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SUMMARY

An algorithm for the generation of tetrahedral volume meshes is developed for highly irregular objects
specified by volumetric representations such as domain indicator functions and tomography data. It is
based on red–green refinement of an initial mesh derived from a body-centered cubic lattice. A quantita-
tive comparison of alternative types of initial meshes is presented. The minimum set of best-quality green
refinement schemes is identified. Boundary conformity is established by deforming or splitting surface-
crossing elements. Numerical derivatives of input data are strictly avoided. Furthermore, the algorithm
features surface-adaptive mesh density based on local surface roughness, which is an integral property of
finite surface portions. Examples of applications are presented for computer tomography of porous media.
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1. INTRODUCTION

Algorithms for the automatic generation of unstructured volume meshes can be divided in two
classes according to the formalism used to specify the problem geometry:

1. Boundary representation (B-Rep), which is particularly suitable to describe objects result-
ing from human design. A prominent algorithm using B-Rep input is the advancing front
algorithm [1].

2. Volumetric representation (V-Rep),‡ typically used to describe naturally occurring structures
in medicine, geology, materials science, etc.

The mesh generator described in the present paper belongs to the V-Rep class. Its development
was motivated by a study of transport properties of complex porous media, where it was used to
transform X-ray tomography data into tetrahedral meshes for the purpose of CFD simulations [3,4].

A volumetric representation of three-dimensional (3D) objects can be realized by different, nearly
equivalent formalisms, which are referred to by a variety of terms, partly depending on the field
of application:

1. Voxel data, raster data, imaging data, or tomography data, where the object boundary is defined
by a threshold value of the (multivalued) voxel intensity.

*Correspondence to: Jörg Petrasch, Energy Research Center, Vorarlberg University of Applied Sciences, 6850
Dornbirn, Austria.

†E-mail: joerg.petrasch@fhv.at
‡The term is introduced here for lack of any widely accepted generic name. Constructive Solid Geometry (CSG) has
occasionally been considered to be the counterpart of B-Rep [2]. In practice, however, the term is restricted to objects
resulting from human design.
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2. Interval volume [5,6], similar to (1), but the object is included between two surfaces, specified
by a lower and an upper threshold.

3. Segmented image or binary image, obtained after the segmentation of voxel data. This concept
is particularly important in medical imaging, where it is often impossible to define an object
by thresholding; rather, a specialized preprocessing algorithm is needed [7].

4. Level Set Function or Signed Distance Function [6, 8].
5. Cut Function being positive (negative) inside (outside) the object [9].
6. CSG representation (Constructive Solid Geometry), where an object is defined by means of

set-theoretical operations applied to CSG primitives [2, 8, 10, 11].
7. Indicator function [12] or characteristic function [13], being equal to unity (zero) for points

inside (outside) the object.

The present mesh generator is based on a user-specified indicator function (7). This concept provides
maximum versatility, because formalisms (1–6) can easily be converted into (7), but not necessarily
vice versa.

For a characterization of our mesh generator in the context of previous work, we are going to
compile the most relevant — similar or opposed — concepts and methods.

The vast majority of V-Rep mesh generators is grid-based [14–16] or iso-voluming [17]. These
algorithms all feature the following intermediate grid generation steps:

1. A cubic or tetrahedral uniform mesh is generated as basis of subsequent transformations. Uni-
form tetrahedral meshes have been obtained by partitioning each unit cell of a cubic lattice
into five tetrahedra [5,6,15,17,18] or into six tetrahedra [19], or by Delaunay triangulation of
a hexagonal close packed lattice [20] or a body-centered cubic (BCC) lattice [8, 9].

2. A template mesh (terminology: [14]) or candidate mesh [8, 21], containing only well-shaped
elements and a small number of similarity classes is derived from (1). Typically, the cell
size is locally adapted to the required spatial resolution.§ In general, the template mesh is
not boundary-conforming; rather, it covers the object to be discretized, with certain elements
straddling the boundary surface.

3. The final, boundary-conforming mesh is derived from (2).

To a certain extent, different types of uniform meshes (1), can be combined with various techniques
to perform the transitions .1! 2/ and .2! 3/, as specified in the following two paragraphs.
.1! 2/: The template mesh can be obtained by coarsening a fine uniform mesh [23], or, in the

majority of approaches, by refining a coarse uniform mesh, where the following techniques have
been applied:

1. A uniform cubic mesh is refined by recursively partitioning cubes into eight octants to con-
struct an octree approximation of the object. The octree structure is ultimately transformed
into a mixed mesh containing cubes, pyramids and tetrahedra [2], or in a purely tetrahedral
mesh [6, 23, 24].

2. A uniform tetrahedral mesh is refined by
a. Red–green refinement [8, 15].
b. Insertion of element centroids, each creating four children [17, 19].
c. The LEPP algorithm (Longest Edge Propagation Path) [18].

.2 ! 3/: To make a template mesh boundary-conforming, the following manipulations can be
applied to boundary-crossing volume elements:

1. Splitting and deforming, either in separate passes [19, 24] or in an interlaced fashion [18].
2. Splitting only [5, 17].
3. Deforming only [8,15]. Compared with (1) and (2), this technique has the advantage of avoid-

ing additional nodes resulting from splitting. On the other hand, it requires to process not only
boundary-crossing elements, but also elements in a wider neighborhood.

§Template meshes with constant cell size have also been used [5, 11, 22].

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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Table I. Properties of tetrahedral meshes based on cubic lattices.

Lattice ntet SI q f0 f3 f1 nSE nSO

SC 5 no 0.388 0 0.175 0 19 24
0.515 0 0.375 4/5
0.536 4/5 0.250 0
0.646 0 0.131 2/15
1.000 1/5 0.069 1/15

SC 6 yes 0.515 1 1 1 8 12

FCC 24 no 0.646 2/3 2/3 2/3 7 12
1.000 1/3 1/3 1/3

BCC 24h yes 0.900 1 1 1 23 48

ntet, number of tetrahedra in a cubic unit cell (BCC: half tetrahedra); SI,
subdivision invariance; q, tetrahedral shape quality; fi , corresponding frac-
tion of occurrence after i regular refinements of all mesh elements; nSE,
nSO, number of symmetry elements and symmetry operations, respectively,
for the network of edges in a cubic unit cell of the unrefined mesh.

Using the previously introduced terminology, our algorithm can be briefly characterized as follows:

1. An initial uniform mesh is derived from a BCC lattice.
2. The template mesh is obtained by red–green refinement, guided by a user-specified sizing

function.
3. Boundary conformity is established by both deforming and splitting surface-crossing

elements.

Section 2 provides quantitative arguments to justify the use of the BCC mesh. Section 3 describes
our mesh generating algorithm step by step. Section 4 describes a method for surface-adaptive mesh
density that does not use any differential operations. Section 5 presents application examples and
results. Section 6 discusses potential achievements of the present work.

2. QUANTITATIVE COMPARISON OF UNIFORM TETRAHEDRAL MESHES

Most uniform tetrahedral meshes used as a starting configuration for mesh generation can be
obtained by Delaunay triangulation of one of the following point lattices: Simple cubic (SC)
[17–19, 25], face-centered cubic (FCC) [26], and BCC [8, 9, 27, 28].¶ Table I compares these mesh
types with respect to subdivision invariance, tetrahedral shape quality, and symmetry properties.

The advantage of subdivision invariance has been pointed out in [8]. For the mesh types compiled
in Table I, either all or none of the tetrahedra are subdivision-invariant in the unrefined state (i D 0).

Among the large number of tetrahedral shape quality measures proposed in the literature [29],
we use

q D 9 �
insphere area

circumsphere area
(1)

implying q D 1 for an equilateral tetrahedron.|| To analyze briefly the impact of red–green refine-
ment on q, one can restrict oneself to regular refinement, because an element in the final mesh may
be the end product of repeated regular refinements, but at most one irregular refinement. Table I
(sharing some results with [31]) displays q-spectra resulting from i regular refinements of each
mesh type, i D 0, 3,1. For a subdivision-invariant mesh, the q-spectrum is (trivially) independent
of i . The same property holds for the FCC mesh, which is not subdivision-invariant. By contrast, the

¶The present discussion does not include the hexagonal close packed lattice used in [20].
||Our q is also used by default in the commercial mesh generator [30]. It is equal to the square of the widely used radius
ratio. It has the particular property to assume a rational number for a BCC tetrahedron, qD 9=10.
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(a) (b) (c) (d)

Figure 1. Network of triangulation edges in a unit cell of cubic lattices. Black dots: lattice points. Blue lines:
interior edges. (a) SC, 5 tetrahedra per unit cell; (b) SC, 6 tetrahedra; (c) FCC, 24 tetrahedra; (d) BCC, 24

half tetrahedra (auxiliary red lines indicate face centers).

q-spectrum of the SC mesh with ntet D 5 depends strongly on i , with newly emerging congruence
classes (q D 0.388; 0.515) and congruence classes dying out when i !1 .q D 0.388I 0.536/.

We conclude from Table I that the BCC mesh is superior to the other mesh types with respect to
q. Within the class of subdivision-invariant meshes, the BCC mesh even realizes the theoretically
highest possible q-value — a fact that can be derived from a theorem by Fuchs [28].

The symmetry properties of a mesh can be important with respect to anisotropy biases of numer-
ical solutions [8, 32]. For a simple quantitative assessment, the (unrefined) network of edges con-
tained in a cubic unit cell (Figure 1) is considered, and the numbers nSE and nSO of symmetry
elements and symmetry operations, respectively, mapping this network onto itself (Table I). The
theoretical maximum is given by the point group of a cube, characterized by nSE D 23 and
nSO D 48, and this maximum is realized by the BCC mesh, but by none of the other mesh types.

3. ALGORITHM

Our mesh-generating algorithm consists of four steps:

1. Construction of an initial uniform mesh
2. Red–green refinement of the initial mesh
3. Establishing boundary conformity
4. Smoothing

Sections 3.1–3.4 describe the four steps in detail.

3.1. Construction of the initial body-centered cubic mesh

The initial BCC mesh covers a user-specified bounding box of the object, similar to [8]. Apart from
brute-force Delaunay triangulation, there are two explicit ways to construct a BCC mesh. They are
based on

1. The two interlaced cubic grids associated with a BCC lattice [8]. The tetrahedra of the BCC
mesh are spanned by pairs of nearest edges of the two grids, as shown in Figure 2.

2. A triangulation template consisting of six tetrahedra contained in a (crystallographic) primitive
unit cell (Figure 3(a)). The mesh can be obtained by translational repetition of the template.

Compared with SC and FCC, the bounding box cannot be filled up exactly with regular tetrahe-
dra (Figure 2) for the BCC lattice. In particular, if the bounding box has the same orientation as the
lattice (box edges parallel to edges of cubic unit cells), then this ‘matching deficiency’ manifests
itself on all six faces of the bounding box. The matching deficiency can be reduced, however, to
two opposed faces of the bounding box by a suitable relative orientation between the box and the
lattice. This improvement is particularly desirable in the case where fluid flow in a square channel
containing a sample of porous material is simulated [3, 4, 33, 34]. The matching deficiency can then
be limited to the inlet and outlet area of the channel, where the flow is relatively homogeneous and
perpendicular to the surface.

An improved orientation between box and lattice is illustrated in Figure 3. The natural coordinate
systems of the box, xy´, and the lattice, x0y0´0, respectively, are rotated with respect to each other
through 45˚ around the y axis, along which the primitive unit cell has its longest extension, 2a.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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Figure 2. Triangulation of a BCC lattice based on pairs of closest edges (green/blue broken lines) in the
two interlaced cubic grids (green and blue) associated with a BCC lattice. Examples of BCC tetrahedra

(green/blue/red broken lines).

Figure 3. Triangulation of a BCC lattice by means of a template of 6 tetrahedra. (a) Template within a por-
tion of the BCC lattice, filling up a primitive unit cell; natural coordinate system of the lattice, x0y0´0, and of
the template, xyz. (b) Template replotted in the system xyz. Black dots: BCC lattice points. Red lines: Edges
of the primitive unit cell. Blue lines: Edges added for triangulation. Long-dashed lines: Edges with dihedral
angle D 90o and length D a D edge length of a traditional unit cell of the BCC lattice. Solid lines: Edges

with dihedral angleD 60o and lengthD
p
3a=2.

3.2. Red–green refinement of the initial body-centered cubic mesh

The technique of red–green refinement, applied to triangular meshes, goes back to [35], where red
and green are synonyms for regular and irregular, respectively. Corresponding techniques in 3D
have been introduced in [36, 37], and later applied or modified in [8, 15, 28, 38]. The basic purpose
is to locally refine a tetrahedral mesh according to a stipulated sizing function. The transformation
repeatedly applies two types of elementary operations:

1. Regular or red refinement, where a tetrahedron is partitioned into eight children with best
possible shape quality. Red refinement is typically applied recursively to match the sizing
function, and to impose the one level difference rule, also known as 2 : 1 rule [39].

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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Figure 4. Green refinement patterns. (a) One edge midpoint, two tetrahedra. (b) Two midpoints on adjacent
edges, three tetrahedra. (c) Two midpoints on opposed edges, four tetrahedra. (d) Three midpoints on the

same face, four tetrahedra.

2. Irregular or green refinement, where a tetrahedron is partitioned into less than eight tetrahe-
dra with reduced shape quality compared with red refinement. Green refinement eliminates
hanging nodes** previously created by red refinements.

Green refinement schemes handling all 62 possible patterns of hanging nodes have been imple-
mented in [38]. Most other algorithms, however, use a restricted repertoire of green refinement
schemes, which requires extra red refinements — in addition to those needed to match the sizing
function and the 2 : 1 rule — to reach a configuration where all patterns of hanging nodes can be
handled by the restricted repertoire. The four schemes shown in Figure 4 have been proposed in
[36, 37], while [8, 15] only use schemes (a), (c), and (d).

3.2.1. Red–green refinement procedure. A compact formulation of our refinement procedure is pre-
sented in Figure 5. The procedure assumes a given restricted repertoire of green refinement schemes,
and it uses the following input entities:
V , T : Set of nodes, and set of tetrahedra, respectively, forming the initial BCC mesh according

to Section 3.1.
n: Number of refinement levels.
TooBig: User-specified sizing function controlling the coarseness of the mesh. For any tetrahe-

dron t , TooBig(t / returns a value of true if and only if tmust be refined. The returned value typically
depends on the following two quantities:

1. The distance of t from the boundary surface, estimated by the shortest path composed of
tetrahedral edges connecting t with a boundary-crossing edge. This approximation is easy to
compute, and it turns out in practice to be a satisfactory surrogate for a Level Set Function.

2. The surface structure, quantified by the local surface roughness, � , as discussed later
in Section 4.

On output, the sets V and T contain the nodes and tetrahedra, respectively, of the final mesh.
The code listed in Figure 5 internally uses the following definitions and easy-to-compute auxiliary

functions:
Green Node Pattern: a set of edge midpoints of a tetrahedron corresponding to one of the green

refinement schemes of the restricted repertoire. The repertoire of Figure 4 generates 6C12C3C4D
25 Green Node Patterns for a given tetrahedron.

HalfPoints(t / = set of six edge midpoints of a tetrahedron t (Figure 6).
QuarterPoints.t/D set of 24 edge midpoints of the triangles partitioning each face of t into four

similar parts (Figure 6).
RedChildren.t/D the set of eight tetrahedra resulting from red refinement of tetrahedron t .
GreenChildren(t , G/ D the set of tetrahedra resulting from green refinement of t according to a

given Green Node Pattern G.
The code listed in Figure 5 can be divided into subprocedures as indicated by the upper case

comment lines. The subsequent paragraphs outline each of these subprocedures in plain text, with
some added comments.

**A hanging node is a vertex of a volume element located on the surface of a neighboring element, but different from all
vertices of that element.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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Figure 5. Procedure for red–green mesh refinement.

Figure 6. ‘Half points’ (filled circles) and ‘quarter points’ (empty circles) of a tetrahedron. (The points are
indicated only on the two ‘visible’ faces.). The two sets of points are returned by the auxliary functions

HalfPoints and QuarterPoints, respectively, of the red–green refinement procedure listed in Figure 5.

3.2.1.1. Impose user-specified mesh gradation. At the beginning of the i-th refinement pass, the
smallest tetrahedra have a diameter a=2i�1 (a D length of a cubic unit cell of the BCC lattice,

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
DOI: 10.1002/nme



H. FRIESS ET AL.

see Figure 3). For every tetrahedron t with this particular diameter, the i-th refinement pass calls up
the sizing function, TooBig(t /, and t is refined regularly if the function returns a value of true.

3.2.1.2. Impose the 2 : 1 rule. All tetrahedra are inspected iteratively. If a tetrahedron t has an
‘undersized’ neighbor (i.e., a tetrahedron sharing more than one point with t , and having a diameter
less than half the diameter of t /, then t is regularly refined. The iteration proceeds until diameters of
neighboring tetrahedra never differ by more than a factor 2. The presence of an undersized neighbor
of t always manifests itself by a quarter point of t (Figure 6) being contained in the current set of
nodes, V .

3.2.1.3. Establish green closability. All tetrahedra are inspected iteratively. For every tetrahedron
t , the hanging nodes appearing on its surface are determined. A hanging node manifests itself by
the presence of an edge midpoint of t in the current set of nodes, V . Three cases are distinguished:

1. There are no hanging nodes at all, or the hanging nodes represent a Green Node Pattern. In
this case, no action is required.

2. The set of hanging nodes can be extended to a Green Node Pattern. In this case, the required
additional nodes are added to the current set of nodes, V (without any other action).

3. None of the previous two conditions is true. In this case, t is refined regularly (contributing to
the ‘extra red refinements’ mentioned in Section 3.2.1).

The iteration proceeds until every tetrahedron either has no hanging nodes on its surface at all, or
the hanging nodes represent a Green Node Pattern.

3.2.1.4. Perform green closure. Every tetrahedron is inspected once. If there are hanging nodes on
its surface, these nodes are guaranteed to represent a Green Node Pattern, and the corresponding
green refinement scheme is applied.

Note that our algorithm does not need any data structure for connectivity. Rather, all required con-
nectivity information is inferred simply from the presence (or absence) of ‘half points’ or ‘quarter
points’ (Figure 6) in the current set of nodes, V . The corresponding code is simplified by the fact
that all occurring coordinates are integer multiples of a=2nC1 or

p
2a=2nC1 (see Figure 3). This

fact does not exclude, however, a generalization of the algorithm to arbitrary, maybe nonuniform
initial meshes.

3.2.2. Identification of the minimum, best-quality green refinement repertoire. According to [8,37],
the following reasons suggest the use of a restricted repertoire of green refinement schemes: (a) sim-
plicity, (b) enhanced quality of ‘green children’, and (c) implicit smoothing of the mesh gradation.
On the basis of these arguments, it seems logical to look for the repertoire with a minimum number
of best-quality schemes.

The need for extra red refinements as a consequence of a restricted repertoire (Section 3.2.1;
Section 3.2.2, subprocedure Section 3.2.1.3) has been addressed as domino effect [37, 38]. The
question to be clarified here is whether a restricted repertoire entails an unacceptably strong
domino effect, or even a catastrophic domino effect producing a final mesh of constant cell size,
corresponding to the finest level of refinement.

In a very large number of computational experiments with highly irregular objects, we have found
that a restricted repertoire of only two green refinement schemes, (a) and (d) in Figure 4, has never
created a significant domino effect. On the other hand, a repertoire with only one scheme almost
always leads to a catastrophic domino effect.

Table II displays tetrahedral shape qualities resulting from the green refinement schemes of
Figure 4 applied to a BCC tetrahedron. The fraction of occurrence indicated in the table is based
on the assumption that all Green Node Patterns generated by one of the schemes in Figure 4 are
equally probable.

Table II and the preceding remarks about the domino effect suggest that schemes (a) and (d) in
Figure 4 represent a minimum, best-quality set of green refinement schemes for a BCC mesh.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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Table II. Green refinement patterns applied to a regular
BCC tetrahedron —-corresponding to the patterns (a–d)

in Figure 4.

nM Constraint ntet q f

2 none 2 0.474 1/3
0.491 2/3

2 same face 3 0.206 1/9
0.296 2/9
0.324 1/9
0.474 1/9
0.491 2/9
0.508 2/9

2 opposed edges 4 0.304 1/3
0.414 1/3
0.515 1/3

2 same face 4 0.324 1/4
0.508 1/2
0.513 1/4

nM, number of edge midpoints; ntet, number of green
tetrahedra; q, f , shape quality of green tetrahedra and
corresponding fraction of occurrence.

3.3. Establishing boundary conformity

To make a template mesh boundary-conforming, a frequently used technique is to split boundary-
crossing elements. The method is liable to sliver elements, because nodes of the template mesh
can fall arbitrarily close to the boundary surface. To suppress sliver elements, splitting has been
combined with various flanking measures [18, 22, 24].

Our algorithm reaches boundary conformity in two successive passes. Pass 1 shifts selected
nodes to the boundary surface; it largely eliminates configurations where splitting would produce
sliver elements. Pass 2 splits boundary-crossing elements left over from Pass 1. The two passes are
described below in more detail.

3.3.1. Pass 1. All nodes in the mesh are initially flagged by IN or OUT according to the indicator
function. Edges with differently flagged end points are considered as boundary-crossing. The end
points of these edges are considered as candidates for shifting. The candidates are processed in the
order of ascending distance d from the boundary. Each candidate is shifted to the nearest boundary
point, provided that the quality of the incident tetrahedra does not drop below a certain limit. Shifted
nodes are flagged as NIO (neither in nor out, similar notation as in [2]).††

3.3.2. Pass 2. Each boundary-crossing tetrahedron is split according to one of the schemes depicted
in Figure 7. As opposed to [17, 19], we take into account that the four edge intersections in Case 6,
C, D, E, F, are not coplanar in general. A reasonably simple and accurate representation of the true
surface is achieved by using the center, M , of the four intersection points as an additional node.

To convert pyramids and wedges making up the clipped volume elements into tetrahedra, quadri-
lateral faces are always divided along the shorter diagonal. This rule preserves mesh consistency
without needing any connectivity information. With given diagonals of quadrilateral faces, there
is a chance of 3/4 that a wedge can be partitioned into three tetrahedra. If this is not possible, the
wedge is partitioned into eight tetrahedra by insertion of a Steiner point, like in [17, 19].

††Processing the candidates in the order of ascending d improves the final mesh quality significantly. The strategy avoids
situations where a candidate X with very small d — liable to produce sliver elements when split — is ‘blocked’ by
a candidate Y with moderate d . If Y were processed prior to X , the local mesh quality could be degraded so that X
cannot be shifted.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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Figure 7. Splitting schemes used to establish boundary conformity. Red/green/blue dots: vertices with
attribute IN/NIO/OUT. Solid and broken lines: edge portions inside and outside the boundary surface,
respectively. i D number of edge intersection points. The constituents of the clipped volume element

(tetrahedra, pyramids, wedges) are also indicated for each case.

3.4. Smoothing

In the the last step of our mesh generation algorithm, optimization-based smoothing is applied,
which is one of several methods to improve the mesh quality [6, 40]. The corresponding iterative
procedure minimizes the objective function

P D
X
t

1

q.t/m
(2)

by variation of all node coordinates, without affecting the connectivity. Appropriate constraints for
nodes on surfaces are used. Relocation of a node X is suppressed whenever it would lead to degen-
eration or inversion of any element connected toX . The summation in Equation (2) is extended over
all tetrahedra t of the mesh. The parameter m is empirical. An analysis of quality statistics suggests
an optimal value of m � 3. The function q.t/ is defined by Equation (1). We have found empir-
ically that the present optimization-based smoothing procedure yields significantly better results
than Laplacian smoothing [15,17,24] in accordance with previous work [41,42] based on objective
functions different from Equation (2).

4. SURFACE-ADAPTIVE MESH DENSITY

To adapt the mesh density locally to the length scale of relevant surface structures, surface cur-
vature can be used to control mesh refinement [8, 18]. Because this concept involves differential
operations, it is liable to unspecific fluctuations when applied to tomography data. To avoid this
problem, our algorithm uses an integral property, � , of finite portions of the surface, rather than a

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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Figure 8. Algorithmic steps in the computation of the local surface roughness, � . (a) Tetrahedron t being
considered for red refinement (black triangle), with center P . Sphere (red circle), with center Q on the
surface (blue–brown boundary), with same diameter as t , and minimized distance between Q and P .
(b) Representation of the surface sample inside the sphere by a set of voxels (black squares) of size v.
Best fitting plane, BFP, of the voxel set. Root mean square deviation, � , of voxel positions relative to BFP.

differential expression, to control the mesh density on surfaces.‡‡ The quantity � is associated with
every tetrahedron t being considered for red refinement (Section 3.2.1); it can be referenced by the
user-specified sizing function, TooBig(t /, which may return a value of true if � exceeds a critical
threshold.

The quantity � is defined as follows: If a tetrahedron t is not intersected by the surface, then
� D 0. Otherwise, � results from the following algorithmic steps (illustrated in Figure 8):

1. Find a sphere having its center Q located on the surface, as close as possible to the center of
t , and having the same diameter as t .

2. Represent the surface portion inside the sphere by a set of n voxels with positions xi and a
user-specified size v.

3. Find the best fitting plane (BFP) of the voxel set (in the sense of minimum root mean square
(RMS) deviation). Represent BFP by the equation

e � xD g, (3)

where e is a unit vector perpendicular to BFP.
4. Let � be equal to the RMS deviation of voxel positions from BFP

� D

vuut1

n

nX
iD1

.e � xi � g/2. (4)

This computational recipe (in particular, the constraint forQ in Step 1) provides a smooth depen-
dence of � on the position and orientation of surface-crossing tetrahedra. In the special case of a
spherical surface, � assumes a constant value for equally sized surface-crossing tetrahedra.

Equation (4) is formally identical with the usual definition of surface roughness, if BFP is con-
sidered as a reference plane. Thus, � can be interpreted as local surface roughness (where ‘local’
means: in a region close to, and similar in size with a tetrahedron considered for refinement).

The computation of � in terms of the xi D .xi ,yi , ´i / does not require explicit knowledge of e.
Rather, � can be obtained by

� D
p
�min ,

‡‡To some extent, unspecific fluctuations can also be suppressed by filtering, with a corresponding degradation of surface
representation. The present approach reduces the need for filtering.
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Figure 9. Surface-adapted mesh density controlled by local surface roughness.

where �min is the least eigenvalue of the matrix

C D

0
@
a d f

d b e

f e c

1
A

with

aD
X
i

.xi � Nx/
2 b D

X
i

.yi � Ny/
2 c D

X
i

.´i � Ń/
2

d D
X
i

.xi � Nx/ .yi � Ny/ e D
X
i

.yi � Ny/ .´i � Ń/ f D
X
i

.xi � Nx/ .´i � Ń/

Nx, Ny, Ń D average values of xi , yi , ´i , respectively.
To illustrate the effect of our procedure, Figure 9 shows mesh edges on the surface of a spheroid.

The result is similar to what one would expect from curvature-controlled mesh density.
A weakness of the current implementation is its relatively large computation time, being

proportional to (c=v/3, where c is the linear cell size and v is the linear voxel size (see Figure 8).

5. APPLICATIONS AND RESULTS

Three applications of the mesh generator and the resulting meshes are presented. The morphology
of (i) reticulate porous ceramics (RPC), (ii) anisotropic ceramic foams (ACF), and (iii) packed beds
of highly porous particles (PB) are obtained by computed tomography (CT) and used in combina-
tion with the mesh generator to produce computational meshes of the complex fluid phase structure
(on the pore-level) for direct numerical simulations with commercial CFD solvers such as ANSYS

(a) (b) (c) 

Figure 10. 3D rendering of computed tomography data of (a) a cubical sample of RPC with edge length of
6 mm, (b) an anisotropic ceramic foam with edge length of 0.37 mm, where the arrow indicates the direction

of uniaxial pressing, and (c) a packed bed of highly porous media with an edge length of 3.42 mm.
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Figure 11. Schematics of the computational domain, consisting of a square channel containing a sample of
porous material.

Table III. CT resolution, volume of mesh (including inlet and outlet region) V , sample’s
porosity, number of tetrahedral elements ntet, mean tetrahedral shape quality, Nq, and mean

mesh element diameter, ND, for the RPC, ACF, and PB samples.

CT resolution (�m) V (mm3) Sample porosity ntet Nq ND (�m)

RPC 30 3462 0.91 26.2�106 0.7263 103.3
ACF 0.37 0.047 0.51 105.9�106 0.7185 1.8
PB 3.7 238 0.86 33.5�106 0.7195 34.4

Figure 12. Mesh element size distribution for the RPC, ACF, and PB computational meshes in terms of the
element diameter D (largest edge length).

and Fluent [30,43]. This approach allowed for a complete characterization of the morphological and
effective heat/mass transport properties of RPC [44], ACF [45], and PB [46]. A microfocus X-ray
tube was used to obtain low-resolution CT data (voxel size§§ D 30�m) of silicon carbide RPC with
nominal pore sizes of 1.27 mm. A 3D rendering of a subvolume is depicted in Figure 10(a). High-
resolution computed tomography data (voxel size D 0.37 and 3.7�m) obtained with synchrotron
radiation was used for the 3D renderings of ACF made of ceria with pore diameters between 10

§§Voxel size corresponds to the edge length of the smallest resolvable, cubical (3D) volume
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Figure 13. Distribution of tetrahedral shape quality, q, of the RPC, ACF, and PB computational meshes.

Figure 14. Surface mesh of the solid–fluid interphase of (a) the RPC with strut thickness of approximately
150 �m and mean mesh element length of 103 �m, (b) the ACF with pore size of approximately 30 �m
and mean mesh element length of 2 �m, and (c) PB with particle sizes of 500 �m radius and mean mesh

element length of 34 �m.

and 100 �m, and packed beds of highly porous 1-mm-diameter carbonaceous particles. These two
material samples are depicted in Figures 10(b) and (c), respectively.

Each computational mesh represents a square channel containing a sample of porous material
and an inlet and an outlet region, both having approximately twice the volume of the porous sample
(Figure 11). Grid convergence studies were conducted to determine the mesh density for which the
discretization error of computational results becomes negligible. Corresponding mesh characteris-
tics are given in Table III and by Figures 12 and 13. In the element size distribution (Figure 12),
the four distinct peaks reflect the setting n D 4 (number of refinement levels, Section 3.2.1). In the
distributions of tetrahedral shape quality (Figure 13), the peaks at q � 0.3 and q � 0.5 correspond to
the dominant q values resulting from green refinement (Table II), while the peak at q D 0.9 belongs
to the bulk of unrefined BCC tetrahedra.

Close-ups of mesh edges on the solid–fluid phase boundary for RPC, ACF, and PB samples are
shown in Figure 14. The solid–fluid phase boundary is accurately resolved (within the limits given
by the CT resolution).

6. SUMMARY AND CONCLUSIONS

A basic design concept of our mesh generation algorithm was a reasonable compromise between
mesh quality on one hand, and robustness and simplicity on the other hand. Among all published
algorithms, that of [8] is perhaps the one that is most similar to ours, given that it also uses a BCC
mesh in combination with red–green refinement.
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Important qualitative arguments for giving preference to the BCC mesh have been put forward in
[8]. The present paper provides additional, quantitative arguments by comparing the most frequently
used mesh types with respect to tetrahedral shape quality and degree of symmetry (Section 2).

Our algorithm differs from that of [8] in four major points: (i) In the applications shown in [8],
an object to be meshed has virtually no surface region in common with the object’s bounding box
covered by the initial, uniform BCC mesh. In this situation, it is both natural and efficient to have
the edges of the bounding box parallel to the edges of the cubic unit cells of the BCC lattice. In
contrast, our typical application is a sample of porous material, where the volume to be discretized
may have a large surface fraction in common with the volume’s bounding box. To improve the
mesh quality along this surface fraction, we have identified the optimal relative orientation between
the BCC lattice and the bounding box (Section 3.1). (ii) Instead of three green refinement schemes
used in [8], we use only two. We have shown that these two schemes represent a minimum, best-
quality repertoire green refinement scheme (Section 3.2.2). (iii) Given that our typical input data
originate from tomographic scans affected by fluctuating errors, our algorithm completely avoids
operations that imply numerical differentiation. Instead of a Level Set Function [8], a fast and robust
approximation is used to have the mesh density controlled by the distance from the object surface.
Instead of curvature [8], we use the concept of local surface roughness to adapt the mesh density
to the surface structure (Section 4). (iv) To establish boundary conformity, our algorithm deals only
with surface-crossing elements, while the algorithm of [8] deforms the mesh in a wider neighbor-
hood of the surface. The relative simplicity of our algorithm entails the necessity of splitting some
of the boundary-crossing elements, which introduces additional nodes and degrades tetrahedral
shape quality.

Currently, isotropic meshes are considered desirable because this represents the most standard
case (which also applies to all mesh-generating algorithms cited in the present paper). Anisotropic
elements close to boundaries that are advantageous for certain flow conditions have not been
considered within this work.

Coupling this mesh generator to CT data allows for the construction of accurate, high quality,
and robust meshes, which have been successfully used for numerically solving the governing mass,
momentum and energy conservation equations on the pore-level and the subsequent extraction of
the effective heat and mass transport properties of the porous media to be used in volume averaged
(continuum) models.

LIST OF SYMBOLS

a Edge length of a cubic unit cell of a BCC lattice; largest tetrahedral edge in the initial
BCC mesh

D Diameter (largest edge) of a tetrahedron
n Number of refinement levels in the procedure for red–green refinement
q Tetrahedral shape quality (insphere to circumsphere ratio)
T Set of tetrahedra maintained in the procedure for red–green refinement
V Set of nodes maintained in the procedure for red–green refinement
� Local surface roughness
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