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Abstract

The geometry of thermodynamic state space is studied for asymptotically
anti-de Sitter black holes in D-dimensional space times. Convexity of ther-
modynamic potentials and the analytic structure of the response functions is
analysed. The thermodynamic potentials can be used to define a metric on
the space of thermodynamic variables and two commonly used such metrics
are the Weinhold metric, derived from the internal energy, and the Ruppeiner
metric, derived from the entropy. The intrinsic curvature of these metrics
is calculated for charged and for rotating black holes and it is shown that
the curvature diverges when heat capacities diverge but, contrary to general
expectations, the singularities in the Ricci scalars do not reflect the critical
behaviour.

When a cosmological constant is included as a state space variable it can
be interpreted as a pressure and the thermodynamically conjugate variable
as a thermodynamic volume. The geometry of the resulting extended ther-
modynamic state space is also studied, in the context of rotating black holes,
and there are curvature singularities when the heat capacity at constant an-
gular velocity diverges and when the black hole is incompressible. Again the
critical behaviour is not visible in the singularities of the thermodynamic
Ricci scalar.

PACS nos: 04.50.Gh; 04.70.Dy; 05.70.-a DIAS-STP-2015-01



1 Introduction

Thermodynamics is a very general yet remarkably powerful tool for under-
standing the physical properties of a very wide range of phenomena. Its
generality lies in the fact that the formalism sidesteps direct questions about
the nature of the underlying microscopic physics. This is an obvious ad-
vantage when studying systems whose microscopic physics is not yet well
understood, such as the physics of quantum gravity. The quantum nature of
black holes is thus a perfect arena for thermodynamics to be used as an early
stage investigative tool for gaining insight into the underlying microscopic
physics.

The aim of the present study is to elucidate the geometry of black hole
thermodynamic potentials. For a gas thermodynamic stability demands that
the thermal energy be a convex function of the entropy S and the volume
V , from which the well known relation CP > CV follows. The isothermal
compressibility κT and the isentropic compressibility κS are related to the
heat capacities by CPκS = CV κT , implying the reciprocal relation κT > κS.
Schwarzschild black holes famously have negative heat capacity [1] but sta-
bility can be achieved in asymptotically anti-de Sitter space, with a suitable
cosmological constant [2]. For a black hole, with electric charge Q, we re-
place V with Q and the analogous condition for the heat capacities1 is then
CΦ > CQ, where Φ is the electrostatic potential of the black hole. In this case
the isothermal electrical capacitance, CT = ∂Q

∂Φ

∣∣
T
, and the isentropic electrical

capacitance, CT = ∂Q

∂Φ

∣∣
S
, are related to the heat capacities by CΦCS = CQCT ,

implying CT > CS. For rotating black holes in asymptotically anti-de Sitter
space time V is replaced with the angular momentum, J , and −P by the ap-
propriate angular velocity, Ω. The analogue of the compressibilities for a gas
are the moments of inertia, IS = ∂J

∂Ω

∣∣
S
and IT = ∂J

∂Ω

∣∣
T
. For stability CΩ > CJ

and CΩIS = CJIT implies IT > IS. The analytic structure of the response
functions, in particular the interplay between their zeros and singularities,
is crucial in satisfying these relations and we shall explore this in detail for
charged and rotating black holes in space time dimensions D ≥ 4. For ex-
ample the phenomenon of ultra-spinning black holes in D > 4 is associated
with a negative moment of inertia.

1Strictly speaking it is the enthalpy of the black hole that is the relevant thermodynamic
potential when a fixed negative cosmological is present, rather than the internal energy
[3]. At fixed pressure the enthalpy should be a convex function of S and Q.
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Thermodynamic potentials can also be used to generate a metric on the
space of thermodynamic states so that the intrinsic curvature associated with
the metric encodes information about the underlying physics of the thermo-
dynamic system, [4, 5] (for a review see [6]). The study of the geometry of
thermodynamic state space for black holes was pioneered in [7] and has sub-
sequently been investigated by a number of authors (a non-exhaustive list is
[8]-[24] and there is a review in [25]). In the present work this programme is
taken further and curvatures are studied for charged and for rotating black
holes in D-dimensional space-times for all D ≥ 4, in the presence of a cos-
mological constant Λ. Generically one expects the intrinsic curvature of
thermodynamic state space to diverge when response functions, such as heat
capacities diverge, [6, 26], and this expectation is indeed realised, but we
shall see that there is a twist for black holes in that critical points, which are
known to exist for Λ < 0, are not visible in the thermodynamic curvatures
calculated here.

When the cosmological constant is included in the set of thermodynamic
variables, as argued in [3] it should be, the dimension of the thermodynamic
state space is increased.2 Most of the literature to date on the thermody-
namic geometry of black holes has assumed fixed Λ, but when state space
is extended to include Λ the dimension of the thermodynamic space is in-
creased and the calculations become more involved. The thermodynamic
geometry of black holes with varying Λ was considered in [33]-[35] but the
study in the present paper is rather different in that it also considers the
role of the thermodynamic volume, the Legendre transform of the pressure,
which to our knowledge has not so far been considered as a state variable in
the thermodynamic geometry of black holes.

The layout of the paper is as follows. In §2 the geometry of thermo-
dynamic state space is briefly reviewed; §3 concerns charged, non-rotating
black holes in D space-time dimensions and extends known results in D = 4
for spherical black holes to D > 4 and general event horizon topologies; §4
discusses the thermodynamic geometry of neutral singly spinning black holes
in D-dimensions, the curvature scalar associated with the thermodynamic
geometry is discussed and singularities in the curvature scalar are related
to singularities in the heat capacity and vanishing compressibility. Finally

2The possibility of varying Λ was first considered by Henneaux and Teitelboim [27]
and has been re-visited by various authors since [28]-[32]. Although the focus here is on
negative Λ many of the formulae can be analytically continued to positive Λ.
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§5 summarises the conclusions while some technical results are given in two
appendices.

2 Thermodynamic metrics

Different thermodynamic potentials give rise to different thermodynamic
metrics and both the internal energy, U(S, V ), and the entropy, S(U, V ),
can be used to generate Euclidean signature metrics for thermodynamically
stable systems [6]. For example the internal energy of a single component
gas is a convex function of the extensive variables, entropy S and volume V ,
and the Hessian matrix

gAB =
∂2U

∂XA∂XB
, (1)

with (X1, X2) = (S, V ) and A,B = 1, 2, is a positive definite matrix. Viewed
as a metric, originally considered by Weinhold [4], there is an intrinsic cur-
vature associated with this matrix which has been calculated for a number
of thermodynamic systems [6].

The components of gAB are related to the response functions of the ther-
modynamic system:

gSS =
∂T

∂S

∣∣∣∣
V

=
T

CV

, (2)

with CV the heat capacity at constant volume;

gV V = − ∂P

∂V

∣∣∣∣
S

=
1

V κS

,

where κS = − 1
V

∂V
∂P

∣∣
S
is the adiabatic compressibility and

gSV =
1

V αS

where αS = 1
V

∂V
∂T

∣∣
S
is the adiabatic thermal expansion coefficient. Standard

thermodynamic relations can be used3 to show that

det g =
T

V CPκS

. (3)

3In particular the aforementioned relation CPκS = CV κT together with CP = CV +
TV α2

P

κT

and κT = κS +
TV α2

P

CP

, where κT = − 1

V
∂V
∂P

∣∣
T
is the isothermal compressibility, and

αP = 1

V
∂V
∂T

∣∣
P

is the isobaric thermal expansion coefficient. Also the Maxwell relation
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A generalisation of this formula when there are more than two independent
thermodynamic variables was given in [26].

When response functions diverge the determinant of the metric vanishes
and it will not be invertible. In a thermodynamic system with two variables
the locus of points on which a response function diverges is called a spinodal
curve and it is natural to ask whether this lack of invertibility on a spinodal
curve is associated with a genuine singularity in the intrinsic curvature or
if it is just a co-ordinate singularity. Indeed the thermodynamic curvature
is inversely proportional (det g)2 and is expected diverge on spinodal curves
[6, 26]. For the van der Waals gas for example the curvature is proportional
to (CPκS)

2 and diverges when CP diverges. The spinodal curve has two
branches in the P−V plane and, with the exception of the critical point where
the two branches meet, it lies in a regime that is not thermodynamically
stable.

A related metric, the Ruppeiner metric, is associated with the Hessian
matrix of the entropy, S(U, V ), which is a concave function, so

g̃AB = − ∂2S

∂X̃A∂X̃B
, (4)

with (X̃1, X̃2) = (U, V ), is also a positive definite matrix if the system is
stable. It has been argued [6] that the intrinsic thermodynamic curvature
contains information about microscopic physics of the system, for example
it diverges when response functions diverge. Indeed both curvatures vanish
for an ideal gas and both are positive for a van der Waals gas and diverge at
the critical point.

The Ruppeiner and the Weinhold metrics are con formally related,

g̃AB =
1

T
gAB

and give equivalent information. The Ricci scalar of the Weinhold metric, R,
and that of the Ruppeiner metric R̃, are therefore related by the standard

∂T
∂V

∣∣
S
= − ∂P

∂S

∣∣
V

implies

gSV = − ∂P

∂T

∣∣∣∣
V

∂T

∂S

∣∣∣∣
V

=

(
∂V

∂T

∣∣∣∣
P

∂P

∂V

∣∣∣∣
T

)
∂T

∂S

∣∣∣∣
V

= −αP

κT

T

CV

.
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formula for con formally related metrics,

R̃ = TR + (n− 1)∇2T − (n− 1)(n+ 2)

4

(∇T )2

T
(5)

where n is the number of independent thermodynamic variables,4 one of
which is T . The second term on the right-hand side involves

∇2T =
1√
det g

∂a
(√

det g gab∂bT
)
=

1√
det g

∂a
(√

det g gabgbS
)

=
1√
det g

∂
√
det g

∂S

∣∣∣∣
V

.

The last term on the right-hand side of (5) is related to the heat capacity at
constant volume, CV = T

gSS
,

(∇T )2

T
=

1

CV

, (6)

since

∇aT = ∂aT = gaS ⇒ (∇T )2 = gabgaSgbS = gSS =
T

CV

from (2). When n = 2 and the only variables are (S, V ) the relation between
the Weinhold and the Ruppeiner curvatures is

R̃ = TR− 1

2
∂S ln

(
TCV κT

V

)
(7)

(the derivative here is at constant V and the factor of V has been chosen to
make the argument of the logarithm dimensionless).

Another class of conformally related metric was proposed in [36], but the
focus here will be restricted to the specific cases (1) and (4), otherwise the
analysis would become rather too long.

The thermodynamic potentials for a gas also depend on the number of
particles so, for a single component gas consisting of N particles, U(S, V,N),
and a complete description requires three independent variables, XA = (S, V,N)
with A = 1, 2, 3. One might expect that a full description of the thermody-
namic geometry would require calculating a 3 × 3 Ricci tensor, but this is

4When the variables are (S, V ) then n = 2, but we quote the more general result.
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not the case in standard thermodynamics as the resulting 3× 3 Hessian ma-
trix is not invertible and cannot be used to determine a curvature. This
is a consequence of the Gibbs-Duhem relation, which follows from homoge-
neous scaling of the extensive thermodynamic state variables and potentials.
Consider the Gibbs free energy,

G(T, P,N) = µN = U(S, V,N)− TS + PV, (8)

where µ = ∂U
∂N

∣∣
S,V

is the chemical potential. In the 3-dimensional state space

parameterised by extensive variables XA = (S, V,N) this can be written as

U(X) = XAYA(X) (9)

where YA(X) := ∂AU . Now the 3× 3 Hessian matrix is

gAB = ∂AYB

so
YA = ∂AU = YA + gABX

B,

where (9) has been used for the second equality. Hence gABX
B = 0 and

the vector ~X = (X1, X2, X3) is an eigenvector of gAB with eigenvalue zero
(this is essentially a consequence of homogeneous scaling). Assuming the
other two eigenvalues are finite the 3 × 3 Hessian matrix is never invertible
and is not a suitable candidate for a for a positive definite metric. Similarly
for a multi-component gas, with k different chemical species i = 1, . . . , k
and particle numbers Ni there is always at least one zero eigenvector of the
(k+2)× (k+2) Hessian matrix. For this reason it is natural to fix the total
particle number N = N1+ · · ·Nk and only consider a (k+1)×(k+1) metric.

For black holes we do not yet have an analogue of particle number, nev-
ertheless scaling arguments can be applied to derive the black hole analogue
of the Gibbs-Duhem relation, the Smarr relation [37]. For black holes the ex-
tensive thermodynamic variables do not scale homogeneously. For example,
in D space-time dimensions the black hole mass, M , and electric charge, Q,
have dimension (D − 3), (in units with G = c = 1), while entropy, S, and
angular momentum, J , have dimension (D− 2) and Λ has dimension −2. If
Λ is equated to a pressure,

Λ = −8πP,

so negative Λ gives a positive pressure, then the black hole mass has the
thermodynamic interpretation of enthalpy [3].
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The mass is a function of entropy, angular momentum J i (where i =
1, . . . , r and r is the rank of SO(D − 1)), electric charge and pressure:
M(S, J i, Q, P ). The thermodynamically conjugate variables are tempera-
ture, angular velocity Ωi, electric potential Φ and thermodynamic volume
V :

T =
∂M

∂S
, Ωi =

∂M

∂J i
, Φ =

∂M

∂Q
and V =

∂M

∂P
.

The Smarr relation, the black hole analogue of (8), then reads

(D − 3)M = (D − 2)Ω.J+ (D − 2)TS − 2PV + (D − 3)QΦ. (10)

When Λ is allowed to vary the Weinhold metric should be defined in
terms of the internal energy U in order to have a positive definite metric.
The internal energy is the Legendre transform of the enthalpy with respect
to P ,

U(S, J i, Q, V ) = M − PV.

Then

T =
∂U

∂S
, Ωi =

∂U

∂J i
, Φ =

∂U

∂Q
, P = −∂U

∂V

and

gAB =
∂2U

∂XA∂XB
, (11)

with XA = (S, J i, Q, V ) and A = 1, . . . , r + 3.
One immediate consequence of the inhomogeneous scaling of black hole

thermodynamic functions is that, unlike ordinary thermodynamics, gAB need
not have a zero eigenvalue. However, if P = 0, it always has a negative eigen-
value, [38], and there are no thermodynamically stable asymptotically flat
black holes in any dimension, regardless of rotation or charge. On the other
hand asymptotically AdS black holes can be stabilized by a large enough
positive pressure: Hawking and Page realized this for non-rotating neutral
black holes [2] and it was generalized to the charged non-rotating case in [39]
and the charged rotating case in [38].

Note that the complete Legendre transform of U ,

E(Ω, T, P,Φ) := U −ΩiJ
i − TS + PV − ΦQ, (12)

is non-zero for black holes — in contrast to ordinary thermodynamics where
(8), and its generalisation to multi-component systems, implies that

U − TS + PV − µiN
i = 0.
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This is again a consequence of the inhomogeneous scaling of black hole ther-
modynamic variables and E is in fact related to the Euclidean action, IE , of
the black hole via [40]

E = TIE.

When discussing the thermodynamic geometry of asymptotically AdS
black holes it is very common in the literature to use the enthalpyM(S, J i, Q, P )
rather than the internal energy U(S, J i, Q, V ) to derive a Weinhold-like met-
ric. This not unreasonable when P is fixed and indeed for asymptotically
flat black holes with P = 0 it makes no difference which one uses as they are
the same. When P 6= 0 the (r + 2)-dimensional metric obtained from the
Hessian of M by varying S, Q and J i with P fixed will be positive definite
for a thermodynamically stable black hole. Typically there are curvature
singularities when the heat capacity diverges.

In [33] P was varied along with the other parameters but this has the
disadvantage that the Hessian matrix of M(S, J i, Q, P ) cannot be expected
to be positive definite for thermodynamically stable systems, one should use
U(S, J i, Q, V ) to get a positive definite Weinhold metric.

A technical point is that, for a given solution of Einstein’s equations, an
explicit expression for the mass in terms of thermodynamic variables is often
cumbersome at best and intractable at worst. It is usually more convenient
to express the thermodynamic potentials in terms of variables other than
(S, J i, Q, V ). Curvature tensors can of course be calculated in any co-ordinate
system, invoking general co-ordinate invariance, but one must be careful
because the right hand side of (11) is not co-variant under general co-ordinate
transformations: XA = (S, J i, Q, V ) are a privileged set of co-ordinates that
picks out a particular Lagrangian sub-manifold of thermodynamic “phase
space”, [36]. Writing the thermodynamic line element as

d2s =
∂2U

∂XA∂XB
dXAdXB = dYAdX

A, (13)

where YA = (T,Ωi,Φ,−P ), we can change variables from XA to XA′

(X) in
terms of which equation (13) becomes

d2s = gA′B′ dXA′

dXB′

,

with

gA′B′ =
∂YC

∂XA′

∂XC

∂XB′
. (14)
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The metric thus factorises into a product of two matrices. Equation (14) will
prove to be the most practical starting point for calculating curvatures in an
arbitrary co-ordinate system XA′

for the thermodynamic state space when
the functional forms of YA(X

′) and XA(X ′) are known explicitly.

3 Asymptotically AdS Reissner-Nordström

space-times

In this section we consider the thermodynamic geometry of charged, non-
rotating AdS black holes. This was investigated in 4-dimensional space times
by the authors of [9] and here the analysis is extended higher dimensional
space-times with general dimension D.

With no extra work, and with a view to applications in the AdS/CFT cor-
respondence, we can also incorporate more general event horizon topologies
by denoting the curvature of the event horizon by k: so k = 1 is a spherical
event horizon, k = 0 a flat one (which we take to toroidal for convenience)
and k = −1 the (D − 2)-dimensional space of constant negative curvature.

The extensive variables are the electric charge Q and the entropy S. The
pressure P will be kept fixed in this section, parameterised for notational
convenience by

λ =
16πP

(D − 1)(D − 2)
.

If rh is the radius of the outer horizon the entropy, in units with G = c =
h̄ = 1, is

S =
̟rD−2

h

4
, (15)

where ̟ is a the volume of the event horizon with rh set to unity.5 The mass
(enthalpy) of the black hole is

M =
(D − 2)̟rD−3

h

(
k + λr2h +

Q2

r2D−6

)

16π
.

5For k = +1 this is the volume of the unit (D − 2) sphere, for k = 0 and k = −1 the
event horizon can be made to have finite area by suitably identifying points.
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The Hawking temperature is

T =
(D − 1)λr2h + (D − 3)

(
k − Q2

r2D−6

h

)

4πrh
, (16)

placing an upper bound Q2 ≤
(

D−1
D−3

λr2h + k
)
r2D−6
h on Q2 to ensure T ≥ 0.

In [9] a Weinhold metric on the 2-dimensional state space parameterised
by S and Q using the Hessian of M(S,Q, λ), with λ fixed, was considered in
D = 4, with XA = (S,Q), A = 1, 2

gAB =
∂2M

∂XA∂XB
. (17)

With λ fixed this is a positive definite metric for a thermodynamically stable
black hole. It gives rise to a geometry with a positive scalar curvature for
D = 4, [9], and this result generalizes to D ≥ 4. The metric is written here
in (rh, Q) co-ordinates, so as to avoid fractional powers of S: using (14) it
evaluates to

g =
(D − 2)̟

8π




rD−5
h ZQ(rh, Q, λ) − (D−3)Q

rD−2

h

− (D−3)Q

rD−2

h

1
rh

D−3


 , (18)

where ZQ(rh, Q, λ) is

ZQ(rh, Q, λ) = (D − 1)λr2h − 2πrhT + (D − 3)2
Q2

r2D−6
h

. (19)

The determinant of g vanishes when the heat capacity diverges, but we
need to be careful to distinguish between the heat capacity at constant charge
CQ and the heat capacity at constant electric potential CΦ. In this context
the electric potential is the thermodynamic conjugate of the charge,

Φ =
∂M

∂Q

∣∣∣∣
S

=
(D − 2)̟Q

8πrD−3
h

,

and the heat capacity at constant Φ is

CΦ =
(D − 2)̟πrD−1

h T

2ZΦ(rh, Q, λ)
(20)
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where
ZΦ(rh, Q, λ) = (D − 1)λr2h − 2πrhT. (21)

Indeed

det g =
̟2(D − 2)2ZΦ(rh, Q, λ)

64π2r2h

and a necessary condition for stability is

(D − 1)λr2h > 2πrhT, (22)

which is always true for k ≤ 0 and only imposes a genuine constraint for
k = 1. The heat capacity at constant charge is

CQ =
(D − 2)̟πrD−1

h T

2ZQ(rh, Q, λ)
(23)

and the analogue of CP > CV for a gas is CΦ > CQ. Since ZQ > ZΦ this is
satisfied provided ZΦ is not negative. Note that both CQ and CΦ are finite
for k ≤ 0, the heat capacity can only become singular if k = 1.

The adiabatic electrical capacitance,

CS =
∂Q

∂Φ

∣∣∣∣
S

=
8πrD−3

h

(D − 2)̟
,

is independent of the electric charge, depending only on the entropy, and is
always positive. The isothermal electrical capacitance CT immediately follows
from CQCT = CΦCS.

There is a critical point if ∂2M
∂S2 and ∂2M

∂S2 vanish simultaneously. This
cannot happen for k = 0 or k = −1, but for k = +1 there is a critical point
at

r2h,∗ =
(D − 3)2

(D − 1)(D − 2)λ
,

Q2
∗

r2D−6
h,∗

=
1

(D − 2)(2D − 5)
, (24)

found in [41] [42]. By definition CQ diverges at the critical point, but CΦ

is finite and negative there. Thus CΦ < 0 at the critical point, which is
therefore in a thermodynamically unstable regime unless Q is held fixed.

The intrinsic scalar curvatures arising from the Weinhold and Ruppeiner
geometries are described in detail in appendix A. For the Weinhold metric
(18) the Ricci scalar takes rather a simple form,

R =
(D − 3)2

(D − 2)

πrhk

SZ2
Φ

. (25)
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Thus the curvature of the event horizon is reflected in the sign of R, in
particular the Weinhold metric is flat for k = 0.

The curvature scalar associated with the corresponding Ruppeiner metric,
with Λ fixed, follows from the charged black hole analogue of (7) for a gas,

R̃ = TR− 1

2

∂

∂S

∣∣∣∣
Q

ln

(
TCΦCS
Q2

)
, (26)

or by direct calculation from the Ruppeiner metric. It is proportional to λ

and therefore vanishes in asymptotically flat space-time: explicitly

R̃ =
(D − 1)λ

{
3πT − (D − 1)rhλ

}
F̃ (rh, λ, Q)C2

Φ

2
{
2π(D − 2)ST

}3 (27)

where

F̃ (rh, λ, Q) = 2(D − 1)λr2h + 4(D − 4)πrhT + 2(D − 3)2
Q2

r2D−6
h

is a positive function. That R̃ vanishes for asymptotically flat space-time in
D = 4 was observed in [9] and we see here that this statement generalises

to D > 4. R̃ can be of either sign when λ > 0 and is negative for small
temperatures, diverging to minus infinity for extremal black holes.

We see that a flat event horizon gives R = 0 while a flat cosmology, Λ = 0,
gives R̃ = 0. It was observed in [25] that repulsive microscopic forces tend
to give negative Ruppeiner curvature6 while attractive forces give positive
curvature, but in the absence of an underlying theory of quantum gravity it
is not at all clear whether or not this interpretation accounts for the changing
sign of R̃ for Reissner-Nordström black holes when λ = 3πT

(D−1)rh
.

The dependence of the Weinhold scalar on k in (25) can also be given
a thermodynamic interpretation. The sign of k is significant for stability as
there is no Hawking-Page phase transformation for k ≤ 0. This can be seen
by calculating the Gibbs free energy for the black hole,

G(T,Φ) = M(S,Q)− TS −QΦ,

6Our convention for the sign of the Ricci scalar is that a sphere has positive curvature:
this is opposite to that of [25].
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which, in terms of λ, rh and Q, is

G =
̟rD−3

h

16π

(
k − λr2h −

Q2

r2D−3
h

)
.

The black hole is only stable against Hawking-Page decay if its Gibbs free
energy is less than the Gibbs free energy of anti-de Sitter space filled with
pure thermal radiation at the Hawking temperature of the black hole and,
if the back reaction of the radiation is ignored, the latter is zero. Thus the
black hole is stable against the Hawking-Page phase transition if the Gibbs
free energy is negative, [2], which is always the case for k ≤ 0. A Hawking-
Page phase transition is only possible if R > 0 .

Note the critical point is not reflected in either of the curvature scalars
because the singularities of R and R̃ are determined by (CQCT )2 = (CΦCS)2
and there is a locus of zeros in the isothermal electrical capacitance CT which
exactly cancels the singularities in CQ. The fact that the analytic structure
of the curvatures is determined by CΦ and not by CQ is a phenomenon
which also occurs for rotating black holes as we shall see in the next section.
The same phenomenon is also present for the van der Waals gas where the
singularities in the curvature are determined by CP and not CV , the latter
is in fact finite. For the van der Waals gas however the critical point is also
determined by CP and not CV , while for the black hole the critical point is
determined by CQ and not CΦ, even though CΦ can have singularities when
k = 1.

If the pressure is included as a thermodynamic variable we should Legen-
dre transform from M(S,Q, P ) to U(S,Q, V ) = M+PV to ensure a positive
definite metric for thermodynamically stable black holes. However the Wein-
hold and Ruppeiner metrics associated with the 3-dimensional state space,
parameterised by (S,Q, V ), are singular because S and V are not indepen-
dent for non-rotating black holes [43]. This restriction is removed when the
black hole rotates and we study this case in the next section.
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4 Asymptotically AdSMyers-Perry black holes

4.1 Singly spinning black holes

The thermodynamic state space associated with a D-dimensional rotating
black hole is multi-dimensional in general, because of the increasing number
of angular momenta as D increases. For simplicity we set Q = 0 and focus
on the singly spinning case where only one of the J i is non-zero, J1 = J 6= 0
say, with J i = 0 for i = 2, . . . , r. The thermodynamic state space is then 3-
dimensional, parameterised by (S, J, V ). The geometry can be parameterised
by the cosmological constant, a rotational parameter a and the radius of the
event horizon rh.

Details are given in appendix B and here we summarise the relations
between the geometric parameters and the thermodynamic ones. It is conve-
nient to define dimensionless variables ā = a

rh
and l = λr2h in terms of which

the thermodynamic variables (S, J, V ) are, [44] [45],

S =
̟rD−2

h

4

(1 + ā2)

(1− la2)
,

J =
̟rD−2

h

8π

(1 + ā2)(1 + l)ā

(1− lā2)2
, (28)

V =
̟rD−1

h

(D − 1)(D − 2)

(1 + ā2)
{
D − 2− (D − 3)lā2 + ā2

}

(1− lā2)2
,

where ̟ is the volume of a unit (D − 2)-sphere. The conjugate variables
(T,Ω, P ) are

T =
(D − 3) + (D − 5)ā2 + l

{
D − 1 + (D − 3)ā2

}

4πrh(1 + ā2)
,

Ω =
(1 + l)ā

(1 + ā2)rh
, (29)

P =
(D − 1)(D − 2)l

16πr2h
,
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and the thermodynamic potentials are

M =
̟rD−3

h

16π

(1 + ā2)(1 + l)
{
D − 2− (D − 4)lā2

}

(1− lā2)2
, (30)

U = M − PV =
̟rD−3

h

16π

(1 + ā2)
{
D − 2− (D − 3)lā2 + l2ā2

}

(1− lā2)2
.

All extensive quantities (S, J , V , M and U) diverge when lā2 = 1,
which should be viewed as the edge of thermodynamic state space [47], in
particular the entropy becomes negative for lā2 > 1 only lā2 < 1 makes sense
thermodynamically.

4.2 Thermodynamic geometry

4.2.1 Fixed pressure

For Λ = 0 singly spinning black holes the thermodynamic state space is
2-dimensional, the independent variables being either S and J , for the Wein-
hold metric, or M and J for the Ruppeiner metric. The intrinsic curvatures
associated with both the Weinhold and the Ruppeiner metrics were calcu-
lated in [15] and the Weinhold metric is flat for all D.

When Λ < 0 and held fixed the space-time can be parameterised either
by the geometric variables (XA′

) = (rh, ā) or by the thermodynamic vari-
ables (XA) = (S, J): for calculations involving the thermodynamic metric
the former are more useful because (28), (29) and (30) are simple ratios of
polynomials of fairly low order in these variables which makes the algebra
more tractable. With the explicit expressions (28) and (29) it is straightfor-

ward to evaluate the matrices ∂XC

∂XB′ and ∂YC

∂XA′ , with YC = (T,Ω), and hence
determine the metric (14) and its curvature.

Details of the Weinhold and the Ruppeiner curvature scalars at fixed
pressure are given in appendix B. They diverge on the spinodal curve for the
heat capacity at constant angular momentum, which is a

CΩ,P = −4πrhTS
{
D − 2− (D − 4)ā2

}

ZΩ(λ, ā)
(31)

with
ZΩ(l, ā) = (D − 3)(1 + lā2)− (D − 1)l − (D − 5)ā2. (32)
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The spinodal curve, ZΩ = 0, is therefore given by

l(ā) =
(D − 3)− (D − 5)ā2

(D − 1)− (D − 3)ā2
:= l∞. (33)

In contrast the heat capacity at constant angular momentum is

CJ = −4πrhTS(1 + ā2)2
{
D − 2 + (D − 4)λā2

}

ZJ(l, ā)
(34)

where ZJ is quadratic in λ (the explicit expression is given explicitly in
appendix B, equation (63)). In the thermodynamically stable regime CΩ >

CJ .
There is a critical point and a second order phase transition associated

with fixed J , first found in [50] for D = 4 but which has an analogue in any
D. This critical point is not visible for fixed Ω as CΩ is finite there and,
in parallel with the Reissner-Nordström case, CΩ is in fact negative at the
critical point.

Explicitly the Weinhold curvature is

R =
16πl(1− lā2)F1(l, ā)

̟rD−3
h (1 + ā2){D − 2 + (D − 4)lā2}2Z2

Ω(l, ā)
(35)

with F1(l, ā) a polynomial linear in l and quartic in ā2, given explicitly in
appendix B equation (60), while the Ruppeiner curvature is

R̃ = − (D − 3)(1− l2ā4)F̃1(l, ā)F̃2(l, ā)

π̟rD−1
h (1 + ā2)2T

{
D − 2 + (D − 4)ā2

}
Z2

Ω(l, ā)
, (36)

with F̃1(l, ā) a linear in l and ā2, and F̃2(l, ā) quadratic in l and ā2 (appendix
B, equations (66) and (67)).

The Weinhold metric is no longer flat when Λ < 0, for any D ≥ 4,
and can be of either sign. Both the Weinhold and the Ruppeiner metrics
are flat on the line lā2 = 1, which is the boundary of the region where a
thermodynamic interpretation of the black hole is consistent as the entropy,
angular momentum and mass all diverge on this line. Both are singular on
the spinodal curve for the heat capacity at constant angular velocity (31).

As an example the Ricci scalar for the Ruppeiner metric is shown in
Figure 1, for D = 5 (scaled by r3h to make it dimensionless). It is negative for
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Figure 1: The Ricci scalar for the Ruppeiner geometry associated with a
singly spinning asymptotically AdS Myers-Perry black hole in D = 5 at fixed
l, as a function of l and ā (multiplied by r3h to render it dimensionless). In

the right-hand figure R̃ is positive in the white regions and negative in the
black regions. The regime of local thermodynamically stability (determined
by convexity M(S, J, P ) with P fixed) lies below the blue curve, bounded
by the hyperbola lā2 = 1 (blue) and the spinodal curve ZΩ = 0 (red). The
vertical dashed line indicates the Hawking-Page phase transition — the black
hole is stable against the Hawking-Page phase transition only for l > 1. The
critical point lies in the unstable regime if the angular momentum is not fixed
and is indicated by the dot

small l, for any value of the rotation parameter ā, but is positive everywhere
in the thermodynamically stable regime. The latter observation is also true
in D = 4, [18][19][21].

The singularities in both the Weinhold and the Ruppeiner curvatures are
determined by those of CΩ and not CJ . In the context of rotating black
holes we have CJIT = CΩIS, where IS and IT are the isentropic and isother-
mal moments of inertia respectively, equations (63) and (64) in appendix B.
The curvatures here are proportional to (CJIT )

2 = (CΩIS)
2: there are sin-
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gularities in CJ that are cancelled by corresponding zeros in the isothermal
moment of inertia7 IT and singularities in IT which are the same as those in
CΩ. Note also that the singularities of

IS =
∂J

∂Ω

∣∣∣∣
S

=
rhS(1 + a2)2

{
D − 2 + (D − 4)λā2

}

2π(1− lā2)2
{
D − 2− (D − 4)ā2

} , (37)

in the region with lā2 < 1, are cancelled by zeros in CΩ and the only singu-
larities in the curvatures are those of CΩ. For D ≥ 5, CΩ is positive if either
ZΩ > 0 and a2 < D−2

D−4
or ZΩ < 0 and ā2 > D−2

D−4
, but the latter possibility

necessarily implies that IS < 0: for ultra-spinning black holes the moment
of inertia is negative.

In summary, when the pressure is held fixed, both the Weinhold and the
Ruppeiner scalar curvatures diverge on the spinodal curve for CΩ, ZΩ = 0
in (32), and these are the only singularities. The curvature singularities are
determined by those of CΩ, not CJ .

4.2.2 Varying pressure

Allowing for varying Λ there is potentially a 4-dimensional space of ther-
modynamic states associated with singly spinning charged black holes, pa-
rameterised by (S,Q, J, V ). A completely general analysis would be rather
complicated and we restrict ourselves here to studying the 3-dimensional
state space of singly spinning electrically neutral black holes. Even then,
with a 3-dimensional state space, the full Ricci tensor is necessary for a com-
plete description of the curvature and for simplicity the discussion here is
restricted to to the Ricci scalar, for which the properties are not too difficult
to extract.

The diagonal components of the Weinhold metric in thermodynamic co-
ordinates (S, J, V ) have direct physical interpretations:

gSS =
∂T

∂S
=

T

CV,J

gJJ =
∂Ω

∂J
= I−1

S,V ,

gV V = −∂P

∂V
=

1

V κS,J

7In this section λ is held fixed, so it is implicit that the moment of inertia here is
calculated at fixed pressure IT = IT,P .
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where IS,V is the isentropic moment of inertia of the black hole, with V fixed.
The Weinhold and Ruppeiner metrics of a singly spinning asymptotically

AdS Myers-Perry black hole, with internal energy U(S, J, V ), can be evalu-
ated in (rh, ā, l) co-ordinates using (14). They are found to be

R =
16π

(D − 3)̟rD−3
h

(1− lā2)F2(l, ā
2)

ā4(1 + ā2)
(
1 + l

)2
Z2

Ω(l, ā),
(38)

where F2 is quadratic in l and quartic in ā2 (more details are given in ap-
pendix B).

R̃ =
(1− lā2)F̃3(l, ā)

4π(D − 3)̟rD−1
h ā4(1 + ā2)3(1 + l)2TZ2

Ω

, (39)

where F̃3(l, a) is a quintic polynomial in l and sixth order in ā2.
Both curvatures diverge for ā2 = 0 and on the curve l∞. The former

singularity, at ā2 = 0, is associated with the incompressibility of a non-
rotating black hole [51] while the latter is again the same locus of points as
that on which the heat capacity at constant angular velocity and pressure
CΩ,P diverges [38].

For illustrative purposes we show the Weinhold Ricci scalar, R, for D = 5
in Figure 2, scaled by a factor r2h to make it a dimensionless function of only

two variables ā and l. For comparison the Ruppeiner Ricci scalar R̃ is shown
in Figure 3, scaled by r3h. In both cases the Ricci scalar diverges on the curve
l∞ in equation (33), where the denominator has a double zero associated with
a singularity in the heat capacity. The Ricci scalar also diverges for ā = 0,
where the black hole is incompressible. A correlation between singularities
in response functions and singularities in the Ricci scalar for thermodynamic
state space is a generic feature of the geometry of black hole thermodynamic
state space, [6], and for black holes in particular, [26]. Both Ricci scalars
vanish on the hyperbola lā2 = 1, except at the point l = ā2 = 1, since the
denominators of both R and R̃ have double zeros there (equations (72) and
(74) in appendix B).

The region of thermodynamic stability lies below the solid blue curve in
the right-hand plots in figures 2 and 3 (the black hole is also unstable against
the Hawking-Page phase transition for l < 1), the thermodynamically stable
regime is isolated from the divergences in the heat capacity, except at the
single point ā2 = l = 1. The Ruppeiner scalar is positive close to the line
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Figure 2: The Ricci scalar for the Weinhold geometry associated with a singly
spinning asymptotically AdS Myers-Perry black hole in D = 5, as a function
of l and ā (multiplied by r2h to render it dimensionless). The colour coding
is the same as in 1.

of the Hawking-Page phase transition, but can become negative for large
pressure and entropy.

5 Conclusions

The thermodynamic geometry of asymptotically anti-de Sitter black holes in
D space-time dimensions has been examined in three special cases: electri-
cally charged static black holes with fixed cosmological constant; electrically
neutral singly spinning asymptotically AdS Myers-Perry black holes with
fixed cosmological constant and electrically neutral singly spinning asymp-
totically AdS Myers-Perry black holes in an extended state space in which
the cosmological constant is included among the thermodynamic variables.
The first two cases generalise previous studies in D = 4 case to arbitrary
dimension, while the last is a new direction in the geometry of black hole
thermodynamics in which the black hole volume is interpreted as the ther-
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Figure 3: The Ricci scalar for the Ruppeiner geometry associated with a
singly spinning asymptotically AdS Myers-Perry black hole in D = 5, as a
function of l and ā (multiplied by r3h to render it dimensionless). The colour
coding is the same as in Figure 1.

modynamic variable conjugate to the positive pressure supplied by a neg-
ative cosmological constant. The analysis is based on equation (14) which
expresses the thermodynamic metric in a manifestly general co-ordinate co-
variant way, allowing any convenient co-ordinate system to be used for the
calculations.

Our first observation extends the analysis of [9] for 4-dimensional spher-
ical black holes to D space-time dimensions and also to event horizons with
positive (k = +1), negative (k = −1) and vanishing (k = 0) curvature. At
fixed Λ ≤ 0 the sign of the Weinhold curvature, derived from M(S,Q, P )
for a charged, non-rotating black hole in D space-time dimensions, is de-
termined by the topology of the event horizon: the Weinhold curvature is
positive for spherical event horizons and negative for hyperbolic horizons,
while flat event horizons give a flat Weinhold metric. This behaviour shows
a correlation with thermodynamic stability, as only k = 1 black holes can
support a Hawking-Page phase transition. In contrast the Ruppeiner metric
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is flat for Λ = 0 but can be of either sign for Λ < 0.
For spherical event horizons the black hole can rotate and the Weinhold

metric on the 2-dimensional state space of a singly spinning electrically neu-
tral black holes, derived from M(S, J, P ) with P fixed, is flat when Λ = 0.

For asymptotically AdS black holes which are both charged and spinning
there is a critical point for fixed Q and J [50], but not for fixed Φ or fixed Ω.
General considerations suggest that the thermodynamic curvatures should
diverge on spinodal curves, but the analysis in §3 and §4 shows that the
thermodynamic curvatures do not diverge on the singularities of CQ or CJ .
Rather, due to cancellations in CQCT = CΦCS and CJIT = CΩIS, they
diverge on the singularities of CΦ and CΩ. Contrary to expectations the
thermodynamic curvatures do not diverge at the critical points. This unusual
feature of the geometry of the thermodynamic state space for black holes may
be due to the inhomogeneous scaling of the thermodynamic variables that
makes the Smarr different from the integrated form of the Gibbs-Duhem
relation.

For singly spinning electrically neutral black holes the thermodynamic
state space can be enhanced to include the volume as a thermodynamic
variable. The internal energy is a function of volume rather than pressure,
U(S, J, V ) where a negative cosmological constant provides a positive pres-
sure and V = ∂M

∂P

∣∣
S,J

, with M the black hole mass, is the thermodynamic

volume. Unlike the mass M(S, J, P ), which is the enthalpy in thermodynam-
ics, the internal energy U(S, J, V ) is a concave function of all its arguments
for thermodynamically stable systems and gives rise to a positive definite
Weinhold and Ruppeiner metrics in the region of parameter space where
the black hole is thermodynamically stable. The resulting Ricci scalars have
been calculated and shown to diverge for J = 0, when the black hole is in-
compressible, and when the heat capacity at constant angular velocity and
pressure, CΩ,P , diverges. Again the critical point is not visible in either the
Weinhold or the Ruppeiner curvature scalars.

Symbolic manipulations performed in this analysis were carried out using
Maple c©.
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A Thermodynamic curvature of charge black

holes

For non-rotating, asymptotically AdS black holes, the space-time metric is

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2d2Ω(D−2), (40)

where d2Ω(D−2) is the line-element on a unit (D − 2)-dimensional sphere,
torus or hyperbolic space for k = 1, 0 or −1 respectively, and

f(r) = k − 2µ

rD−3
+

Q2

r2D−6
+ λr2. (41)

The mass and the entropy are

M =
(D − 2)̟µ

8π
=

(D − 2)̟rD−3
h

(
k + Q2

r2D−6

h

+ r2hλ
)

16π
(42)

and

S =
̟rD−2

h

4
. (43)

Q is the electric charge and λ = − 2Λ
(D−1)(D−2)

.
The entropy and the Hawking temperature are

S =
̟

4
rD−2
h (44)

and

T =
f ′(rh)

4π
=

(D − 1)λr2h + (D − 3)
(
k − Q2

r2D−6

h

)

4πrh
, (45)

where ̟ is the volume of a unit (D − 2) sphere, torus or hyperbolic space
for k = 1, 0 or −1.8 For fixed Λ < 0, the Weinhold metric is the 2 × 2
Hessian matrix obtained by differentiating M(S,Q, P ) with respect to S and
Q, keeping P fixed,

g =
̟ (D − 2)

8π




rD−5
h ZQ(rh, λ, Q) − (D−3)Q

rh
D−2

− (D−3)Q
rh

D−2

1
rh

D−3



 , (46)

8For k = 0 and −1 the event horizon volume can be made finite by identifying points.
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where

ZQ(rh, λ, Q) =
1

2

{
(D − 1) rh

2λ− (D − 3)k + (D − 3)(2D − 5)
Q2

rh2D−6

}
.

(47)
ZQ(rh, λ, Q) is of course related to the heat capacity at constant charge and
pressure,

CQ,P =
(D − 2)π̟rD−1

h T

2ZQ(rh, Q, λ)
. (48)

The zero locus of ZQ(rh, λ, Q) is the spinodal curve of CQ,P . This is however
not visible in the determinant,

det g =
̟2(D − 2)2ZΦ(rh, Q, λ)

64π2r2h
, (49)

where

ZΦ(rh, Q, λ) =
1

2

{
(D − 1)r2hλ− (D − 3)

(
k − Q2

r2D−6
h

)}
. (50)

The determinant reflects the singularity structure of the heat capacity at

constant electric potential, Φ = ∂M
∂Q

∣∣∣
S,P

= (D−2)̟Q

8πrD−3

h

, which is

CΦ,P =
(D − 2)π̟rD−1

h T

2ZΦ(rh, Q, λ)
. (51)

The Weinhold scalar curvature is

R =
4πk(D − 3)2

(D − 2)̟rD−3
h ZΦ(rh, Q, λ)2

. (52)

For k = 1 the singularities in the curvature match those of the heat capacity
of the black hole at constant pressure, CΦ,P . For k < 0, CΦ,P and R are finite
and R is negative.

The Weinhold curvature scalar can be succinctly written in terms of the
electrical capacitance,

CS,P =
∂Q

∂Φ

∣∣∣∣
S,P

=
8πrD−3

h

(D − 2)̟
, (53)
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and the entropy (44) as

R =
(D − 3)2

(D − 2)

πrhk

SZ2
Φ

. (54)

The Ruppeiner metric on the other hand, based on the Hessian matrix
of S(M,Q, P ) with a 2-dimensional state space consisting of (M,Q) and P

fixed, has scalar curvature

R̃ =
4(D − 1)λ

(
3πT − (D − 1)rhλ

)
F̃ (λ, rh, Q)C2

Φ,P{
(D − 2)̟rD−2

h πT
}3 (55)

where F̃ (λ, rh, Q) is a linear function of λ,

F̃ (λ, rh, Q) = (D − 1)(D − 2)r2hλ+ (D − 3)

{
(D − 4)k + (D − 2)

Q2

r2D−6
h

}
,

(56)
which is positive for k = 1.

B Metric and Ricci scalar for rotating black

holes

A singly spinning asymptotically AdS Myers-Perry black hole, in D > 3
dimensions, has the line element [47]

ds2 = −∆

ρ2

(
dt− a

Ξ
sin2 θdφ

)2

+
ρ2

∆
dr2 +

ρ2

∆θ

dθ2

+
∆θ sin

2 θ

ρ2

(
adt− r2 + a2

Ξ
dφ

)2

+ r2 cos2 θdΩ(D−2),

where

∆ = (r2 + a2)
(
1 + λr2

)
− 2µ

rD−5
,

∆θ = 1− λa2 cos2 θ,

ρ2 = r2 + a2 cos2 θ,

Ξ = 1− λa2.
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µ, a and λ are geometric parameters related to mass, rotation and cosmo-
logical constant respectively (as before, λ = − 2Λ

(D−1)(D−2)
). There is an event

horizon at the largest root, rh, of

∆(rh) = 0 ⇒ µ =
1

2
rD−5
h (r2h + a2)

(
1 + λr2h

)
.

The Hawking temperature is

T =
(D − 3)(1 + λa2)r2h + (D − 1)λr4h + (D − 5)a2

4πrh(r
2
h + a2)

, (57)

for D > 4 this is a positive function for any a. The condition that a2 ≥ 0
forces T to lie in the range

(D − 3)λr2h + (D − 5) ≤ 4πrhT ≤ (D − 1)λr2h + (D − 3).

When Λ is fixed the Weinhold metric derived from M(S, J, P ) with fixed
P is, in (rh, a) co-ordinates,

g =

̟rD−5
h

16π(r2h + a2)




p1(rh,λ,a)
(1−λa2)

−2a(1−λ2r4
h)((D−1)r2

h
+(D−5) a2)

rh(1−λ a2)2

−2a(1−λ2r4
h)((D−1)r2

h
+(D−5) a2)

rh(1−λ a2)2
2(1+λr2

h
)2
[
(3−a2)λa2+r2

h
−3a2

]

(1−λa2)3


 ,

where p1(rh, λ, a) in the top-left entry is

p1(rhλ, a) = λ
[
(D − 3)(D − 4)a4 + 2(D2 − 5D + 3)a2r2h + (D − 1)(D − 2)r4h

]

−(D − 4)(D − 5)a4 − 2(D2 − 7D + 9)a2r2h − (D − 2)(D − 3)r4h.

The Ricci scalar arising from this Weinhold metric is, in terms of dimen-
sionless variables l = λr2h and ā = a

rh
,

R =
16πl(1− lā2)F1(l, ā)

̟rD−3
h (1 + ā2){D − 2 + (D − 4)lā2}2Z2

Ω(l, ā)
, (58)

where
ZΩ(l, ā) = (D − 3)(1 + lā2)− (D − 1)l − (D − 5)ā2, (59)

and F1(l, ā) is linear in l,

F1(l, ā) = A1(ā)ā
2l +B1(ā), (60)
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with

A1(ā) = (D − 5)2ā4
{
(D − 4)ā2 + (D − 6)

}

−(D − 1)(D2 − 17D + 48)ā2 − (D − 1)2(D − 2),

B1(ā) = −(D − 5)ā4
{
(D − 4)(D − 5)ā2 + (D2 + 5D − 18)

}

+(D − 1)2
{
Dā2 + (D − 2)

}
.

The zeros of ZΩ reflect singularities in the heat capacity, in this instance
the heat capacity at constant angular velocity and pressure,

CΩ,P = −4πrhTS
{
D − 2− (D − 4)ā2

}

ZΩ(l, ā)
. (61)

The heat capacity at constant angular momentum and pressure has a rather
different structure,

CJ,P = −4πrhTS(1 + ā2)2
{
D − 2 + (D − 4)λā2

}

ZJ(l, ā)
(62)

with

ZJ(l, ā) = −l2ā2
{
(D − 3)ā4 + 6ā2 + 3(D − 1)

}

+l
{
(D − 5)ā6 + (5D − 33)ā4 − (5D + 3)ā2 − (D − 1)

}

+3(D − 5)ā4 − 6ā2 +D − 3.

The isentropic moment of inertia at constant pressure (analogous to κS

for a gas and evaluated in [38]) is

IS,P =
∂J

∂Ω

∣∣∣∣
S,P

=
rhS(1 + a2)2

{
D − 2 + (D − 4)λā2

}

2π(1− lā2)2
{
D − 2− (D − 4)ā2

} . (63)

The isothermal moment of inertial tensor IT,P can be obtained from the
identity CΩ,PIS,P = CJ,PIT,P ,

IT,P =
rhSZJ(l, ā)

2π(1− lā2)2ZΩ(l, ā)
. (64)

The Ruppeiner metric has Ricci scalar

R̃ = − (D − 3)(1− l2ā4)F̃1(l, ā)F̃2(l, ā)

π̟rD−1
h T (1 + ā2)2

{
D − 2 + (D − 4)lā2

}
Z2

Ω(l, ā)
(65)
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where F̃1(l, ā) is linear in λ and ā2 while F̃2(l, ā) is quadratic. Explicitly

F̃1(l, ā) = (D − 3)(1 + lā2)− 3
{
(D − 1)l + (D − 5)ā2

}
(66)

F̃2(l, ā) = Ã2(ā)l
2 + B̃2(ā)l + C̃2(ā), (67)

with

Ã2(ā) = (D − 4)
{
(D − 3)ā2 − (D − 1)

}
ā2,

B̃2(ā) = (D − 5)(D − 6)ā4 − 2(D2 − 6D + 1)ā2 +D(D − 1),

C̃2(ā) = (D − 2)
{
(D − 3)− (D − 5)ā2

}
.

Note that the only singularities in R or R̃ are those associated with the
spinodal curve of CΩ,P , ZΩ = 0.

When l = 0 (65) reduces to

R̃ = − 4(D − 3)
{
D − 3− 3(D − 5)ā2

}

̟rD−2
h (1 + ā2)

{
(D − 3)2 − (D − 5)2ā4

} , (68)

which is the result quoted in [15].
There is a critical point on the spinodal curve for CJ,P . This was first

found for D = 4 in [50], where the critical values are lcrit = 0.2105 and
ācrit = 0.1795, and is present in any space-dimension greater than three. In
5-D for example lcrit = 0.3569 and ācrit = 0.1802. There is no critical point
visible in CΩ,P , in fact ZΩ > 0 and CΩ < 0 at the critical point and the critical
point is actually unstable if J is not fixed. The curvature scalars diverge on
the spinodal curve for CΩ,P , not that of CJ,P , and the critical point is not
visible in the thermodynamic curvature.

Allowing P to vary requires using V as a thermodynamic variable in order
to ensure a positive definite Weinhold metric, associated with U(S, J, V ), in
regions of the state space where the black hole is thermodynamically stable.
The Weinhold metric following from (14), (28), (29) and (30) is

g =
̟rD−5

h

16π
× (69)




(1+ā2)p2(l,ā)
(1−lā2)2

−2(D−2)rh(1−l2)ā
(1−lā2)2

−2rh[(D−1)−(D−3)l](1+ā2)ā2

(1−lā2)2

−2(D−2)rh(1−l2)ā
(1−lā2)2

2r2
h
(1+l)2(ā2(3−ā2)l+1−3ā2)

(1+ā2)(1−lā2)3
r2
h
(1+l)(lā2+1−2ā2)ā

(1−lā2)3

−2rh[(D−1)−(D−3)l](1+ā2)ā2

(1−lā2)2
r2
h
(1+l)(lā2+1−2ā2)ā

(1−lā2)3
2r2

h
(1−ā4)ā2

(1−lā2)3



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where the top left entry involves

p2(l, ā) = −D(D−3)ā2l2+
{
(D2−5D+8)ā2+(D−1)(D−2)

}
l−(D−2)(D−3).

The determinant of the Weinhold metric, in (rh, l, ā) co-ordinates, is

det g = −̟3(D − 3)r3D−11
h (1 + l)3(1 + ā2)ā4ZΩ(l, ā)

2048π3(1− lā2)6
, (70)

which, for l > 0, vanishes when ā = 0 and when

l := l∞ =
(D − 3)− (D − 5)ā2

(D − 1)− (D − 3)ā2
, (71)

and diverges for
lā2 = 1.

The zeros of det g are genuine curvature singularities and are reflected in the
Ricci scalars below, indeed these reflect singularities in the response func-
tions: the black hole is incompressible for ā2 = 0 and the heat capacity at
constant angular velocity, CΩ,P , diverges on l∞ where ZΩ = 0. Both Ricci
scalars vanish at the limit of thermodynamic state space where lā2 = 1 and
extensive quantities diverge.

The Ricci scalar following from the Weinhold metric (69) can be written
as a ratio of two polynomials in the dimensionless variables (l, ā2)

R =
16π

(D − 3)̟rD−3
h

(1− lā2)F2(l, ā
2)

ā4(1 + ā2)
(
1 + l

)2
Z2

Ω(l, ā),
, (72)

where F2 is quadratic in l and quartic in ā2. Explicitly

F2(l, ā
2) = A2(ā

2)l2 +B2(ā
2)l + C2(ā

2) (73)

with

A2(ā
2) = ā2

[
(D − 3) (7D − 27) ā6 −

(
5D2 − 10D − 19

)
ā4

− (D − 1) (3D − 13)ā2 + (D − 1)2
]
,

B2(ā
2) = −(D − 2)(D − 5)(2D − 7)ā8 + (D3 − 9D2 + 20D − 4)ā6

+(3D3 − 17D2 + 22D + 12)ā4 − (D − 1)(D2 − 8)ā2 − (D − 1)2 (D − 2) ,

C2(ā
2) = (D − 3) (D − 5)2 ā8 + (D − 5)

(
D2 − 11D + 19

)
ā6

−
(
3D3 − 28D2 + 70D − 61

)
ā4 −

(
D3 − 12D2 + 30D − 23

)
ā2

+(D − 1)(D − 2)(2D − 5).
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The only singularities of R are those associated with the zeros of ZΩ.
The Ricci scalar for the Ruppeiner metric conformal to (69) is more com-

plicated,

R̃ =
(1− lā2)F̃3(l, ā)

4π(D − 3)̟rD−1
h ā4(1 + ā2)3(1 + l)2TZ2

Ω

, (74)

where F̃3(l, a) is a quintic polynomial in l and sixth order in ā2. Again the
only singularities are associated with the zeros of ZΩ.
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[9] J. Åman, I. Bengtsson and N. Pidokrajt, Gen. Relat. Gravit. 35 (2003)
1733, [gr-qc/0304015].

[10] G. Arcioni and E. Lozano-Tellechea, Phys. Rev. D 72 (2005) 104021,
[hep-th/0412118].
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