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Abstract: Soil moisture, soil organic carbon, and nitrogen content prediction are considered significant
fields of study as they are directly related to plant health and food production. Direct estimation of
these soil properties with traditional methods, for example, the oven-drying technique and chemical
analysis, is a time and resource-consuming approach and can predict only smaller areas. With
the significant development of remote sensing and hyperspectral (HS) imaging technologies, soil
moisture, carbon, and nitrogen can be estimated over vast areas. This paper presents a generalized
approach to predicting three different essential soil contents using a comprehensive study of various
machine learning (ML) models by considering the dimensional reduction in feature spaces. In this
study, we have used three popular benchmark HS datasets captured in Germany and Sweden. The
efficacy of different ML algorithms is evaluated to predict soil content, and significant improvement
is obtained when a specific range of bands is selected. The performance of ML models is further
improved by applying principal component analysis (PCA), a dimensional reduction method that
works with an unsupervised learning method. The effect of soil temperature on soil moisture
prediction is evaluated in this study, and the results show that when the soil temperature is considered
with the HS band, the soil moisture prediction accuracy does not improve. However, the combined
effect of band selection and feature transformation using PCA significantly enhances the prediction
accuracy for soil moisture, carbon, and nitrogen content. This study represents a comprehensive
analysis of a wide range of established ML regression models using data preprocessing, effective
band selection, and data dimension reduction and attempt to understand which feature combinations
provide the best accuracy. The outcomes of several ML models are verified with validation techniques
and the best- and worst-case scenarios in terms of soil content are noted. The proposed approach
outperforms existing estimation techniques.

Keywords: LUCAS data; band selection; machine learning; principal component analysis; k-fold
cross validation

1. Introduction

Soil moisture (SM), soil organic carbon (SOC), and nitrogen content (NC) are the
fundamental aspects of nature that provide territory to a broad scope of life forms, and are
important for healthy food production [1–4]. SM contributes to plant development and
deterioration, climate change, and carbon formation, and significantly controls the filtration,
overflow, drought monitoring, and evaporation rates [5–7]. SOC enhances the water
holding capacity of the soil and nutrient production for plants, leading to plant growth [8,9].
SM and SOC act to regulate water level and energy exchange rate, directly influencing
plant health and the hydrosphere beneath [10]. NC develops plants’ structure, metabolism,
and creation of chlorophyll, contributing to plant growth and food production [11]. These
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soil properties impact crop production, biodiversity, and canopy structure, leading to soil’s
chemical and physical properties [12]. Therefore, SM, SOC, and NC are vital to soil elements
and need continuous monitoring. SM frequently changes due to high evaporation [13,14].
On the other hand, measuring SOC and NC is essential in both agricultural fields and forest
management, as it helps to maintain the carbon and nitrogen cycle [15,16].

The conventional measuring methods for SM include the thermogravimetric method,
time-domain reflectometry (TDR) [17], heat flux soil moisture sensors, and microelectrome-
chanical system (MEMS) [13]. In contrast, SOC can be measured by mass loss on ignition,
the Walkley–Black method, humic matter colorimetry, automated dry combustion, etc. [18].
Total soil nitrogen is traditionally measured by the Kjeldahl digestion method and dry
combustion method [19]. These methods are slow and require labor and money, and are
only suitable for small areas of land. In order to measure soil properties for larger areas
of land in a short time, HS remote sensing can be a promising solution. Therefore, it is
essential to develop an accurate estimation method to predict SM, OC, and NC accurately
and quickly.

Over the last two decades hyperspectral imaging (HSI) technology has been used in
wide fields of application, as it contains a large amount of spectral and spatial data arranged
in many layers. These sensors are implemented on satellites or airborne craft, and the data
are updated continuously. In this way, real-time monitoring of the earth’s surface is possible
and can cover a large area in a single image. Researchers are involved in analysing HSI in
different fields, including vegetation [20] and water management monitoring [21], medical
diagnosis [22,23], forensic medicine [24], the military sector [25], crime [26], imaging
documentation [27], mineralogical mapping [28], food quality estimation [29], etc. In
addition, SM, SOC, and NC estimation from HSI is considered a vital research issue, and is
a focus of concentration for many researchers.

Several studies have been conducted to estimate SM from HS data. In [30], the authors
proposed a self-organizing map (SOM) framework to predict SM. According to their results,
the best SM prediction accuracy was obtained by SOM (96.78%) compared with support
vector regressor (SVR) and random forest (RF). In another study, the authors studied the
possibilities of Sentinel-2 data for estimating bare surface SM from HS data, and Random
Forest (RF) regression models were developed [31]. Their developed model could predict
SM with 91% prediction accuracy when using all bands of Sentinel-2 images. The prediction
accuracy was further developed (96%) by considering four essential bands. Random forest
(RF) and extreme learning machine (ELM) algorithms were used to estimate the SM from
HS images in [32]. In [33], the authors adopted a gradient boost (GB) algorithm to estimate
SM from unmanned aerial vehicle (UAV)-based hyperspectral data. They adopted four
strategies to predict SM, with the optimal fractional order combined with the optimal
multiband indices providing the best results (92.10% prediction accuracy). Based on the
previous SM prediction literature, the effect of soil temperature on soil moisture prediction
remains unknown. However, other machine learning models’ performance should be
considered, and the average and worst SM prediction accuracy remain unknown.

On the other hand, the topsoil spectral information of the Land Use and Coverage
Area body Survey (LUCAS) dataset provides opportunities to develop a model for soil
SOC prediction [34–36]. Large-scale soil SOC mapping and prediction are possible due to
the availability and quality of remote sensing data [37]. This creates new opportunities
to estimate the SOC effectively, and farmers and policymakers can take the necessary
steps to manage the fields on a large scale [38,39]. In [40], the authors proposed a partial
least square regression (PLSR) model to predict SOC using LUCAS topsoil data. Another
research perspective shows SOC prediction from Sentinal-2 data [37,41,42].

Furthermore, with SM and SOC, NC estimation from HS data has become a vital
research issue and has become the concentration of many researchers. In [43–45], stepwise
multiple linear regression was used to rapidly detect organic carbon, nitrogen, potassium,
and phosphorus. A wavelet analysis and transformation algorithm was used in [46] to
predict the nitrogen quantity in soil. In [47], the authors estimated soil nitrogen using
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near-infrared reflectance (NIR) spectroscopy with a back-propagation (BP) neural network.
The authors of [48] demonstrated soil nitrogen prediction in subsided land using the
local correlation maximization-complementary superiority (LCMCS) method. Several
researchers have used partial least squares regression models to predict soil nitrogen [49,50].
In [51], the authors compared three methods, (stepwise multiple linear regression (SMLR),
partial least squares regression (PLSR), and support vector machine regression (SVMR),
to predict nitrogen content with visible/near-infrared spectroscopy. PLSR regression was
used to predict various soil parameters (organic, inorganic, total carbon, CEC, pH, texture,
moisture), including nitrogen, in [52].

Although satisfactory research achievements have been seen in predicting SM, SOC,
and NC using HS remote sensing technology, a comprehensive study of different machine
learning models is needed in order to develop a generalized approach to predict different
soil contents with the help of dimensionality reduction. A number of studies have used
PCA to predict SM [53–55], SOC [56–58], and NC [59–61]. However, they all used raw HS
data and a small number of ML algorithms. Different types of machine learning algorithms
have different strengths. Here, we explore a wide range of machine learning algorithms
in order to determine whether their performance is better or worse than indicated in
the current literature. Furthermore, we investigate whether the particular band impacts
moisture, carbon, and nitrogen prediction along with the combined effects of different ma-
chine learning strategies and feature transformation by PCA with effective band selection.
Hence, all the comprehensive experiments in this paper are novel in comparison to the
existing literature.

This study uses three different HS datasets to predict SM, SOC, and NC. The HS
feature data used in the experiments were extracted from captured HS images of soil
samples. These datasets were built from HS camera images by using the average reflec-
tion/absorbance to make a CSV file. These reflection/absorbance values were then used
as different features for training and testing. The SM dataset was captured by [62], and
contains 125 HS bands ranging from 454 nm to 950 nm. Two HS datasets from LUCAS
containing 4200 HS bands from 400 nm to 2499.5 nm were used to predict SOC and NC,.
As each band may not contribute equally to predicting SM, SOC, and NC [63], the most
influential band selection is essential to improve prediction performance, minimize compu-
tational time, and decrease data dimension. Choosing effective bands eliminates negative
influences, allowing soil parameters to be more accurately predicted.

On the other hand, soil temperature can be considered a good feature for predicting
SM. It is comparatively more easy to measure surface soil temperature than soil mois-
ture [64]. Figure 1 shows the plot of soil temperature and corresponding soil moisture in
our considered dataset. From this figure, it can be seen that SM has an inverse relationship
with soil temperature. We calculated the Pearson’s correlation coefficient between SM and
soil temperature, and found that these two parameters are negatively correlated (−0.79).
Therefore, soil temperature has a noticeable impact on SM.

Additionally, raw data or original features may contribute little to predicting SM,
SOC, and NC. Hence, PCA can be adopted to extract features more effectively [65]. PCA
helps to find the correlation of all the input features and produce principal components
independent of one another. Regression algorithms are faster with PCA-preprocessed data,
as it substantially reduces the size of the dataset and eliminates variables that are less
significant to decision-making [66]. PCA can transform the essential features from raw
data, thereby reducing the feature space significantly and consistently helping to eliminate
the over-fitting issue, which improves SM and SOC prediction performance.

To predict SM, SOC, and NC more accurately and precisely from HS data, effective
band selection, feature transformation, and high-dimensional data reduction techniques
(for example, PCA) should be considered. In this study, we have used two dimensional
reduction techniques: the first to extract the most crucial feature bands, and the second
to reduce dimensionality using PCA. We explore the combined effect of using PCA and
effective band selection to determine the prediction performance of SM, SOC, and NC.
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Our study’s second contribution is finding a generalized approach that can predict soil
content using our proposed methodology. Thus, we explore band selection, and feature
transformation in order to understand the estimation performance with several established
machine learning techniques.

Figure 1. Soil moisture vs. soil temperature graph.

The contributions of this paper are:

• Effectively selecting the best HS band to ensure the good performance of ML regressors
in predicting SM, SOC, and NC

• Evaluating the effect of soil temperature on SM prediction
• Use of PCA to improve model prediction accuracy
• To understand the combined effect of PCA and effective HS band features in predicting

SM, SOC, and NC
• To propose a generalized approach that can predict soil content more accurately

and efficiently
• Evaluating the accuracy of different ML models and comparing the results with the

proposed method.

The rest of the paper is organized as follows. The HS remote sensing data and ground
truth SM, SOC, and NC data are described in Section 2. The step-by-step workflow of
this paper is provided in Section 3. Section 4 illustrates the results in predicting SM, SOC,
and NC for different algorithms, and a comparative study is presented with validation and
evaluation. We critically discuss the outcomes of this research in Section 5. Finally, this
paper is concluded in Section 6 with the presentation of guidelines for SM, SOC, and NC
prediction methodology in HS remote sensing.

2. Dataset
2.1. Soil Moisture Data
2.1.1. Soil Moisture and Soil Temperature Data

For this study, we used the dataset captured in [62] during a five-day field campaign
in May 2017 in the area of Karlsruhe, Germany. The dataset is freely available and open
for research purposes under the license (available online: https://www.gnu.org/licenses/
gpl-2.0.html (accessed on 8 May 2012)). The field study was performed on undistributed
bare soil with no vegetation and clayey-silt type soil. The SM was measured using a
TRIME-PICO time domain reflectometry (TDR) sensor, which can measure SM to a depth
of 2 to 18 cm. However, the dataset we used listed the SM of soil to a depth of 2 cm, which
is considered a subsurface SM. This SM value was considered the ground truth for our

https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/gpl-2.0.html
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study. The changes in SM ranged from 25% to 42% (Figure 2), and the corresponding soil
temperature at the same depth ranged from 25.5 ◦C to 44.5 ◦C (Figure 3).

Figure 2. Box-plot of soil-moisture percentages, where the zero point of the box-plot represents the
mean, the line intersecting the box shows the median value, and the lower and upper line of the
whisker show the smallest and largest sample values.

Figure 3. Box-plot of soil temperature interquartile range, mean, and skewness.

2.1.2. Soil Moisture Hyperspectral Data

The hyperspectral data were captured using a Cubert UHD 285 hyperspectral snap-
shot camera with a spectral range of 450 nm to 950 nm. The camera was mounted on a
tripod 1.7 m in height. This camera can record 50 × 50 pixel images with 4 nm spectral res-
olution and 125 spectral bands. The dataset consisted of 679 high-dimensional data points,
including 125 hyperspectral bands. Figure 4 shows the reflectance of the HS bands. For
simplicity, we considered only four soil samples with different SM values. We considered
soil samples with maximum SM and with minimum SM. This figure shows that a higher
percentage of the SM value generates lower values of HS reflectance, and vice versa. The
HS band reflection data were used to predict SM in our study.
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Figure 4. Soil moisture reflectance curve of hyperspectral band ranging from 454 nm to 950 nm.

2.2. LUCAS Topsoil Data

LUCAS was established by the Statistical Office of the European Union (EUROSTAT) in
2001 to create a pan-European database on landscape parameters relevant for agricultural and
environmental coverage development and evaluation [67]. For non-commercial purposes,
the LUCAS topsoil dataset is available from the European Soil Data Centre (ESDAC) website.
The land survey has been performed every three years for a 2 × 2 km area of land in all
European member states beginning in 2006 [68]. In 2009, an extension to the periodic LUCAS
was granted to provide a regular, coherent, and harmonized topsoil database for Europe [67].

In this campaign, about 20,000 soil samples were accrued using a multi-level stratified
random sampling technique to represent the proportion of different land use types in
Europe [67]. Five topsoil samples (0–20 cm) were taken and blended into a composite
sample for every sampling point. These samples were then analyzed for their physical,
chemical, and reflectance properties using a standardized technique within the same
laboratory [68].

After laboratory analysis of each sample, the absorbance from 400–2499.5 nm was
recorded using a FOSS XDS Rapid Content Analyzer (FOSS NIRSystems Inc., Denmark) [34].
We recorded 4200 absorbance bands at 0.5 nm intervals. For this purpose of this study, we
considered only the Swedish dataset, which consisted of 1891 soil samples. The dataset
specifies the corresponding soil samples (point ID) with different properties such as clay, silt,
sand content, pH, coarse fragments, SOC, NC, etc. The box plots in Figures 5 and 6 show
the interquartile range and the outlier ranges of SOC and NC, respectively. Figures 7 and 8
represent the absorbance curves of different values of SOC and NC, respectively. The lowest,
highest, and average range of SOC and NC was considered for simplicity. Figure 7 shows
that the absorbance increases with increasing SOC and decreases with decreasing SOC
in the HS band range from 400 nm to 1000 nm. However, this trend is not followed after
1000 nm to 2500 nm. On the other hand, the absorbance increases with increasing NC;
however, when the value of NC is high (36.7 g/kg), the absorbance curve becomes different.
The absorbance curve of NC is shown in Figure 8.
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Figure 5. Box-plot of soil organic carbon interquartile range, mean, skewness, and outliers.

Figure 6. Box-plot of nitrogen content interquartile range, mean, skewness, and outliers.

Figure 7. Absorbance of soil organic carbon in the hyperspectral band ranging from 400 nm to
2499.5 nm.
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Figure 8. Absorbance of soil nitrogen content in the hyperspectral band ranging from 400 nm to
2499.5 nm.

3. Methodology

The work was divided into two steps, namely, the prepossessing of HS bands and the
regression models used to predict SM, SOC, and NC. Figure 9 represents the workflow of
this study.

Band Selection
(Lasso Algorithm)

Feature Scaling
(Standard Scaling)

Dimension Reduction
(PCA)

LR SVR

RF SOM

KNNGB

ANN

HS Band

Data Preprocessing Regression Model

Evaluation Parameter

R-squared

MAE

RMSE

Band Wavelength

Data Filtering and 
Mapping

DT

Figure 9. Schematic diagram of regression framework of the proposed regression investigations
using different machine learning methods.

3.1. Data Prepossessing

This study considered four different steps for preprocessing methods in order to
handle the extensive dimensionality in the HS data.

3.1.1. Data Filtering and Mapping

Data cleaning, filtering, and mapping is the essential step for the LUCAS dataset, as it
contains inhomogeneous data [69]. HS data and the corresponding ground truth of SOC
and SNC were provided in different datasets. First, according to point ID (the unique ID of
an individual soil sample), the soil sample HS data were mapped in two datasets for SOC
and NC for Sweden. Certain soil samples’ ground truth data (SOC and NC) were missing.
Therefore, these missing values and corresponding HS data were filtered from the dataset
manually. All other features were eliminated to make the dataset more convenient for use
and more simple and easy for training and testing purposes. However, the SM dataset was
previously cleaned and mapped with corresponding HS data.
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3.1.2. Feature Scaling

After that, feature scaling was performed for the three HS datasets to standardize all
the input data before training our model. The purpose of feature scaling is the mathematical
transformation of features or independent variables to improve prediction performance. It
is essential to perform the mathematical transformation of variables and make the input
data balanced to ensure that their contributions are balanced. In this study, we considered
the standard scaling method. The HS band data were scaled according to the transformation
formula provided in Equation (1):

zscore = (x− ū)/sd, (1)

where zscore is the standard score, x is the training sample, and ū and sd are the mean and
standard deviation of the training sample, respectively.

3.1.3. Hyperspectral Band Selection

In the third step, we selected an effective HS band range for three different HS datasets.
For the large volume of data, band selection becomes more important because it saves
computational time and effort. The most effective SM HS bands were selected by consid-
ering a small portion of the HS band and the SM prediction performance was noted for
that particular portion of bands. Several experiments were performed to understand the
performance of each particular band to estimate SM. We used trial and error methods, and
listed the results at which particular bands were more significant in predicting SM. The best
SM prediction was provided by the HS band ranging from 454 nm to 742 nm; therefore, this
portion of HS was considered the most influential band, and bands ranging from 746 nm to
950 nm were eliminated.

On the other hand, due to many HS absorbance band ranges for the SOC and NC
dataset, eliminating and selecting specific band ranges to obtain the best prediction accu-
racy became complex. Hence, the least absolute shrinkage and selection operator (Lasso)
algorithm was applied to determine the significant band range [70]. In this experiment,
we selected the 575.5–1062 nm, 1100 nm, 1852–1885 nm, 1945–2017.5 nm, 2053–2208 nm,
and 2454–2499.5 nm HS bands. From the 4200 HS bands, we selected only 1591 bands and
eliminated 2609 bands.

Similarly, for NC prediction the Lasso algorithm was applied to select the most in-
fluential bands. Of the 4200 bands, only 252 bands were selected as the most significant
bands. The effective band ranges were 594–616.5, 646–675.5, 1052.5–1108.5, and 2302–2489.
By applying the Lasso algorithm, 3948 bands were eliminated, significantly reducing
computational cost and time.

This algorithm regularizes features by shrinking the regression coefficients and re-
ducing a number of the less essential coefficients to 0. After shrinkage, only the non-zero
components were used as a selected feature to train the model. Therefore, significant
numbers of weak features were eliminated, improving model prediction performance and
minimizing both bias and variance.

The Lasso algorithm works with the following cost function:

1
2Ntraining

Ntraining

∑
i=1

(yi
true − yi

observed)
2 + α

n

∑
k=1
|ak| (2)

where ak is the k-th feature coefficient, α is a hyperparameter, and ytrue and yobserved are the
ground truth and predicted data, respectively.

The value of the cost function increases with the higher coefficient value of a particular
feature. Therefore, the main aim of the Lasso algorithm is to optimize the cost function by
optimizing |ak|. If the coefficient becomes large, this forces more coefficients to be 0.

The algorithm becomes an ordinary least squares regression when α is 0. On the
other hand, when α increases, the variance decreases significantly and the bias increases.
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In this way, the Lasso algorithm eliminates irrelevant variables that do not contribute to
prediction performance.

3.1.4. Data Dimension Reduction

Finally, we considered the Principal Component Analysis (PCA) technique, which
is widely used to handle nonlinear high-dimensional datasets and effectively decreases
the dimensionality of data. Instead of using all HS bands, we relied only on the first
seven principal components, which were able to extract almost 99.97% of features from all
three datasets.

3.2. Regression Model

Different ML regression models were studied to predict SM, SOC, and NC from the
HS data: Linear Regression (LR) [71], Random Forest (RF) [72], Decision Tree (DT) [73],
Gradient Boosting (GB) [74], Support Vector Regression (SVR) [75], Self Organizing Map
(SOM) [30], K-Nearest Neighbors (KNN) [76], and Artificial Neural Network (ANN) [77].
Most of the ML regression models were developed from the well-known library package
scikit-learn, except for SOM which was implemented in Susi library packages. We used
the SOM model that already implemented by [30]. Most of the regression models follow a
supervised learning algorithm. However, the SOM framework consists of unsupervised
learning followed by supervised SOM.

In order to achieve good prediction accuracy performance, all the machine learning
regression models were tuned during the training process; their hyper-parameters are
described in Table 1. However, LR, DT, and GB provide satisfactory performance without
tuning. Therefore, we relied on the basic packages of the scikit-learn library model [78] and
used the grid-search approach. After completing the tuning of all ML regression models
and the training phase, the testing phase was started.

Table 1. Hyperparameter setup for different machine learning regression models.

Model Library Package Hyper-Parameter

LR scikit-learn –

RF scikit-learn
bootstrap = True, criterion = squared_error,
max_feature = auto, min_samples_leaf = 1,

min_samples_split = 2, n_estimators = 100, n_jobs = −1

DT scikit-learn –

GB scikit-learn –

SVR scikit-learn

C = np.logspace(−8, 8, 17), γ = np.logspace(−8, 8, 17),
estimator = SVR(), n_iter = 30, cv = 5, n_jobs = −1,

param_distributions = params, kernel = rbf, max_iter = −1,
shrinking = True, tol = 0.001

SOM susi n_rows = 35, n_columns = 35, n_iter_unsupervised = 10,000,
n_iter_supervised = 10,000, n_jobs = −1

KNN scikit-learn n_neighbors = 5, algorithm = auto, leaf_size = 30,
metric = minkowski, weights = uniform, n_jobs = None

ANN scikit-learn

hidden_layer_sizes = (20, 20, 20), batch_size = 10,
max_iter = 500, algorithm = auto, metric = minkowski,

metric_params = None, n_jobs = None, n_neighbors = 5,
p = 2, weights = uniform

3.3. Evaluation Parameter

The efficacy of each ML model was evaluated by computing R2, mean absolute error
(MAE), and root mean squared error (RMSE). The R2 measure explains the percentage
of variation explained by two variables (test data and predicted data), MAE signifies the
absolute difference between model prediction, i.e., the predicted output and ground truth
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value, and RMSE describes the standard deviation of the residuals (the difference between
the model prediction and actual value). The value of R2 ranges from 0 to 1. The closer the
value is 1, the better the model describes the correlation between the actual and predicted
value. For MAE and RMSE, a lower the value indicates better prediction accuracy [79].

The mathematical expression of these terms is provided below:

R2 = 1− ∑(yi − ŷi)
2

∑(yi − ȳi)2 , (3)

MAE =
1

Nsample

Nsample

∑
i=1
|yi − ŷi|, (4)

RMSE =

√√√√ 1
Nsample

Nsample

∑
i=1

(yi − ŷi)2, (5)

where yi and ŷi are the original and predicted value for the ith sample, respectively, ȳi is
the average value, and Nsample is the number of samples.

4. Results of Model Evaluation and Validation

This section presents the performance and comparison of regression models to predict
SM, SOC, and NC from three different HS datasets. The main aim of developing a model is
to show good performance on unseen data. A good model provides accurate predictions
for seen and unseen data that help to eliminate overfitting and underfitting. To address
this problem, k-fold cross-validation can be used. We considered ten-fold cross-validation
in this study to evaluate the model efficacy. Each time the whole dataset was divided
into ten groups, nine data groups were used to train the model and the remaining data
were used to test the model, as shown in Figure 10. The process was repeated ten times,
with model performance listed each time for the different sets of testing data. Finally, the
mean prediction accuracy (Equation (6)) was derived for each ML model. The experiment
was carried out for the three HS datasets to predict SM, SOC, and NC.

Ravg =
1

10

10

∑
i=1

Ri, (6)

Testing DataTraining Data

Fold 1 Fold 2 Fold 3 Fold 10

Figure 10. Schematic diagram of ten-fold cross validation.

4.1. Soil Moisture Prediction

In this study, the model was developed to predict SM from the HS data with eight
feature combinations. The regression results are shown in Table 2. In the first case, all
HS bands (AHSB) ranging from 454 nm to 950 nm were considered and the prediction
performance was noted for eight different ML regressors. In this scenario, SVR performed
the best (R2 = 95.43%, MAE = 0.49, and RMSE = 0.80). After that, soil temperature
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was considered with AHSB, and improved results were obtained for the LR, RF, GB,
and ANN regressors. The best result was noted for RF, with 92.85% prediction accuracy.

In the next step, instead of using the AHSB range, the effect of the selected bands (SB)
ranging from 454 nm to 742 nm was considered to predict SM. After eliminating 52 bands we
obtained satisfactory results, with heights of 94.31% accuracy for the SVR model and MAE
and RMSE values of 0.56 and 0.88, respectively. The effect of soil temperature with SB was
evaluated in the next step; GB performed best, with 92.91% accuracy.

In order to handle extensive the dimensionality of the data, PCA was performed
with four cases. First, we considered AHSB and obtained improved prediction accuracy
compared with AHSB for most of the regressor models, with the exception of DT and SVR.
Then, PCA was performed for SB only; again, good prediction performance was noted.
Finally, considering the soil-temperature effect, PCA was performed with AHSB and SB
in the third and fourth cases, respectively. From Table 2, it can be seen that PCA has a
good impact on predicting SM. Best results were obtained for KNN, with more than 93%
prediction accuracy for both cases.

Finally, the average performance of each feature was calculated. It is clear that SB with
PCA provides the best average prediction accuracy (91.62%) in terms of R2.

Table 2. Regression results (R2, MAE, RMSE) for different ML models in predicting soil moisture.
The bold values represent the best results (in terms of R2) considering different ML models.

Model AHSB 1 AHSB + T 2 SB 3 SB + T PCA
(AHSB) PCA (SB) PCA

(AHSB + T)
PCA

(SB + T)

LR * 69.52%,
1.73, 2.25

69.57%,
1.72, 2.25

78.83%,
1.28, 1.68

79.18%,
1.27, 1.67

79.90%,
1.17, 1.51

81.03%,
1.16, 1.47

80.74%, 1.15,
1.49

82.19%,
1.13, 1.41

RF 92.35%,
0.61, 1.02

92.85%,
0.59, 1.00

92.02%,
0.61, 1.01

92.54%,
0.57, 0.99

94.73%,
0.49, 0.84

94.99%,
0.53, 0.89

93.71%, 0.52,
0.92

93.11%,
0.57, 0.98

DT 88.48%,
0.66, 1.34

86.15%,
0.66, 1.32

90.93%,
0.61, 1.22

84.68%,
0.76, 1.50

86.95%,
0.63, 1.44

90.69%,
0.54, 1.08

85.67%, 0.55,
1.24

85.47%,
0.60, 1.19

GB 92.27%,
0.64, 1.09

92.69%,
0.59, 1.08

91.85%,
0.60, 1.01

92.91%,
0.56, 0.99

95.98%,
0.46, 0.76

95.30%,
0.49, 0.80

95.74%, 0.51,
0.85

94.08%,
0.56, 0.90

SVR 95.43%,
0.49, 0.80

85.78%,
0.84, 1.31

94.31%,
0.56, 0.88

87.95%,
0.78, 1.22

91.29%,
0.62, 1.01

92.91%,
0.63, 1.12

87.79%, 0.82,
1.23

93.34%,
0.56, 0.90

SOM 89.81%,
0.72, 1.10

82.90%,
0.95, 1.43

91.20%,
0.64, 0.99

83.39%,
0.94, 1.42

92.72%,
0.63, 0.98

93.44%,
0.61, 0.94

93.41%, 0.55,
0.89

91.87%,
0.64, 1.01

KNN 90.95%,
0.68, 1.08

73.33%,
1.25, 1.77

88.92%,
0.76, 1.16

71.41%,
1.33, 1.84

90.39%,
0.65, 1.05

91.51%,
0.65, 1.08

93.69%, 0.52,
0.95

93.56%,
0.49, 0.90

ANN 64.93%,
1.42, 2.07

71.87%,
1.45, 1.90

56.85%,
1.69, 2.34

72.75%,
1.46, 2.00

90.45%,
0.61, 0.93

93.11%,
0.73, 1.00

90.34%, 0.95,
1.39

90.99%,
0.73, 1.02

Average
Result (R2) 85.47% 81.89% 85.61% 83.10% 90.66% 91.62% 90.14% 90.58%

1 AHSB = All Hyperspectral bands (454 nm to 950 nm), 2 T = Temperature, 3 SB = Selected bands (454 nm to
742 nm). * R2 = 69.52%, MAE = 1.73, RMSE = 2.25.

Figure 11 shows the comparison box plot of eight different ML models considering
three criteria: i. AHSB, ii. PCA on SB, and iii. PCA analysis of SB, including soil temperature.
This figure is drawn considering ten-fold cross-validation, and for each iteration the results
indicate the best, worst, mean, and median performance of each ML model for predicting
SM. Therefore, this box plot reflects the results of ten-fold cross-validation used to validate
our model. The circle and cross-line on the box show the mean and median, respectively.
When PCA analysis of SB is considered with and without the effect of temperature, the SM
prediction accuracy improves, and the best and worst prediction ranges become shorter
compared with AHSB. This prediction improvement is noted for all the ML regressions we
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considered. SVR provides the best average prediction accuracy, with minimal fluctuation
in the prediction range.

Figure 11. Box-plot of different ML approaches used to predict soil moisture, where black-diamond
shows the outliers.

4.2. Soil Organic Carbon Prediction

The possibility of predicting SOC from the LUCAS dataset (Sweden) was investigated
with our proposed methodology. The experiment was performed by considering four
features for all the ML regressors. Table 3 represents the ten-fold cross-validation results
of SOC prediction accuracy in terms of R2, MAE, and RMSE. Four feature combinations
(AHSB, SB, PCA of AHSB, and PCA of SB) were studied to explore the possibility of
predicting SOC. When AHSB was considered, the RF model provided 83.98% accuracy in
terms of R2 and MAE, and the RMSE was 35.13 and 62.46, respectively. However, when
only the effective bands were considered, the SVR model performed best (R2 = 90.52%,
MAE = 26.00, and RMSE = 48.36). The prediction efficiency in terms of R2 was improved
when considering PCA analysis on SB. Considering all ML models, the best average R2,
with 83.14% prediction accuracy, was obtained when PCA was performed on SB.

Table 3. Regression results (R2, MAE, RMSE) of different ML models for predicting organic carbon.
The bold values represent the best results among the different ML models.

Model AHSB 1 SB 2 (Lasso) PCA (AHSB) PCA (SB-Lasso)

LR 71.94%, 55.68, 75.62 77.00%, 52.40, 77.00 81.25%, 46.03, 63.30 88.38%, 35.10, 50.24

RF 83.93%, 35.13, 62.46 82.60%, 35.91, 64.63 83.37%, 36.60, 62.33 83.51%, 35.04, 60.07

DT 67.43%, 42.94, 77.95 64.12%, 47.02, 85.58 70.74%, 46.53, 83.43 68.62%, 49.03, 85.52

GB 81.56%, 36.08, 64.15 82.00%, 37.24, 64.95 84.20%, 35.34, 59.43 85.57%, 32.62, 55.37

SVR 78.94%, 48.06, 67.39 90.52%, 26.00, 48.36 85.11%, 33.60, 56.98 89.72%, 27.60, 47.87

SOM 78.97%, 41.02, 67.07 79.36%, 41.27, 70.23 78.85%, 40.60, 66.73 76.56%, 42.89, 72.32

KNN 83.08%, 35.92, 60.92 84.25%, 35.52, 60.41 83.31%, 37.11, 62.74 83.56%, 35.76, 61.50

ANN 80.33%, 38.58, 62.58 77.80%, 40.77, 64.60 84.81%, 35.59, 60.14 89.27%, 28.19, 48.53

Average Result (in
terms of R2) 78.27% 79.70% 81.45% 83.14%

1 AHSB = All Hyperspectral bands (400 nm to 2499.5 nm), 2 SB = Selected bands.

However, the value of MAE and RMSE was significantly large due to the inhomogeneity
of the data sample [69]. It is important to consider checking the data homogeneity before
beginning machine learning or statistical operations. Homogeneous data should remain in a
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constant trend with the changing parameters that may affect the data. However, in practice,
this is almost impossible to obtain for soil data samples. From Table 3, it can be noticed that
the prediction accuracy in terms of R2 is satisfactory. However, there are high MAE and
RMSE errors due to the wide variation of the SOC soil sample. Figure 12 considers AHSB and
PCA of SB in order to better understand the fluctuation range of R2 prediction, illustrating
that PCA with SB shows less fluctuation and better SOC prediction.

Figure 12. Box-plot of different ML approaches for predicting soil carbon.

4.3. Soil Nitrogen Content Prediction

The LUCAS (Sweden) dataset with soil nitrogen as a ground truth was used to under-
stand the possibility of predicting NC from the HS dataset. Table 4 shows the prediction
performance of different ML regressors with ten-fold cross-validation.

When we considered AHSB ranging from 400 nm to 2499.5 nm, SOM performed the
best, with R2 = 74.71%, MAE = 1.87, and RMSE = 3.01 prediction accuracy, whereas DT
recorded the lowest value (56.60%). In the next step, the performance of the SB range
was investigated to predict the best result for NC. The performance of SB was satisfactory,
with the best prediction accuracy provided by ANN (R2 = 79.05%, MAE = 1.73, and
RMSE = 2.74).

The next step recorded improved prediction performance when PCA was performed
with AHSB and SB. The average R2 results show that PCA with SB provides the best NC
prediction accuracy (75.69%).

Figure 13 shows the comparison box-plot between AHSB and PCA (SB-Lasso), illus-
trating each ML model’s best, worst, mean, and median prediction performance. The figure
is drawn based on the outcomes of ten-fold cross-validation to predict NC. This figure
shows that PCA with SB performs comparatively well and shortens the range between the
best and worst results.
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Table 4. Regression results (R2, MAE, RMSE) of different ML models for predicting nitrogen content.
The bold values represent the best results considering different ML models.

Model AHSB 1 SB 2 (Lasso) PCA (AHSB) PCA (SB-Lasso)

LR 67.40%, 2.38, 3.22 73.09%, 2.50, 3.20 79.31%, 1.85, 2.65 79.23%, 1.83, 2.63

RF 73.98%, 1.80, 3.03 74.57%, 1.76, 2.89 76.25%, 1.78, 2.85 77.91%, 1.61, 2.68

DT 56.60%, 2.29, 3.89 57.51%, 2.32, 3.97 51.77%, 2.40, 4.11 58.87%, 2.19, 3.75

GB 71.91%, 1.80, 3.01 74.31%, 1.79, 2.96 75.07%, 1.77, 2.84 77.60%, 1.63, 2.71

SVR 71.64%, 2.09, 2.99 75.63%, 1.91, 3.00 80.57%, 1.55, 2.66 78.97%, 1.77, 2.67

SOM 74.71%, 1.87, 3.01 76.05%, 1.79, 2.88 73.93%, 1.86, 2.99 77.49%, 1.78, 2.81

KNN 73.96%, 1.83, 2.95 76.79%, 1.76, 2.84 74.81%, 1.84, 2.95 77.80%, 1.74, 2.77

ANN 74.30%, 1.80, 2.80 79.05%, 1.73, 2.74 74.82%, 1.68, 2.68 77.68%, 1.66, 2.68

Average Result (in
terms of R2) 70.56% 73.37% 73.31% 75.69%

1 AHSB = All Hyperspectral bands (400 nm to 2499.5 nm), 2 SB = Selected bands.

Figure 13. Box-plot of different ML approaches for predicting nitrogen content.

5. Discussion

The main aim of this paper is to determine the most effective methodology to predict
SM, SOC, and NC with reasonable accuracy from the HS data. During the experiment,
all the ML tuning parameters, testing and training dataset ratio, and all other parameters
remained constant in order to understand the influence of different features in predicting
SM, SOC, and NC more accurately and precisely. The outcomes of this study (Tables 2–4),
considering the average performance of eight different machine learning algorithms, show
that the combined effect of PCA with selected bands provides the best prediction accuracy
for SM, SOC, and NC. The best average prediction accuracy for SM, SOC, and NC in terms
of R2 is 91.62%, 83.14%, and 75.69%, respectively. Therefore, it is clear that PCA analysis
on SB is the essential feature combination that provides the best prediction for the studied
soil contents.

After a critical analysis of eight different ML regression models and according to their
average prediction performance, the following conclusions can be drawn.

5.1. Soil Moisture Prediction

• The HS band can be used effectively to predict SM with good prediction accuracy;
when AHSB is considered, the SVR algorithm performs best (R2 = 95.43%, MAE = 0.49,
RMSE = 0.80).



Sensors 2022, 22, 7998 16 of 20

• Although soil temperature shows good correlation with soil moisture, the average
prediction in terms of R2 performance is not further improved, being reduced from
85.47% to 81.89% when considering the soil temperature effect with AHSB.

• Effective band selection has a noticeable impact on SM prediction. Very similar results
are recorded after eliminating a good portion of HS data, and the average prediction
results improve from 85.47% to 85.61%;

• PCA has a significant impact on SM prediction. The best prediction accuracy is noted
for the GB regressor (R2 = 95.98%, MAE = 0.46, RMSE = 0.76) when PCA is performed
on AHSB.

• In terms of average response, considering all ML models, PCA analysis on influential
bands provides the best SM estimation accuracy in terms of R2 (91.62%).

5.2. Soil Organic Carbon Prediction

• The RF model provides the best prediction accuracy in terms of R2 (83.93%) when
AHSB is considered. However, the MAE and RMSE are 35.13 and 62.46, respectively,
showing unpredictable accuracy due to a higher error rate.

• With the Lasso algorithm used to perform band selection, the prediction accuracy
is improved; SVR sees the best prediction accuracy (R2 = 90.52%, MAE = 26.00,
and RMSE = 48.36).

• When PCA is performed on AHSB, the prediction accuracy is improved in terms of
R2. However, the MAE and RMSE is not much improved.

• Finally, when PCA is applied on SB the best prediction accuracy is noted for the ANN
algorithm, with R2 = 89.27%; MAE and RMSE are 28.19 and 48.53, respectively;

• The SOC prediction accuracy in terms of R2 is satisfactory, as it defines the normalized
difference between actual and predicted data.

• However, the error rate of MAE and RMSE is high, as the variation of the soil sample
is high. As MAE and RMSE indicate the absolute difference between the original
value and predicted value, it seems not to work any better; however, there is good
correlation.

5.3. Soil Nitrogen Content Prediction

• Soil NC can be predicted with reasonable accuracy from HS data. When AHSB range
is considered, SOM provides the best prediction accuracy (R2 = 74.71%, MAE = 1.87,
RMSE = 3.01);

• The prediction accuracy for all of the ML regressors is further improved when effective
band selection via the Lasso algorithm is considered; the average prediction accuracy
improves from 70.56% to 73.37% in terms of R2 value.

• PCA analysis plays a vital role in further improving prediction accuracy, with the av-
erage prediction accuracy increasing to 73.31% when PCA is applied on AHSB.

• The best result is obtained when PCA is performed on effective SB for the KNN
regressor, with 77.80% prediction accuracy. From the value of the average result
(75.69%), it can be observed that PCA on SB is the most important feature for predicting
NC from HS data.

After critically analyzing the prediction performance of SM, SOC, and NC from three
different HS datasets, Table 5 summarizes the best ML regression model according to
the best performance accuracy in terms of R2. The best SM prediction is obtained by GB
regressors when PCA is performed on AHSB, with 95.98% prediction accuracy. On the
other hand, the SVR model performs best (90.52%) for SOC when only SB is considered. The
LR model predicts the best NC with PCA analysis on SB, with 79.23% prediction accuracy.
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Table 5. Best prediction results with specific feature combinations and machine learning regres-
sor models.

Soil Property Model Feature Combination Best Result (R2)

Soil Moisture GB PCA (AHSB) 95.98%

Organic Carbon SVR SB 90.52%

Nitrogen Content LR PCA (SB) 79.23%

6. Conclusions

In this study, we have addressed the SM, SOC, and NC prediction topology from HS
data considering different ML frameworks and listed performance comparisons. While
the existing methods provide good results, the proposed method provides the best results.
The importance of particular HS band selection on SM, SOC, and NC prediction from the
three different HS datasets is evaluated. Additionally, the effect of soil temperature on SM
prediction is considered. The study was conducted using the PCA dimensionality reduction
technique. Significant improvement is noted for all ML algorithms when the combined
effect of PCA with an effective HS selected band is used. This study proposes a generalized
approach to predict soil content more accurately and efficiently. The proposed approach
saves significant computational time and provides good prediction performance using the
important features. In future work, we intend to understand the physical interpretation
of HS bands and the behavior of satellite HS images to predict soil components using our
proposed methodology.
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