1,482,722 research outputs found

    The intrinsic curvature of thermodynamic potentials for black holes with critical points

    Get PDF
    The geometry of thermodynamic state space is studied for asymptotically anti-de Sitter black holes in D-dimensional space times. Convexity of thermodynamic potentials and the analytic structure of the response functions is analysed. The thermodynamic potentials can be used to define a metric on the space of thermodynamic variables and two commonly used such metrics are the Weinhold metric, derived from the internal energy, and the Ruppeiner metric, derived from the entropy. The intrinsic curvature of these metrics is calculated for charged and for rotating black holes and it is shown that the curvature diverges when heat capacities diverge but, contrary to general expectations, the singularities in the Ricci scalars do not reflect the critical behaviour. When a cosmological constant is included as a state space variable it can be interpreted as a pressure and the thermodynamically conjugate variable as a thermodynamic volume. The geometry of the resulting extended thermodynamic state space is also studied, in the context of rotating black holes, and there are curvature singularities when the heat capacity at constant angular velocity diverges and when the black hole is incompressible. Again the critical behaviour is not visible in the singularities of the thermodynamic Ricci scalar.Comment: 35 pages, 3 figure

    Intrinsic palindromic numbers

    Full text link
    We introduce a notion of palindromicity of a natural number which is independent of the base. We study the existence and density of palindromic and multiple palindromic numbers, and we raise several related questions.Comment: 6 pages, Latex2

    Intrinsic Quantum Computation

    Get PDF
    We introduce ways to measure information storage in quantum systems, using a recently introduced computation-theoretic model that accounts for measurement effects. The first, the quantum excess entropy, quantifies the shared information between a quantum process's past and its future. The second, the quantum transient information, determines the difficulty with which an observer comes to know the internal state of a quantum process through measurements. We contrast these with von Neumann entropy and quantum entropy rate and provide a closed-form expression for the latter for the class of deterministic quantum processes.Comment: 5 pages, 1 figure, 1 table; updated with corrections; http://cse.ucdavis.edu/~cmg/compmech/pubs/iqc.ht
    corecore