based on unsupervised 205 

competitive learning. The clustering of the input data is performed in a way, such that similar patterns 206 

are represented by the same output unit, or by one of its neighboring units (Rustum 2009; Stefanovic 207 

and Kulasora 2011). 208 
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The KSOM consists of the high dimensional input layer and the low dimensional output layer. These 209 

layers are interconnected completely with each other as shown in Figure 2. The output layer contains 210 

‘M’ neurons arranged in a 2-D grid. Each neuron consists of the same set of variables contained in the 211 

input vectors. The optimum value for M is determined using Equation 4 (Garcia and Gonzalez 2004), 212 

𝑀 = 5√𝑁      (4) 213 

Where N is the total number of data samples. Once the value of M is obtained, the dimensions of the 214 

map, columns and rows are determined using Equation 5 (Garcia and Gonzalez 2004), 215 

𝑙1

𝑙2
= √

𝑒1

𝑒2
      (5) 216 

Where l1 and l2 are the number of rows and columns of the map, respectively. e1 and e2 are the biggest 217 

and second-biggest eigenvalue of the training dataset, respectively. 218 

Figure 2 219 

2.3.2 Training the KSOM 220 

Before the KSOM is trained, the high-dimensional input data is first normalized. A normalized input 221 

vector is then chosen randomly and presented to each of the neurons seeded with random values. The 222 

KSOM uses Euclidian distance (Equation 6) to identify the code vector most similar to the presented 223 

input vector. 224 

𝐷𝑖 = √∑ 𝑚𝑗(𝑥𝑗 − 𝑤𝑖𝑗)
2𝑛

𝑗=1       (6) 225 

Where, Di is the Euclidian distance between input vector and code vector i; n is the dimension of the 226 

input vector; wij is the jth element of code vector i; xj is the jth element of current input vector; mj is mask, 227 

whose value is 0 when the given element xj of the input vector is missing, otherwise it is 1. This becomes 228 

very useful while handling problems involving missing elements because all that needs to be done is to 229 

set the value of mj for such elements as zero. The neuron for which Di is minimum is chosen as the 230 

winning node or best matching unit (BMU) as shown in Figure 2. The code vectors of this BMU and 231 

its adjacent neurons are then adjusted to improve the agreement with the input data using Equation (7). 232 

𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝛼(𝑡)ℎ𝑐𝑖(𝑡)[𝑥(𝑡) − 𝑤𝑖(𝑡)]     (7) 233 

Where, wi is the ith code vector; t is the time; α(t) is the learning rate at t; and hci (t) is the neighborhood 234 

function centered in the winner unit c at time t. In this way, each map unit develops internally the ability 235 

to identify input vectors like itself. This feature is referred to as self-organizing since the classification 236 

is achieved without providing any external output (Penn 2005). The process continues until an optimal 237 

number of iterations is reached or a specific error criterion is attained. The learning effectiveness of the 238 
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KSOM is affected by the neighborhood function and the learning rate and hence both must be chosen 239 

carefully as seen in Equations 8 and 9 respectively. 240 

ℎ𝑐𝑖(𝑡) = 𝑒𝑥𝑝
(−‖𝑟𝑐−𝑟𝑖‖2 (2𝜎2(𝑡))⁄ )

     (8) 241 

𝛼(𝑡) = 𝛼0 (
0.005

𝛼0
)

𝑡
𝑇⁄
       (9) 242 

where, T is the training length for convergence, usually taken as equal to 250 √𝑁⁄  (Vesanto et al. 2000), 243 

α0 is the initial learning rate, rc is the position of node c on the KSOM grid, ri is the position of node i 244 

on the grid, and σ(t) is the neighborhood radius. Both α(t) and σ(t) decreases monotonically with the 245 

increasing number of iterations.  246 

The topographic and quantization errors are used to measure the quality of the trained KSOM. The 247 

errors are given by Equations 10 and 11 respectively. 248 

𝑡𝑒 =
1

𝑁
∑ 𝑢(𝑋𝑖)𝑁

𝑖=1        (10) 249 

𝑞𝑒 =
1

𝑁
∑ ‖𝑋𝑖 − 𝑊𝑐‖𝑁

𝑖=1        (11) 250 

Where, te is the topographic error, qe is the quantization error, Xi is the ith input vector, Wc is the prototype 251 

vector of the winning node (BMU) for Xi; ||.|| represents the Euclidian distance (equation (6)), and u is 252 

a binary integer whose value is 1 if the first and second BMU are not adjacent units, otherwise zero. 253 

The practical applications of the KSOM include data reduction for model identification, prediction, 254 

non-linear interpolation, generalization and compression of information (Kohonen 1996). In the present 255 

study, the KSOM is applied for prediction purpose as illustrated in Figure 3. Firstly, the available data 256 

is used to train a model. Once the model is trained, the depleted vector in which the predictand variable 257 

is either deliberately removed or missing is shown to the KSOM to find its BMU. The values of the 258 

missing variables are then obtained as their corresponding values in the BMU. 259 

Figure 3 260 

2.3.3 KSOM modeling 261 

KSOM modeling in the study was performed using the SOM toolbox for MATLAB (Vesanto et al. 262 

2000; Vatanen et al. 2015). The main objective of the study was to develop and evaluate a KSOM model 263 

for estimating the Tc-ww. For this purpose, the data of RH, Ta, and Tc-ww were used in the modeling. This 264 

was purposely done to evaluate the KSOM model using easily available limited climatic data. The 265 

dataset for model development considered 210 observations of each variable. Similarly, for model 266 

validation, a set of 225 data points were used. Table 2 provides the statistical summary of the 267 

development and validation data sets.  268 
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To minimize the potential bias of the autocorrelation in the predictive ability of the trained 269 

maps, the input vectors of the training dataset were selected randomly and presented to the map in each 270 

time step. The validation was crucial to establish the ability of the KSOM model to generalize. The Tc-271 

ww was omitted from the input vectors during the validation phase, indicating that the Tc-ww values were 272 

missing. The BMU for each input vector of the validation phase was then determined to predict the 273 

missing Tc-ww values as illustrated in Figure 3. After obtaining the Tc-ww values from the BMU’s, they 274 

were compared with their actual values for evaluating the performance of KSOM during validation. 275 

2.4 Multiple linear regression 276 

As noted earlier, two more modeling paradigms were considered for the prediction of the Tc-277 

ww, namely multiple linear regression (MLR) and feed-forward neural network (FFNN). The description 278 

of MLR is available in any standard statistical textbook and will hence not be repeated here. Details and 279 

applications of MLR have been documented by Bottenberg and Ward (1963) and Aiken et al. (2012). 280 

The MLR model was implemented using the Data Analysis toolbox in Microsoft Excel. Initially, a 281 

regression equation was developed using the dataset of 2017. The regression equation consisted of Tc-282 

ww as the response variable and Ta and RH as the predictor variables. The equation was then applied to 283 

the dataset of 2018 to estimate the Tc-ww. The estimated values were then compared with the actual 284 

values for evaluating the performance of the MLR model. 285 

2.5 Feed Forward neural network 286 

ANN is successfully used for modeling unknown, complex relationships to predict physical 287 

conditions (or variables). The ANN has wide applications in water resources sector including 288 

evapotranspiration modeling, reservoir operations management, rainfall-runoff modeling, streamflow 289 

prediction, and many more (ASCE 2000). The FFNN is the most commonly used ANN algorithm in 290 

which, several forward and backward passes are made through a network until a specified target error 291 

or a maximum number of epochs is reached (Jain and Kumar 2007). Normally, the network is trained 292 

using an input-output pair to estimate the synaptic weights (Bowden et al. 2005). A network architecture 293 

essentially consists of an input layer, a hidden layer, and an output layer. The network architecture along 294 

with the synaptic weights together constitutes the model and is stored. When new inputs are presented 295 

to the model, it uses the training experience to predict the output.  296 

The neural network toolbox of MATLAB was used to develop and validate the FFNN model. 297 

The development dataset (2017) was randomly partitioned into datasets for training (70%), validation 298 

while training (15%) and testing (15%). While the random nature of partitioning data might suggest the 299 

need for repeat trials, the data record used for the analysis is unlikely to produce a radically different 300 

outcome from the single randomization, thus making repetitions unnecessary. The input data were 301 

preprocessed, and the variables were normalized to a range of −1 to +1 before presenting them to the 302 

network. 303 
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A multilayer perceptron FFNN architecture was used to estimate the Tc-ww. The neurons in the 304 

hidden layer used a hyperbolic tangent activation function and the neuron in the output layer used a 305 

logistic activation function. The network architectures were evaluated with up to ten neurons in the 306 

hidden layer. The trial-error method based on minimizing the error and maximizing the correlation 307 

within the training dataset while utilizing minimum number of hidden neurons to avoid over-fitting the 308 

model was used to select the best network architecture. The FFNN architecture consisting of a hidden 309 

layer (5 neurons) and an output neuron was selected in the study (Figure 4). The Levenberg-Marquardt 310 

algorithm was applied for training the network using the training dataset due to its faster convergence 311 

and small residuals (errors) than other algorithms tested. The performance of the developed FFNN 312 

model was then validated with the dataset of 2018. 313 

Figure 4 314 

2.6 Statistical evaluation 315 

The performance of the models KSOM, MLR, and FFNN were evaluated using qualitative (graphical 316 

regressions) and quantitative (error statistics) comparisons. The regression line significance was 317 

evaluated using the analysis of variance (ANOVA) test statistics. Following error statistics were used 318 

in the study: 319 

1. The mean bias error (MBE) measures the average bias in the model predicted values. 320 

𝑀𝐵𝐸 =  
1

𝑛
∑ (𝑥𝑖 − 𝑥′𝑖)𝑛

𝑖=1      (12) 321 

2. The mean absolute error (MAE) measures the average of the absolute errors of the model 322 

predicted values. 323 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑥𝑖 − 𝑥′𝑖|𝑛

𝑖=1      (13) 324 

3. The mean square error (MSE) measures the average of the square of the errors of the model 325 

predictions.  326 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑥𝑖 − 𝑥′𝑖)2𝑛

𝑖=1      (14) 327 

4. The percent error (PE) expresses the difference between a predicted and actual value, divided 328 

by the actual value. 329 

𝑃𝐸 =  |
�̅�− 𝑥′̅̅̅ 

�̅�
| × 100      (15) 330 

5. The correlation coefficient (R2) assesses the effectiveness of the model in predicting actual 331 

values. 332 

𝑅2 = [
𝑛 ∑ 𝑥×𝑥′−∑ 𝑥 ∑ 𝑥′

√[𝑛 ∑ 𝑥2−(∑ 𝑥)2][𝑛 ∑ 𝑥′2−(∑ 𝑥′)2]
]

2

    (16) 333 

where, x’ is the model predicted value; x is the actual value; n is the number of samples. 334 
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3. Results and Discussion 335 

3.1 Measured well-watered canopy temperature 336 

The time series plot of measured Tc-ww during 2017 and 2018 cropping seasons are shown in Figure 5. 337 

There was no difference (p>0.05) between the measured Tc-ww across the three replications, hence, their 338 

mean is utilized for indicating the variation. However, a significant difference (p≤0.05) was observed 339 

between the measured Tc-ww across the 2017 and 2018 cropping seasons. This is not surprising, given 340 

the variability in the environmental factors during both seasons as shown in Table 2. 341 

Figure 5 342 

3.2 KSOM modeling results  343 

The KSOM model development and validation was based on the dataset from 2017 and 2018 growing 344 

seasons respectively. Initially, default values of learning rate (α0 = 0.5) and neighborhood radius (σ0 = 345 

max(l1,l2)/4) were used to train the model in the SOM toolbox, where l1 and l2 are the dimensions of 346 

map computed using Equation (5). The toolbox uses Equation (4) to compute the size (number of units 347 

or neurons) of the map, however, the final units on map (M) are adjusted such that it equals the product 348 

of l1 and l2. The KSOM model has the map size of M = 72 units having dimensions 12×6. The 349 

topographic and quantization errors in the map are 0.427 and 0.109, respectively. 350 

 A significant feature of the KSOM is the development of the component planes which enables 351 

visualization of the correlation between the variables. The component planes for each variable in the 352 

KSOM are shown in Figure 6. Each plane is a sliced version of the KSOM and contains a single vector 353 

variable which represents its value in each map unit (Kalteh et al. 2008). The component planes are 354 

filled using colored or grey shades to reflect the feature values of each KSOM unit in the 2-D lattice, in 355 

such a way that, the darker the color, the lower the relative value of the component of the corresponding 356 

variable. In this way, the component planes visually indicate the regions in which a variable is high, 357 

low or average.  This facilitates visual interpretation of the correlation between KSOM modeled values 358 

of Tc-ww, RH and Ta.  359 

 Visual analysis of the component planes shows that the color (or grey) gradient of the plane for 360 

Tc-ww is parallel to the gradient of Ta, with high values of Tc-ww being correlated with the high values of 361 

Ta and vice-versa. The component plane also confirms a negative correlation of RH with Tc-ww and Ta, 362 

with low values of the former associated with the high values of the latter. A lower value of RH 363 

corresponds to a higher water deficit, resulting in an increase in the transpiration from crops (under 364 

potential soil water conditions), thereby causing relative transpirational cooling of the leaf surface. 365 

Now, by looking at the right bottom of the component plane of each variable, it can be seen that, at low 366 

values of RH, the Tc-ww is lower than the Ta, confirming the accuracy of the model predictions.  367 

Figure 6 368 
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Table 3 summarizes the error statistics for evaluating the performance of the KSOM model during 369 

development and validation. The correlation between measured and estimated values of Tc-ww was high, 370 

with R2 equal to 0.981 and 0.978 during development and validation respectively, which indicate an 371 

excellent performance of the KSOM model in estimating the Tc-ww for Indian mustard. The KSOM 372 

utilized only two variables (Ta and RH) and still presented exemplary results. Linear regression between 373 

KSOM estimated and measured values of Tc-ww demonstrate a uniform scatter around the 1-1 line as 374 

shown by the X-Y plots (Figure 7). The regression line slope was not different (p>0.05) from 1-1 line 375 

during development and validation, indicating negligible bias in the model predictions. This is further 376 

substantiated by the low bias error values given in Table 3. The results in Figure 7 also indicate that the 377 

residuals of the prediction are random and normally distributed, hence a formal analysis of the residuals 378 

is not performed. 379 

Figure 7 380 

3.3 FFNN modeling results 381 

The feed-forward neural network (FFNN) model architecture was developed using several scenarios 382 

based on trial-error and cross-validation. The best-performed model considered two input variables 383 

(RH, Ta), one hidden layer (with 5 neurons) and an output variable (Tc-ww). Figure 8 shows the X-Y plot 384 

of FFNN estimated and measured values of Tc-ww, which represent a good correlation with R2 value of 385 

0.90 and 0.92 during development and validation, respectively. The regression line slope during model 386 

validation was significantly different (p≤0.05) from 1-1 line, which indicates a bias in FFNN 387 

predictions. Table 3 shows the descriptive summary of the error statistics used in the study for 388 

evaluating the performance of the FFNN model. The prediction results were similar to those reported 389 

by King and Shellie (2016) who utilized FFNN modeling for estimating Tc-ww with four climatic 390 

variables. 391 

Figure 8 392 

3.4 MLR modeling results 393 

Estimation of Tc-ww using multiple linear regression (MLR) with the same input data (Ta, RH) provided 394 

the results similar to FFNN, during both development and validation (Table 3). The MLR equation in 395 

terms of Ta and RH is found to be as in Equation 17. 396 

𝑇𝑐−𝑤𝑤 = 1.296 + 3.948 × 𝑅𝐻 + 0.744 × 𝑇𝑎      (17) 397 

X-Y plots of MLR estimated and measured values of Tc-ww shown in Figure 9 represent a good 398 

correlation during development and validation with an R2 value of 0.91 and 0.93, respectively. The 399 

correlation between measured and MLR estimated values was similar to that of the FFNN model. The 400 

regression line slope was significantly different (p≤0.05) from 1-1 line during model validation, 401 
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indicating a bias of the MLR model in estimating Tc-ww. Table 3 presents the error statistics for the 402 

performance evaluation of the MLR model.  403 

Figure 9 404 

Table 3 405 

3.5 Comparison of KSOM, MLR and FFNN models 406 

Table 3 summarises the error statistics for performance evaluation of KSOM, FFNN and MLR models. 407 

A comparison of the error statistics indicates that the performance of KSOM was much better than 408 

FFNN and MLR in estimating the Tc-ww for Indian mustard. For example, the R2 for the KSOM model 409 

during validation was 0.98, whereas, for the FFNN and MLR models, it was 0.92 and 0.92 respectively. 410 

Also, the FFNN and MLR model results were more biased than the KSOM model results during 411 

validation, which is indicated by the bias error estimates. Table 3 shows that the errors corresponding 412 

to MLR are similar to those of the FFNN model. A similar observation was reported by King and Shellie 413 

(2016). 414 

Figure 10 shows the time series plots of the measured and model estimated values of Tc-ww 415 

during development and validation, which further strengthens the efficacy of the KSOM model. In 416 

Figure 10, it can be seen, that the KSOM estimated Tc-ww values are close to the measured values during 417 

the crop period, whereas those estimated using MLR and FFNN, although provided good results for the 418 

most part of the crop period, performed relatively poor during the mid and late growth seasons. Also, 419 

the performance of KSOM was better than MLR and FFNN during the most important validation phase. 420 

From this discussion, it can be inferred that KSOM can adequately model the Tc-ww, and its performance 421 

is better than FFNN and MLR models. 422 

Figure 10 423 

3.6 Crop water stress index 424 

A further objective was to compute the crop water stress index (CWSI) of Indian mustard under 425 

different levels (T1 – T8) of soil water depletion (SWD). This objective was kept particularly to evaluate 426 

the performance of the KSOM estimated Tc-ww in calculating the CWSI. Figures 11 and 12 show the 427 

time series plot of empirical CWSI for Indian mustard during 2017 and 2018 respectively. The empirical 428 

CWSI was computed using Equation (1) based on measured Tc-ww (CWSImeasured) and KSOM estimated 429 

Tc-ww (CWSIKSOM). As previously indicated, the value of Tc-dry was based on Tc measurements made 430 

from treatment T8 under maximum water-stressed conditions (CWSI ~ 0.8-1.0). For example, as seen 431 

in Figure 11 (T8), the Tc values during (35-40 DAS), (72-78 DAS) and (90-95 DAS) were utilized for 432 

computing the value of Tc-dry. The mean of these observations was ~Ta + 2 °C. Similar observations 433 

were obtained during 2018 cropping season. Hence, the value of Tc-dry for the present study was 434 

considered equal to Ta + 2 °C. 435 
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ANOVA results indicated a significant difference (p≤0.05) between the empirical CWSI 436 

obtained for treatments T1-T8. This is not surprising, since irrigation was supplied at a specific level of 437 

SWD in each treatment, and the resulting CWSI was likely to be different. In Figures 11 and 12, it is 438 

observed that the CWSI reaches a certain level and then drops due to irrigation or rainfall (wetting 439 

event). This can be seen as an inverse scenario of soil water, which decreases with time, reaching a 440 

minimum, and then rises due to a wetting event.  441 

It is evident from Figures 11 and 12, that the CWSIKSOM closely matched with the CWSImeasured 442 

during both model development and validation. A closer observation reveals that CWSIKSOM estimates 443 

presented a better agreement with CWSImeasured for treatments T5-T8, as compared to treatments T1-T4. 444 

This could be because, CWSI computations are more sensitive to Tc-ww values at lower SWD levels, 445 

and even a minute error in the estimation of Tc-ww could result in much more enhanced error in CWSI. 446 

This observation regarding the sensitivity of CWSI to different SWD levels is consistent with the 447 

findings of Colaizzi et al. (2003 a, b). At higher SWD levels, the results were exemplary which indicates 448 

the potential of CWSIKSOM under water-stressed scenarios. Hence, KSOM provides a reliable alternative 449 

to other algorithms with complex computations and extensive data requirements.  450 

A critical observation regarding the maximum value of CWSI in each treatment can be made 451 

since irrigation scheduling through the CWSI approach is based on its value. Further evaluation of these 452 

results and comparison thereof with the SWD, water use efficiency and yield, will provide an insight 453 

into the scheduling criterion for Indian mustard adopting a simple KSOM based approach. 454 

Figure 11 455 

Figure 12 456 

However, like any other modeling technique, the KSOM model developed in this study has some 457 

limitations, and these should be kept in mind while applying the model. As common with most data-458 

driven approaches, the model performance is limited by the number of data points used in model 459 

development. In the present study, data from a single crop period with three replications have been 460 

used. Though the model performance was good, a relatively larger data set can increase performance, 461 

since more patterns can be extracted from them. Therefore, studies on more crops during other seasons 462 

need to be conducted to induce a generalization in the KSOM model. Another limitation is that the 463 

model is developed based on experiments performed in a single agro-climate. However, the analysis 464 

used in the study can be easily extended over more data, hence this should not be seen as a major 465 

problem.  466 

4. Conclusion 467 

The current work presents a novel approach involving the application of Kohonen Self-Organising Map 468 

(KSOM) in estimating the well-watered canopy temperature (Tc-ww) for computing the crop water stress 469 
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index (CWSI). Field crop experiments on Indian mustard were performed in a humid sub-tropical agro-470 

climate, during the 2017 and 2018 cropping seasons. Field measurements of Tc-ww were obtained from 471 

a well-watered irrigated treatment. The performance of the KSOM, MLR and FFNN models was 472 

evaluated with the observed values of Tc-ww. The results based on the error statistics and graphical 473 

comparisons indicated that the KSOM model outperformed the MLR and FFNN models in estimating 474 

the Tc-ww. The KSOM estimated Tc-ww was further used for computing the empirical CWSI in various 475 

treatments irrigated at different levels of soil water depletion. Visual observation in different treatments 476 

indicated that KSOM based empirical CWSI was closely related to the field-based empirical CWSI. 477 

The predictions of the KSOM model were reliable during development and validation. A unique feature 478 

of KSOM is that its predictive ability is unencumbered even if some of its input variables are missing, 479 

which is not the case with either FFNN or MLR modeling approaches. The CWSI based on KSOM 480 

estimated Tc-ww provides a simple alternative to other complex algorithms for monitoring crop stresses 481 

and irrigation scheduling applications. The KSOM model developed in the study is expected to work 482 

well in similar agro-climates. Further research should concentrate on the application of KSOM 483 

modeling in estimating the Tc-ww and subsequently calculating the CWSI for different crops, across 484 

different agro-climates. 485 
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Figure 1. The layout of the experimental plot (T1- Well-watered plot; T2-10% SWD; T3-20% 

SWD; T4-30% SWD; T5-40% SWD; T6-50% SWD; T7-60% SWD; and T8-Maximum stressed 

plot.) 

 681 
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Figure 2. Representation of the winning node and its neighbors in a KSOM 
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Figure 3. Prediction of the missing component of the input vector using the Kohonen Self 

Organizing Map. 
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Figure 4. Schematic representation of the feed-forward neural network modeling architecture with 

two inputs and one hidden layer. RH – Relative humidity, Ta – Air temperature and Tc-ww – Well-

watered canopy temperature. 
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Figure 5. Time series plot of well-watered canopy temperature of Indian mustard during the crop 

period 
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Figure 6. KSOM component planes. 
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Figure 7. X-Y scatter plot of KSOM predicted and measured values of Tc-ww during (a) model 

development, and (b) model validation 
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Figure 8. X-Y scatter plot of FFNN predicted and measured values of Tc-ww during (a) model 

development, and (b) model validation 
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Figure 9. X-Y scatter plot of MLR predicted and measured values of Tc-ww during (a) model 

development, and (b) model validation 
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Figure 10. Time series plot of measured and predicted well-watered canopy temperature of Indian 

mustard during the crop period for the growing season (a) 2017 and (b) 2018 
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Figure 11. Comparison between observed CWSI (based on measured values of Tc-ww) and 

predicted CWSI (based on KSOM estimated values of Tc-ww) for different irrigation treatments 

during model development (2017) 
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Figure 12. Comparison between observed CWSI (based on measured values of Tc-ww) and 

predicted CWSI (based on KSOM estimated values of Tc-ww) for different irrigation treatments 

during model validation (2018) 
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 693 

Table 1 Details of crop variety sown, growth stages, crop duration and spacing 694 

Crop 
Variety 

sown 

Crop 

duration 

(Days) 

Growth stages (Days)* 
Spacing 

(cm) 
Date of Sowing Date of Harvesting 

I II III IV 

Indian 

mustard 

(Brassica 

Juncea) 

P.T. 303 

95 20 25 30 20 40 × 15 22nd September 2017 25th December 2017 

95 20 25 30 20 40 × 15 25th September 2018 28th December 2018 

* I - vegetative (initial stage), II - flowering (crop development stage), III - pod formation and seed development (mid-season stage), IV - 695 
maturity and harvest (late-season stage). 696 
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Table 2 Statistical summary of data used for model development and validation 697 

Variable Units Symbol Dataset Maximum Minimum Mean SD 

Relative Humidity Fraction RH 
Development 0.88 0.21 0.41 0.10 

Validation 0.65 0.22 0.42 0.09 

Air Temperature °C Ta 
Development 32.4 14.1 24.18 3.64 

Validation 30.3 16.1 23.76 3.16 

Well-watered Canopy 

Temperature 
°C Tc-ww 

Development 27.51 14.13 20.91 1.64 

Validation 25.49 15.73 21.41 2.35 

 698 
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Table 3 Descriptive summary of error statistics for modelling well-watered canopy temperature (Tc-ww) in Indian mustard 

Modelling 

Phase 
Statistics 

Mean Maximum Minimum Standard deviation 

KSOM MLR FFNN KSOM MLR FFNN KSOM MLR FFNN KSOM MLR FFNN 

Model 

Development 

(2017) 

Observed (°C) 20.910 20.910 20.910 27.51 27.51 27.51 14.13 14.13 14.13 2.646 2.646 2.646 

Predicted (°C) 20.904 20.915 20.962 26.176 27.051 27.135 14.01 15.225 16.411 2.526 2.526 2.526 

Bias error (°C) 0.006 -0.004 -0.051 1.333 1.739 1.792 -1.354 -2.068 -2.365 0.373 0.791 0.808 

Absolute error (°C) 0.240 0.660 0.638 1.354 2.068 2.365 0.002 0.000 0.000 0.285 0.433 0.496 

Square error (°C) 0.138 0.623 0.652 1.835 4.276 5.596 0.000 0.000 0.000 0.335 0.711 0.992 

Percent error (%) 1.163 3.232 3.177 8.878 10.039 16.741 0.009 0.002 0.000 1.458 2.204 2.802 

R2 0.981 0.910 0.907  

Model 

Validation 

(2018) 

Observed (°C) 21.409 21.409 21.409 25.49 25.49 25.49 15.73 15.73 15.73 2.350 2.350 2.350 

Predicted (°C) 21.241 20.638 20.641 25.487 25.212 25.156 16.614 15.71 16.859 2.228 2.176 2.095 

Bias error (°C) 0.167 0.770 0.768 1.512 2.544 2.660 -0.884 -0.539 -1.348 0.360 0.607 0.703 

Absolute error (°C) 0.301 0.807 0.869 1.512 2.544 2.660 0.000 0.008 0.003 0.258 0.556 0.571 

Square error (°C) 0.157 0.961 1.082 2.287 6.470 7.078 0.000 0.000 0.000 0.280 1.151 1.243 

Percent error (%) 1.413 3.706 4.030 6.155 11.337 11.311 0.002 0.045 0.020 1.248 2.490 2.573 

R2 0.978 0.924 0.923  

 

 


