9 research outputs found

    Power minimization based robust OFDM radar waveform design for radar and communication systems in coexistence.

    Get PDF
    This paper considers the problem of power minimization based robust orthogonal frequency division multiplexing (OFDM) radar waveform design, in which the radar coexists with a communication system in the same frequency band. Recognizing that the precise characteristics of target spectra are impossible to capture in practice, it is assumed that the target spectra lie in uncertainty sets bounded by known upper and lower bounds. Based on this uncertainty model, three different power minimization based robust radar waveform design criteria are proposed to minimize the worst-case radar transmitted power by optimizing the OFDM radar waveform, which are constrained by a specified mutual information (MI) requirement for target characterization and a minimum capacity threshold for communication system. These criteria differ in the way the communication signals scattered off the target are considered: (i) as useful energy, (ii) as interference or (iii) ignored altogether at the radar receiver. Numerical simulations demonstrate that the radar transmitted power can be efficiently reduced by exploiting the communication signals scattered off the target at the radar receiver. It is also shown that the robust waveforms bound the worst-case power-saving performance of radar system for any target spectra in the uncertainty sets

    Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead

    Get PDF
    Sharing of the frequency bands between radar and communication systems has attracted substantial attention, as it can avoid under-utilization of otherwise permanently allocated spectral resources, thus improving efficiency. Further, there is increasing demand for radar and communication systems that share the hardware platform as well as the frequency band, as this not only decongests the spectrum, but also benefits both sensing and signaling operations via the full cooperation between both functionalities. Nevertheless, the success of spectrum and hardware sharing between radar and communication systems critically depends on high-quality joint radar and communication designs. In the first part of this paper, we overview the research progress in the areas of radar-communication coexistence and dual-functional radar-communication (DFRC) systems, with particular emphasis on application scenarios and technical approaches. In the second part, we propose a novel transceiver architecture and frame structure for a DFRC base station (BS) operating in the millimeter wave (mmWave) band, using the hybrid analog-digital (HAD) beamforming technique. We assume that the BS is serving a multi-antenna user equipment (UE) over a mmWave channel, and at the same time it actively detects targets. The targets also play the role of scatterers for the communication signal. In that framework, we propose a novel scheme for joint target search and communication channel estimation, which relies on omni-directional pilot signals generated by the HAD structure. Given a fully-digital communication precoder and a desired radar transmit beampattern, we propose to design the analog and digital precoders under non-convex constant-modulus (CM) and power constraints, such that the BS can formulate narrow beams towards all the targets, while pre-equalizing the impact of the communication channel. Furthermore, we design a HAD receiver that can simultaneously process signals from the UE and echo waves from the targets. By tracking the angular variation of the targets, we show that it is possible to recover the target echoes and mitigate the resulting interference to the UE signals, even when the radar and communication signals share the same signal-to-noise ratio (SNR). The feasibility and efficiency of the proposed approaches in realizing DFRC are verified via numerical simulations. Finally, the paper concludes with an overview of the open problems in the research field of communication and radar spectrum sharing (CRSS)

    Estudo de formas de onda e conceção de algoritmos para operação conjunta de sistemas de comunicação e radar

    Get PDF
    The focus of this thesis is the processing of signals and design of algorithms that can be used to enable radar functions in communications systems. Orthogonal frequency division multiplexing (OFDM) is a popular multicarrier modulation waveform in communication systems. As a wideband signal, OFDM improves resolution and enables spectral efficiency in radar systems, while also improving detection performance thanks to its inherent frequency diversity. This thesis aims to use multicarrier waveforms for radar systems, to enable the simultaneous operation of radar and communication functions on the same device. The thesis is divided in two parts. The first part, studies the adaptation and application of other multicarrier waveforms to radar functions. At the present time many studies have been carried out to jointly use the OFDM signal for communication and radar functions, but other waveforms have shown to be possible candidates for communication applications. Therefore, studies on the evaluation of the application of these same signals to radar functions are necessary. In this thesis, to demonstrate that other multicarrier waveforms can overcome the OFDM waveform in radar/communication (RadCom) systems, we propose the adaptation of the filter bank multicarrier (FBMC), generalized frequency division multiplexing (GFDM) and universal filtering multicarrier (UFMC) waveforms for radar functions. These alternative waveforms were compared performance-wise regarding achievable target parameter estimation performance, amount of residual background noise in the radar image, impact of intersystem interference and flexibility of parameterization. In the second part of the thesis, signal processing techniques are explored to solve some of the limitations of the use of multicarrier waveforms for RadCom systems. Radar systems based on OFDM are promising candidates for future intelligent transport networks. Exploring the dual functionality enabled by OFDM, we presents cooperative methods for high-resolution delay-Doppler and direction-of-arrival estimation. High-resolution parameter estimation is an important requirement for automotive radar systems, especially in multi-target scenarios that require reliable target separation performance. By exploring the cooperation between vehicles, the studies presented in this thesis also enable the distributed tracking of targets. The result is a highly accurate multi-target tracking across the entire cooperative vehicle network, leading to improvements in transport reliability and safety.O foco desta tese é o processamento de sinais e desenvolvimento de algoritmos que podem ser utilizados para a habilitar a função de radar nos sistemas de comunicação. OFDM (Orthogonal Frequency Division Multiplexing) é uma forma de onda com modulação multi-portadora, popular em sistemas de comunicação. Para sistemas de radar, O OFDM melhora a resolução e fornece eficiência espectral, além disso sua diversidade de frequências melhora o desempenho na detecção do radar. Essa tese tem como objetivo utilizar formas de onda multi-portadoras para sistemas de radar, possibilitando a operação simultânea de funções de radar e de comunicação num mesmo dispositivo. A tese esta dividida em duas partes. Na primeira parte da tese são realizados estudos da adaptabilidade de outras formas de onda multi-portadora para funções de radar. Nos dias atuais, muitos estudos sobre o uso do sinal OFDM para funções de comunicação e radar vêm sendo realizados, no entanto, outras formas de onda mostram-se possíveis candidatas a aplicações em sistemas de comunicação, e assim, avaliações para funções de sistema de radar se tornam necessárias. Nesta tese, com a intenção de demonstrar que formas de onda multi-portadoras alternativas podem superar o OFDM nos sistemas de Radar/comunicação (RadCom), propomos a adaptação das seguintes formas de onda: FBMC (Filter Bank Multicarrier); GFDM (Generalized Frequency Division Multiplexing); e UFMC (Universal Filtering Multicarrier) para funções de radar. Também produzimos uma análise de desempenho dessas formas de onda sobre o aspecto da estimativa de parâmetros-alvo, ruído de fundo, interferência entre sistemas e parametrização do sistema. Na segunda parte da tese serão explorados técnicas de processamento de sinal de forma a solucionar algumas das limitações do uso de formas de ondas multi-portadora para sistemas RadCom. Os sistemas de radar baseados no OFDM são candidatos promissores para futuras redes de transporte inteligentes, porque combinam funções de estimativa de alvo com funções de rede de comunicação em um único sistema. Explorando a funcionalidade dupla habilitada pelo OFDM, nesta tese, apresentamos métodos cooperativos de alta resolução para estimar o posição, velocidade e direção dos alvos. A estimativa de parâmetros de alta resolução é um requisito importante para sistemas de radar automotivo, especialmente em cenários de múltiplos alvos que exigem melhor desempenho de separação de alvos. Ao explorar a cooperação entre veículos, os estudos apresentados nesta tese também permitem o rastreamento distribuído de alvos. O resultado é um rastreamento multi-alvo altamente preciso em toda a rede de veículos cooperativos, levando a melhorias na confiabilidade e segurança do transporte.Programa Doutoral em Telecomunicaçõe
    corecore