6,344 research outputs found

    Research and Policy Implications

    Get PDF
    This article focuses on intractable conflicts and how they are transformed. Specific attention is given to the kinds of questions raised by research on such conflicts as well as the policy implications of selected research efforts

    Tree resolution proofs of the weak pigeon-hole principle.

    Get PDF
    We prove that any optimal tree resolution proof of PHPn m is of size 2&thetas;(n log n), independently from m, even if it is infinity. So far, only a 2Ω(n) lower bound has been known in the general case. We also show that any, not necessarily optimal, regular tree resolution proof PHPn m is bounded by 2O(n log m). To the best of our knowledge, this is the first time the worst case proof complexity has been considered. Finally, we discuss possible connections of our result to Riis' (1999) complexity gap theorem for tree resolution

    MaxSAT Resolution and Subcube Sums

    Full text link
    We study the MaxRes rule in the context of certifying unsatisfiability. We show that it can be exponentially more powerful than tree-like resolution, and when augmented with weakening (the system MaxResW), p-simulates tree-like resolution. In devising a lower bound technique specific to MaxRes (and not merely inheriting lower bounds from Res), we define a new proof system called the SubCubeSums proof system. This system, which p-simulates MaxResW, can be viewed as a special case of the semialgebraic Sherali-Adams proof system. In expressivity, it is the integral restriction of conical juntas studied in the contexts of communication complexity and extension complexity. We show that it is not simulated by Res. Using a proof technique qualitatively different from the lower bounds that MaxResW inherits from Res, we show that Tseitin contradictions on expander graphs are hard to refute in SubCubeSums. We also establish a lower bound technique via lifting: for formulas requiring large degree in SubCubeSums, their XOR-ification requires large size in SubCubeSums

    Entanglement, intractability and no-signaling

    Full text link
    We consider the problem of deriving the no-signaling condition from the assumption that, as seen from a complexity theoretic perspective, the universe is not an exponential place. A fact that disallows such a derivation is the existence of {\em polynomial superluminal} gates, hypothetical primitive operations that enable superluminal signaling but not the efficient solution of intractable problems. It therefore follows, if this assumption is a basic principle of physics, either that it must be supplemented with additional assumptions to prohibit such gates, or, improbably, that no-signaling is not a universal condition. Yet, a gate of this kind is possibly implicit, though not recognized as such, in a decade-old quantum optical experiment involving position-momentum entangled photons. Here we describe a feasible modified version of the experiment that appears to explicitly demonstrate the action of this gate. Some obvious counter-claims are shown to be invalid. We believe that the unexpected possibility of polynomial superluminal operations arises because some practically measured quantum optical quantities are not describable as standard quantum mechanical observables.Comment: 17 pages, 2 figures (REVTeX 4

    Space communications scheduler: A rule-based approach to adaptive deadline scheduling

    Get PDF
    Job scheduling is a deceptively complex subfield of computer science. The highly combinatorial nature of the problem, which is NP-complete in nearly all cases, requires a scheduling program to intelligently transverse an immense search tree to create the best possible schedule in a minimal amount of time. In addition, the program must continually make adjustments to the initial schedule when faced with last-minute user requests, cancellations, unexpected device failures, quests, cancellations, unexpected device failures, etc. A good scheduler must be quick, flexible, and efficient, even at the expense of generating slightly less-than-optimal schedules. The Space Communication Scheduler (SCS) is an intelligent rule-based scheduling system. SCS is an adaptive deadline scheduler which allocates modular communications resources to meet an ordered set of user-specified job requests on board the NASA Space Station. SCS uses pattern matching techniques to detect potential conflicts through algorithmic and heuristic means. As a result, the system generates and maintains high density schedules without relying heavily on backtracking or blind search techniques. SCS is suitable for many common real-world applications

    New Results on Cutting Plane Proofs for Horn Constraint Systems

    Get PDF
    In this paper, we investigate properties of cutting plane based refutations for a class of integer programs called Horn constraint systems (HCS). Briefly, a system of linear inequalities A * x >= b is called a Horn constraint system, if each entry in A belongs to the set {0,1,-1} and furthermore there is at most one positive entry per row. Our focus is on deriving refutations i.e., proofs of unsatisfiability of such programs using cutting planes as a proof system. We also look at several properties of these refutations. Horn constraint systems can be considered as a more general form of propositional Horn formulas, i.e., CNF formulas with at most one positive literal per clause. Cutting plane calculus (CP) is a well-known calculus for deciding the unsatisfiability of propositional CNF formulas and integer programs. Usually, CP consists of a pair of inference rules. These are called the addition rule (ADD) and the division rule (DIV). In this paper, we show that cutting plane calculus is still complete for Horn constraints when every intermediate constraint is required to be Horn. We also investigate the lengths of cutting plane proofs for Horn constraint systems
    corecore