4 research outputs found

    Texture-Based Segmentation and Finite Element Mesh Generation for Heterogeneous Biological Image Data

    Get PDF
    The design, analysis, and control of bio-systems remain an engineering challenge. This is mainly due to the material heterogeneity, boundary irregularity, and nonlinear dynamics associated with these systems. The recent developments in imaging techniques and stochastic upscaling methods provides a window of opportunity to more accurately assess these bio-systems than ever before. However, the use of image data directly in upscaled stochastic framework can only be realized by the development of certain intermediate steps. The goal of the research presented in this dissertation is to develop a texture-segmentation method and a unstructured mesh generation for heterogeneous image data. The following two new techniques are described and evaluated in this dissertation: 1. A new texture-based segmentation method, using the stochastic continuum concepts and wavelet multi-resolution analysis, is developed for characterization of heterogeneous materials in image data. The feature descriptors are developed to efficiently capture the micro-scale heterogeneity of macro-scale entities. The materials are then segmented at a representative elementary scale at which the statistics of the feature descriptor stabilize. 2. A new unstructured mesh generation technique for image data is developed using a hierarchical data structure. This representation allows for generating quality guaranteed finite element meshes. The framework for both the methods presented in this dissertation, as such, allows them for extending to higher dimensions. The experimental results using these methods conclude them to be promising tools for unifying data processing concepts within the upscaled stochastic framework across biological systems. These are targeted for inclusion in decision support systems where biological image data, simulation techniques and artificial intelligence will be used conjunctively and uniformly to assess bio-system quality and design effective and appropriate treatments that restore system health

    Hardware accelerated volume texturing.

    Get PDF
    The emergence of volume graphics, a sub field in computer graphics, has been evident for the last 15 years. Growing from scientific visualization problems, volume graphics has established itself as an important field in general computer graphics. However, the general graphics fraternity still favour the established surface graphics techniques. This is due to well founded and established techniques and a complete pipeline through software onto display hardware. This enables real-time applications to be constructed with ease and used by a wide range of end users due to the readily available graphics hardware adopted by many computer manufacturers. Volume graphics has traditionally been restricted to high-end systems due to the complexity involved with rendering volume datasets. Either specialised graphics hardware or powerful computers were required to generate images, many of these not in real-time. Although there have been specialised hardware solutions to the volume rendering problem, the adoption of the volume dataset as a primitive relies on end-users with commodity hardware being able to display images at interactive rates. The recent emergence of programmable consumer level graphics hardware is now allowing these platforms to compute volume rendering at interactive rates. Most of the work in this field is directed towards scientific visualisation. The work in this thesis addresses the issues in providing real-time volume graphics techniques to the general graphics community using commodity graphics hardware. Real-time texturing of volumetric data is explored as an important set of techniques in delivering volume datasets as a general graphics primitive. The main contributions of this work are; The introduction of efficient acceleration techniques; Interactive display of amorphous phenomena modelled outside an object defined in a volume dataset; Interactive procedural texture synthesis for volume data; 2D texturing techniques and extensions for volume data in real-time; A flexible surface detail mapping algorithm that removes many previous restrictions Parts of this work have been presented at the 4th International Workshop on Volume Graphics and also published in Volume Graphics 2005
    corecore