922 research outputs found

    CSP-Completeness And Its Applications

    Get PDF
    We build off of previous ideas used to study both reductions between CSPrefutation problems and improper learning and between CSP-refutation problems themselves to expand some hardness results that depend on the assumption that refuting random CSP instances are hard for certain choices of predicates (like k-SAT). First, we are able argue the hardness of the fundamental problem of learning conjunctions in a one-sided PAC-esque learning model that has appeared in several forms over the years. In this model we focus on producing a hypothesis that foremost guarantees a small false-positive rate while minimizing the false-negative rate for such hypotheses. Further, we formalize a notion of CSP-refutation reductions and CSP-refutation completeness that and use these, along with candidate CSP-refutatation complete predicates, to provide further evidence for the hardness of several problems

    Detecting Inconsistencies in Distributed Data

    Get PDF

    Matching Dependencies with Arbitrary Attribute Values: Semantics, Query Answering and Integrity Constraints

    Full text link
    Matching dependencies (MDs) were introduced to specify the identification or matching of certain attribute values in pairs of database tuples when some similarity conditions are satisfied. Their enforcement can be seen as a natural generalization of entity resolution. In what we call the "pure case" of MDs, any value from the underlying data domain can be used for the value in common that does the matching. We investigate the semantics and properties of data cleaning through the enforcement of matching dependencies for the pure case. We characterize the intended clean instances and also the "clean answers" to queries as those that are invariant under the cleaning process. The complexity of computing clean instances and clean answers to queries is investigated. Tractable and intractable cases depending on the MDs and queries are identified. Finally, we establish connections with database "repairs" under integrity constraints.Comment: 13 pages, double column, 2 figure

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs

    Distributed Runtime Verification Under Partial Synchrony

    Get PDF
    In this paper, we study the problem of runtime verification of distributed applications that do not share a global clock with respect to specifications in the linear temporal logics (LTL). Our proposed method distinguishes from the existing work in three novel ways. First, we make a practical assumption that the distributed system under scrutiny is augmented with a clock synchronization algorithm that guarantees bounded clock skew among all processes. Second, we do not make any assumption about the structure of predicates that form LTL formulas. This relaxation allows us to monitor a wide range of applications that was not possible before. Subsequently, we propose a distributed monitoring algorithm by employing SMT solving techniques. Third, given the fact that distributed applications nowadays run on massive cloud services, we extend our solution to a parallel monitoring algorithm to utilize the available computing infrastructure. We report on rigorous synthetic as well as real-world case studies and demonstrate that scalable online monitoring of distributed applications is within our reach
    corecore