78 research outputs found

    Mathematical optimization techniques for resource allocation and spatial multiplexing in spectrum sharing networks

    Get PDF
    Due to introduction of smart phones with data intensive multimedia and interactive applications and exponential growth of wireless devices, there is a shortage for useful radio spectrum. Even though the spectrum has become crowded, many spectrum occupancy measurements indicate that most of the allocated spectrum is underutilised. Hence radically new approaches in terms of allocation of wireless resources are required for better utilization of radio spectrum. This has motivated the concept of opportunistic spectrum sharing or the so-called cognitive radio technology that has great potential to improve spectrum utilization. The cognitive radio technology allows an opportunistic user namely the secondary user to access the spectrum of the licensed user (known as primary user) provided that the secondary transmission does not harmfully affect the primary user. This is possible with the introduction of advanced resource allocation techniques together with the use of wireless relays and spatial diversity techniques. In this thesis, various mathematical optimization techniques have been developed for the efficient use of radio spectrum within the context of spectrum sharing networks. In particular, optimal power allocation techniques and centralised and distributed beamforming techniques have been developed. Initially, an optimization technique for subcarrier and power allocation has been proposed for an Orthogonal Frequency Division Multiple Access (OFDMA) based secondary wireless network in the presence of multiple primary users. The solution is based on integer linear programming with multiple interference leakage and transmission power constraints. In order to enhance the spectrum efficiency further, the work has been extended to allow multiple secondary users to occupy the same frequency band under a multiple-input and multiple-output (MIMO) framework. A sum rate maximization technique based on uplink-downlink duality and dirty paper coding has been developed for the MIMO based OFDMA network. The work has also been extended to handle fading scenarios based on maximization of ergodic capacity. The optimization techniques for MIMO network has been extended to a spectrum sharing network with relays. This has the advantage of extending the coverage of the secondary network and assisting the primary network in return for the use of the primary spectrum. Finally, instead of considering interference mitigation, the recently emerged concept of interference alignment has been used for the resource allocation in spectrum sharing networks. The performances of all these new algorithms have been demonstrated using MATLAB based simulation studies

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Nonorthogonal Multiple Access for 5G and Beyond

    Get PDF
    This work was supported in part by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/N029720/1 and Grant EP/N029720/2. The work of L. Hanzo was supported by the ERC Advanced Fellow Grant Beam-me-up

    Interference mitigation using group decoding in multiantenna systems

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Enabling Technologies for Internet of Things: Licensed and Unlicensed Techniques

    Get PDF
    The Internet of Things (IoT) is a novel paradigm which is shaping the evolution of the future Internet. According to the vision underlying the IoT, the next step in increasing the ubiquity of the Internet, after connecting people anytime and everywhere, is to connect inanimate objects. By providing objects with embedded communication capabilities and a common addressing scheme, a highly distributed and ubiquitous network of seamlessly connected heterogeneous devices is formed, which can be fully integrated into the current Internet and mobile networks, thus allowing for the development of new intelligent services available anytime, anywhere, by anyone and anything. Such a vision is also becoming known under the name of Machine-to-Machine (M2M), where the absence of human interaction in the system dynamics is further emphasized. A massive number of wireless devices will have the ability to connect to the Internat through the IoT framework. With the accelerating pace of marketing such framework, the new wireless communications standards are studying/proposing solutions to incorporate the services needed for the IoT. However, with an estimate of 30 billion connected devices, a lot of challenges are facing the current wireless technology. In our research, we address a variety of technology candidates for enabling such a massive framework. Mainly, we focus on the nderlay cognitive radio networks as the unlicensed candidate for IoT. On the other hand, we look into the current efforts done by the standardization bodies to accommodate the requirements of the IoT into the current cellular networks. Specifically, we survey the new features and the new user equipment categories added to the physical layer of the LTE-A. In particular, we study the performance of a dual-hop cognitive radio network sharing the spectrum of a primary network in an underlay fashion. In particular, the cognitive network consists of a source, a destination, and multiple nodes employed as amplify-and-forward relays. To improve the spectral efficiency, all relays are allowed to instantaneously transmit to the destination over the same frequency band. We present the optimal power allocation that maximizes the received signal-to-noise ratio (SNR) at the destination while satisfying the interference constrains of the primary network. The optimal power allocation is obtained through an eigen-solution of a channel-dependent matrix, and is shown to transform the transmission over the non-orthogonal relays into parallel channels. Furthermore, while the secondary destination is equipped with multiple antennas, we propose an antenna selection scheme to select the antenna with the highest SNR. To this end, we propose a clustering scheme to subgroup the available relays and use antenna selection at the receiver to extract the same diversity order. We show that random clustering causes the system to lose some of the available degrees of freedom. We provide analytical expression of the outage probability of the system for the random clustering and the proposed maximum-SNR clustering scheme with antenna selection. In addition, we adapt our design to increase the energy-efficiency of the overall network without significant loss in the data rate. In the second part of this thesis, we will look into the current efforts done by the standardization bodies to accommodate the equirements of the IoT into the current cellular networks. Specifically, we present the new features and the new user equipment categories added to the physical layer of the LTE-A. We study some of the challenges facing the LTE-A when dealing with Machine Type communications (MTC). Specifically, the MTC Physical Downlink control channel (MPDCCH) is among the newly introduced features in the LTE-A that carries the downlink control information (DCI) for MTC devices. Correctly decoding the PDCCH, mainly depends on the channel estimation used to compensate for the channel errors during transmission, and the choice of such technique will affect both the complexity and the performance of the user equipment. We propose and assess the performance of a simple channel estimation technique depends in essence on the Least Squares (LS) estimates of the pilots signal and linear interpolations for low-Doppler channels associated with the MTC application

    Beam-forming and Power Control in flexible Spectrum USage for LTE Adavnced System

    Get PDF
    • …
    corecore