=
&

Swansea University ‘C I'OIlfa

Prifysgol Abertawe Setting Research Free

Swansea University E-Theses

Hardware accelerated volume texturing.

Miller, Christopher Michael

How to cite:

Miller, Christopher Michael (2006) Hardware accelerated volume texturing.. thesis, Swansea University.
http://cronfa.swan.ac.uk/Record/cronfa42524

Use policy:

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from
the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference
above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42524
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Hardware Accelerated Volume Texturing

Christopher Michael Miller BSc. (Wales)

A thesis submitted to the University of Wales in
candidature for the degree of Philosophiae Doctor

Department of Computer Science
University of Wales, Swansea

September 2006

ProQuest Number: 10805273

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10805273

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Declaration

This work has not been previously accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree.

Signed e e (candidate)

¢
Date ... (3 03/0:)‘

Statement 1

This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is ap-
pended.

Signed (candidate)

Date

Statement 2

I hereby give my consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside organi-
sations.

Signed (candidate)

Summary

The emergence of volume graphics, a sub field in computer graphics, has been evident
for the last 15 years. Growing from scientific visualization problems, volume graphics
has established itself as an important field in general computer graphics. However, the
general graphics fraternity still favour the established surface graphics techniques. This is
due to well founded and established techniques and a complete pipeline through software
onto display hardware. This enables real-time applications to be constructed with ease and
used by a wide range of end users due to the readily available graphics hardware adopted
by many computer manufacturers. Volume graphics has traditionally been restricted to
high-end systems due to the complexity involved with rendering volume datasets. Either
specialised graphics hardware or powerful computers were required to generate images,
many of these not in real-time.

Although there have been specialised hardware solutions to the volume rendering prob-
lem, the adoption of the volume dataset as a primitive relies on end-users with commodity
hardware being able to display images at interactive rates. The recent emergence of pro-
grammable consumer level graphics hardware is now allowing these platforms to compute
volume rendering at interactive rates. Most of the work in this field is directed towards
scientific visualisation.

The work in this thesis addresses the issues in providing real-time volume graphics tech-
niques to the general graphics community using commodity graphics hardware. Real-time
texturing of volumetric data is explored as an important set of techniques in delivering vol-
ume datasets as a general graphics primitive.

The main contributions of this work are:
¢ The introduction of efficient acceleration techniques

o Interactive display of amorphous phenomena modelled outside an object defined in a
volume dataset

e Interactive procedural texture synthesis for volume data
e 2D texturing techniques and extensions for volume data in real-time
o A flexible surface detail mapping algorithm that removes many previous restrictions

Parts of this work have been presented at the 4** International Workshop on Volume Graph-
ics and also published in Volume Graphics 2005.

Acknowledgments

First and foremost I would like to thank my parents, without their support and enthusiasm
throughout the years of my university education I don’t believe that I would have had the
drive and ambition to start or complete a PhD. I also extend my thanks to my girlfriend
Laura who has put up with more than most would endure during the writing of this thesis. I
would like to acknowledge her ability to spell words correctly, a skill that most of the time
evades me. I have an overwhelming gratitude for their patience and encouragement whilst
writing this thesis since research can take over a person and make them non-responsive to
most of their surroundings at times. I would also like to thank Mr Crozby Chacksfield from
my former sixth form college; his help, concern and enthusiasm whilst there helped shape
my path though academia.

I would like to thank my supervisor Dr Mark Jones who constantly provided encourage-
ment, insightful discussion, focus and direction wherever he could. I believe I have learned
much from our discussiens. In addition his overwhelming knowledge of the subject area
was a constant source of inspiration and amazement.

My thanks also go to all my colleagues in the visual and interactive computing group and
computer science department. All at some point have provided fruitful discussions around
the groups academic pursuits, help and encouragement or more often, entertaining conver-
sation. I would especially like to thank Prof Min Chen who has been a source of inspiration
and encouragement throughout my time at Swansea. I finally thank my laboratory col-
leagues in particular for putting up with my many questions.

Contents

1 Introduction 1
1.1 ThesisObjectives i 2
1.2 ThesisOutline 2
1.3 FeaturedDatasets« i 3

2 Volume Rendering 5
2.1 VolumetricDatasets 6

2.1.1 Computed Tomography 7
2.1.2 Magnetic Resonance Imaging 8
2.1.3 Functional Representation 8
2.14 DataRepresentation 9
2.2 Signal Reconstruction Filters 10
2.2.1 NearestNeighbour 11
2.2.2 Trilinear Interpolation 11
2.2.3 TrcubicInterpolation 12
2.3 Volume Data Classification 13
2.3.1 PreClassification 15
2.3.2 Post-Classification 15
2.4 Gradient Computationand Shading 16
2.4.1 Gradient Computation 17
242 Shading e 18
2.5 Iso-Surface Reconstruction 20
251 Contour Tracking 20
2,52 MarchingCubes 21
2.5.3 Marching Tetrahedra23
2.54 Iso-Surface Tracking 23
255 OctreeEncoding 24
2.6 Direct VolumeRendering, 25
2.6.1 Image-Order Algorithm 28
2.6.2 Object-Order Algorithm 31
2.6.3 Hybrid Approaches 33
2.7 Volume Graphics 33
27.1 DistanceFields 34
2.7.2 Global Hlumination, 35
273 Shadows 36

CONTENTS ii
2.74 Constructive Volume Representation 36

2.7.5 Deformation and Animation 37

276 Procedural Texture 39

27777 Hypertextureo 42

278 TextureMapping 45

2.7.9 Bump Mapping and Displacement Mapping 46

2.8 SUMMAIY oo e e e 47
3 Direct Volume Rendering 49
3.1 HardwarePipeline 50
31,1 GPUGenerations 52

312 DataTypes v v i i 53
3.1.3 Memoryand Registers, 54

314 VertexProcessing o 56

3.1.5 FragmentProcessingt 56

3.1.6 TexturingandBuffers 58

317 Branching.............. 60

3.2 GpuU Volume Rendering Algorithims 60
3.2.1 Object-order Proxy Slice Rendering Using Volume Textures 62

3.2.2 Object-order Proxy Slice Rendering Using 2D Textured Slices . . . 65

323 RayCasting. 67

324 Distance FieldRendering. 69

33 Improvements v v v vt i e e e 73
33,1 CHpPING -+« v o e e e e e e e e 73

3.3.2 Signal Reconstruction 74

3.3.3 Pre-Integrated Classification 75

34 CompariSOn o v vt i e e e e e e e e e e e 80
34.1 Oop Rendering Framework 83

342 OopPFuzzy Segmentation 85

3.43 OopP Binary Segmentation 86

344 OoPResults 87

34.5 Iom Rendering Framework 94

34.6 I0M Fuzzy Segmentation. 98

347 IoM Binary Segmentation 99

348 IoMResults. 101

349 IosRendering Framework 103
3.4.10 Tos Fuzzy Segmentation 104
3.4.11 Ios Binary Segmentation 105
34.12 TIosRenderingResults 106

35 Summary e e e e e e e 109
4 Volume Texture and Hypertexture 111
4.1 GpU Procedural Texture Primitives 112
4.1.1 Pre-computed Evaluation 113

412 LocalEvaluation 116

413 Results e 117

CONTENTS iii
4.2 Solid Texturing Volumetric Objects 120
4.2.1 Object-Order Proxy Slice Solid Texturing 122

4.2.2 Image-Order Single Pass Solid Texturing 123

423 Results e e 124

4.3 Volume Hypertexture 131
43.1 DistanceFields 132

432 DMFFunctions, 133

4.3.3 Example Hypertextures 135

434 Pre-Integrated Transfer Functions 136

4.3.5 Object-Order Proxy Slice Hypertexture 138

4.3.6 Image-Order Single Pass Hypertexture 139

437 Results 141

4.4 Animation Techniques, 144
441 TextureDomain. 148

442 Higher-Order Noise Primitives 149

4.4.3 Hypertexture Parameters 150

45 SUMMATy o ot e e e e e e 151
5 Volume Surface Detail 152
5.1 2D Texture Mapping i 153
5.1.1 ForwardMapping e 154

5.1.2 BackwardMapping oo 157

5.1.3 Intermediate Parametric Surfaces 158

5.1.4 Object-Order Proxy Slice 2D Texturing 160

5.1.5 Image-order Single Pass 2D Texturing 161

5016 Results e 163

52 TangentSpaceo e e e 163
53 BumpMapping 168
53.1 3DBumpMapping e e 170

53.2 3DBumpMappingResults 172

533 2DBumpmapping o o 176

534 2D BumpMappingResults 0. 179

5.4 DisplacementMapping o 183
54.1 2D DisplacementMapping 185

5.4.2 2D Displacement MappingResults 187

543 Volume DisplacementMapping 187

5.4.4 Volume Displacement Mapping Results 191

55 Summary e 196
6 Conclusion 197
6.1 Achievements e 198
6.2 Further Work 198

Chapter 1

Introduction

Contents
1.1 ThesisObjectivesttt it ittt eeenan 2
12 ThesisOutlinet ittt it eeeeeenns e 2
1.3 FeaturedDatasets v vt vttt tnenonnesas 3

Imagery is a long established means of communicating information between individuals
and communities. Its use has evolved over many thousands of years from primitive manual
techniques to fully automated systems. The computer has played an important role in the
imagery that now surrounds us day to day. Artwork, memories, entertainment, knowledge
and understanding have all benefited from computer graphics. Recent developments have
also allowed such mediums to be conveyed on tiny mobile phone screens amongst other
high-definition displays that only a few years ago would have been thought of as impossible.
People now rely on the computer and its ability to display information as a part of every
day life in a wide variety of disciplines including science, engineering, medicine, business,
industry amongst many others.

Computer graphics is thus an important subject in many areas, most notably visualisation
and entertainment. Both the visualisation and entertainment communities have made it pos-
sible to utilise the emerging programmable consumer level graphics hardware to extract
images from volume datasets. The visualisation community has focused on methods to
extract meaningful information from volumetric sources and provided many techniques to
achieve this goal. The entertainment industry has driven the development of consumer level
graphics hardware to enable end users to use an interactive environment for their entertain-
ment and additionally developed many techniques to model real world situations with a
computer for use in feature films and animations.

The majority of these products and features use the triangle as a modelling primitive. Sur-
faces are constructed with triangles to represent objects and surrounding medium. The
surface and triangle however is not well suited to all naturally occurring mediums which
the graphics community would like to capture and model in some way. A good example of
the surface’s inability to model naturally occurring mediums is fire. Fire does not have a
well defined surface, and therefore the inclusion of such a medium is not well suited to the

1.1 Thesis Objectives 2

surface modelling domain. In addition surface based techniques model objects as having an
infinitely thin surface and no internal detail, which in the real world is far from reality.

Volume graphics has grown out of the need to enable such modelling behaviour intuitively
and has grown largely from the medical imaging and visualisation communities. The vol-
ume approach encodes the physical properties of an object, its internal medium, its external
surroundings and the complete definition of its surface without having to include complex
techniques to simulate such properties. This is achieved by representing the densities in its
defined space (e.g. 3D space). This volume graphics representation of density or matter in
graphics is the foundation of this thesis.

1.1 Thesis Objectives

The main objective and focus of this thesis advance important volume graphics techniques
to an interactive level on commodity hardware, an important goal in providing volumetric
approaches to graphics to a wider audience and user base. Numerous researchers have noted
the importance of volume graphics as a general primitive and have even suggested that the
volume representations will eventually supersede the surface representation counterparts.
This is due to surface representations exhibiting a complexity that grows with the models
detail. Therefore rendering and manipulation complexity are bound by the detail present in
the surface construction. Volume data can be rendered and manipulated with a known upper
bound for the volume datasets size.

Volumetric approaches have already been proven to exhibit a superset of achievable intuitive
modelling techniques, amongst other important properties such as a similar complexity for
increasingly complex objects. However, it is usually the case that research is either based
on the modelling of objects, or the rendering of objects and interactive display has been
limited to visualisation problems above general graphics problems.

An objective for this work is therefore to provide an environment where rendering is achieved
at interactive rates, and make possible the intuitive control of the detailed visual appearance
of underlying objects. In addition the consideration of both the rendering and modelling
disciplines should be considered with an appropriate framework definition to enable re-use
of the work presented to a wider audience.

1.2 Thesis Outline

The work in this thesis is divided amongst four main chapters. Chapter 2 will introduce the
areas of volume visualization and volume rendering and formalise the fundamental prop-
erties and techniques encountered within volumetric approaches. An in depth review of
previous work from the subjects inception to state of the art research will be presented.

Chapter 3 introduces the underlying hardware implementations available on current com-
modity graphics hardware and provide a detailed review of existing techniques and strate-

1.3 Featured Datasets 3

gies. Additionally hybrids of these techniques will be investigated quantitatively and quali-
tatively to provide a benchmark in current interactive volume display.

Chapter 4 will explore procedural texture synthesis for volume data and volume hypertex-
ure, a means of modelling and deforming volume datasets to closely model naturally occur-
ring phenomena. Details of animation strategies and interactive computation of procedural
textures will be presented.

Chapter 5 will demonstrate interactive texturing and fine surface detail methods for volume
objects to enhance visual appearance without a large burden on modelling or rendering.

1.3 Featured Datasets

Table 1.1 provides a brief overview of the volumetric datasets used in this thesis. Each
dataset is well known and it is for this purpose that they are used for testing and evaluation
of rendering algorithms.

The BuckyBall dataset is synthesised and named after Buckminster Fuller. Bucky balls
consist of 60 points on the surface of a spherical shape where the distance from any point
to its nearest neighbouring three points on the sphere is identical.

The AvSHydrogen is a synthetic dataset describing electron distribution in a hydrogen atom.

The CTHead dataset is taken from a CT scanner during a head survey of a cadaver by the
North Carolina Memorial Hospital.

The CTHeadDist dataset is a distance field encoding of the original CTHead dataset with
the iso-surface being chosen as the bone structure or skull.

Both the sphere distance fields were generated directly from the parametric definition of a
sphere for use in this work. The SphereDist dataset is very accurate and produces a smooth
surface when rendered without under-sampling. The SphereMeso dataset is several sphere
functions evaluated over a grid. These spheres are used to represent finite surface detail.

The frame rates reported in this thesis are based on a computer system equipped with a
Pentium 4 2GHZ processor, 2GB of RAM and a NVIDIA 6800 graphics card with 256MB
of video memory.

1.3 Featured Datasets

Image Description
Name: BuckyBall
Size: 32 x 32 x 32
Scale: 1:1:1
Data type: 8 bit
Source AVS, USA
Name: AvVSHydrogen
Size: 64 x 64 x 64
Scale: 1:1:1
Data Type: 8 bit
Source AVS, USA
Name: CTHead
Size: 256 x 256 x 113
Scale: 1:1:2
Data Type: 16 bit
Source UNC Chapel Hill
Name: CTHeadDist
Size: 256 x 256 x 128
Scale: 1:1:2
Data Type: 32 bit
Source M.W. Jones, Swansea
Name: SphereDist
Size: 256 x 256 x 256
Scale: 1:1:1
Data Type: 32 bit
Source C.M. Miller, Swansea
Name: SphereMeso
Size: 256 x 256 x 16
Scale: 1:1:1
Data Type: 32 bit
Source C.M. Miller, Swansea

Table 1.1: Featured Datasets

Chapter 2

Volume Rendering

Contents
2.1 VolumetricDatasets ¢t vttt vttt oo 6
2.2 Signal ReconstructionFilters 10
2.3 Volume Data Classification ee e 13
24 Gradient Computationand Shading 16
2.5 Iso-Surface Reconstruction c vt vt e v ueeean 20
2.6 Direct VolumeRendering v it c vt vt v oo s 25
2.7 Volume Graphics. e e e e S et e e e 33
28 Summary i e et e e e e e e e 47

Volume visualisation has grown largely from medical diagnostic and teaching problems
that require a method of conveying information about complex structures within the body.
These structures are inherently three dimensional in nature and traditionally medical per-
sonnel have worked with two dimensional images to diagnose and learn about the human
body. These two dimensional images could be photographs of cadavers or images obtained
through tomography on live tissue.

Common tomographic techniques include computed tomography scans (CT), magnetic res-
onance imaging (MRI) and positron emission tomography (PET). These techniques facili-
tate taking a cross-section from a subject and include data for all of the internal densities
encountered through a scan plane. Radiologists study these cross-sections to acquire an un-
derstanding of the three dimensional structure that a series of cross-sectional scans contain.
However this understanding by trained individuals is difficult to convey to other doctors,
students and patients.

Whilst two dimensional images obtained from photographs of cadavers or scans from live
tissue can convey enough information for certain diagnosis and understanding, three dimen-
sional representations are required to fully understand and explore complex diagnosis cases
and medical science. Intuitive understanding across several disciplines is achieved by being
able to generate a better visualisation that presents all of the information without having to
reconstruct a picture mentally.

2.1 Volumetric Datasets 6

CT and MRI scanners can obtain a stack of two dimensional images, that when stacked
provide a three dimensional cube of data. These three dimensional stacks or cubes of data
define the notion of a volume dataset. A volume is therefore a three dimensional entity with
external and internal detail of a particular subject. The graphics community predominantly
concentrates on surface based representations for three dimensional images, however sur-
faces are incapable of defining an objects internal structure and external features intuitively.
There are many applications and problems in the medical community exhibiting a volu-
metric nature. There are also numerous applications and problems across a diverse range of
subject matter that require a volume visualisation approach. These include medical imaging
for diagnostics, non-invasive simulation and training applications where volume data can
be ascertained from scanning equipment. Industrial applications include non-destructive
testing, reverse engineering, rapid prototyping and interactive modelling of 3Dstructures,
products and entities.

This review chapter charts the early volumetric visualisation techniques from the inception
of the subject, and major developments up to state of the art techniques. Volumetric dataset
acquisition and data representation are explored in section 2.1. Extracting the desired infor-
mation from a volume dataset is explored in sections 2.2, 2.3 and 2.4. A complete review
of different approaches to obtaining a visualisation from a volume dataset is provided in
sections 2.5 and 2.6. Finally the notion of Volume Graphics is considered as a general
rendering primitive in section 2.7.

2.1 Volumetric Datasets

Since volume visualisation has grown mainly from medical imaging problems, most of the
widely adopted datasets for exploring volumetric approaches are from the medical domain.
CT and MRI scanners are discussed as a means to extract a volume dataset from live tissue or
a cadaver. These techniques have also been used to acquire volume datasets of inert objects
such as engine blocks. The Visible Human Project (VHP) was a national library of medicine
[Pro] initiative to capture a male and female volume dataset of the whole body to use in
research and teaching. The VHP includes CT and MRI scans of the entire body, and includes
digital colour photographs of cross sections of the entire cadaver (see Figure 2.3(c)).

Volume datasets can be categorized as exhibiting different topologic and geometric prop-
erties [SK90]. The CTHead is an example of a volume dataset geometrically defined on a
regular grid and topographically defined as structured. Other methods of volume acquisition
can produce elements that are addressed geometrically on a non uniform grid and elements
that are topographically defined on an unstructured grid (see Figure 2.1). Non uniform
and unstructured grids are not considered as the focus of this work since it concentrates on
uniform rectilinear grids.

Three dimensional data can be topologically defined as being:

e Structured - There exists a connectivity between each cell such that they can be ad-
dressed implicitly using topological co-ordinates.

e Unstructured - The connectivity between each cell must be represented explicitly.

2.1 Volumetric Datasets 7

[][] []
/

i

(a) Structured and regular (b) Structured and irregular
(c) Unstructured and regular (d) Unstructured and irreg-
ular

Figure 2.1: Differing grid geometries and topologies for volume data

Three dimensional data can be additionally defined geometrically as being:
o Regular - All cells in the grid are the same size and shape

o Irregular - The cells in the grid can exhibit different shapes and sizes from one an-
other.

2.1.1 Computed Tomography

Computed Tomography (CT) or Computed Axial Tomography (CAT) is the acquisition of
a planar 2D image from a subject by calculating x-ray absorption. The CT method was
originally developed by Carmac and Hounsfield independently [Hou72]. X-rays are fired
into the subject in a parallel, fan or cone shape from a transmitter. The absorption along
these rays is recorded by a receiver. Rotating the scan plane through 360° over a fixed
origin yields absorption line integrals that can be constructed into a 2D function u(z,y)
(see Figure 2.3(a)). Modern CT scanning equipment is shown in Figure 2.2.

The absorption integral function y is measured in respect of the rays source intensity Iy and
distance between the emitter and receiver d:

I(z) = Iy e~ J #(@)d= @.1)

CT scanners become more precise over time by firing more x-rays to gain better resolution
and minimizing scan time and radiation dosage. CT scanning is a non-invasive technique,

2.1 Volumetric Datasets 8

Figure 2.2: Modern CT Scanner, GE eSpeed EBT [Hea]

and is suitable for use on live human subjects in medical imaging. Ct scanners detect
boundaries between differing densities such as skin and bone effectively. However CT does
not detect subtle variations in soft tissue. Ct scanners are also widely adopted in the manu-
facturing industry to test and diagnose internal structures. 2D axial CT scans are stacked on
top of one another to construct a volume dataset.

2.1.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive form of scanning similar to CT. M r1
detects subtle differences in soft tissue. M r1 scanning builds on Nuclear Magnetic Reso-
nance (NMR) developed independently by Purcel ez al. [PTP45] and Blotch ef al. [BHP46].

M r1 scans are obtained by surrounding the subject with a strong magnetic held, which af-
fects the orientation of protons, causing them to align with the magnetic held. A series of
pulses are then delivered though the body at intervals to disturb the orientation of protons
by resonance. A detector measures the orientation at each interval which enables the calcu-
lation of proton density (PD), spin-lattice relaxation time (Ti) and spin-spin relaxation time
(T2) where relaxation time measures the amount of orientation relaxed towards normal over
time. These differing calculations represent three different types of mr1 scan available. The
resulting calculations are scaled to obtain a 2D axial images (see Figure 2.3(b)). Analo-
gous to CT scanning, mr1 axial images are stacked on top of one another to form a volume

dataset.

2.1.3 Functional Representation

Functional Representation (f-rep) is a held in volume visualisation that encompasses con-
tinuous scalar held functions dehned in three dimensions. Often scientihc visualisation is
modelled using functions rather than discretised data gathered from source materials using

2.1 Volumetric Datasets 9

a) CT scan RI scan ¢) Colour photograpl

Figure 2.3: Axial images of CT, mr1 and colour cryosections of the head

scanning techniques. Evaluation of these functions is done in the same manner as discre-
tised data during rendering, however the scalar field is sampled at a lower resolution than
the infinite resolution available with a functional representation. It is possible to voxelise a
functional representation into a volume dataset as a pre-processing step.

There are many applications of functional representation. Computation Fluid Dynamics
(CFD) is the study viscous fluids, non-viscous fluids and air movement around mediums in
3D space. These simulations encompass the necessary physical models to describe such
flows and model several properties such as temperature, rate of flow and flow direction
while accounting for forces such as friction and gravity. Volume visualisation methods are
often used because these functions on their own provide little insight. The data captured
is typically 3D with another possible dimension describing time (4D). Visualisations are
generated to study flows, or a particular property at one time. For example when modelling
air flow over a car, it might be desirable to visualize the speed of air over the car body.
Using different colours to represent air speed such as green for fast moving and red for slow
moving, an intuitive image can be ascertained.

Other applications forf-rep techniques include time-varying data, seismic data and scientific
simulation (such as the AvsHydrogen dataset). Pasko ef al. [PASS95] provide an review of
f-rep techniques and applications.

2.1.4 Data Representation

The acquisition of a volume dataset via the methods defined above will produce volume
datasets exhibiting a set of elements defined on a rectilinear grid (see Eqn 2.2).

A volume dataset, V, is formally defined:
Vv = (x,y,z) i =1,2,... ,n} (2.2)

where (X,y, z) € E3 is a point in 3D Euclidean space. The element Vi (x,y, z) is a scalar,
vector or tensor defined by:

e ascalar field / : E3 —K

2.2 Signal Reconstruction Filters _ 10

Figure 2.4: Relationship between a voxel and a cell (regular grid)

e an n-dimensional vector function f* : E3 — R
e a k-ranked tensor function f** : E3 — R"*

Common volume dataset elements are scalars and vectors which are special cases of tensor
functions. These functions are rasterized lookup tables since scanners produce a digitized
output of discrete locations on a rectilinear grid. These lookup table functions are held in
memory and return an element from a specific location addressed on a rectilinear grid.

Using f-rep models allows infinite resolution where a rasterized memory representation will
have at best the acquisition methods output resolution. Non-regular grids, unstructured grids
and non-regular unstructured grids exhibit cells of different shapes and volumes, adapted
rendering techniques must be used to traverse these structures correctly.

The notion of a voxel describes the value at an elements location. A voxel (volume element)
is analogous to a pixel (picture element) however instead of being a two dimensional ele-
ment, a voxel is a three dimensional element. When dealing with rectilinear grids a cell is
a uniform cube that occupies a unit space and volume defined by the acquisition methods
output resolution. The eight corners of a cell represent voxel values on the rectilinear grid
(see Figure 2.4).

2.2 Signal Reconstruction Filters

Often the original objects resolution must be synthesised as intricate detail within one sam-
ple or voxel and may be missed as a result of the acquisition resolution or rasterization. A
reconstruction filter can be used to approximate the original objects continuous signal.

Most volume datasets are rasterized three dimensional blocks of data obtained from scan-
ning equipment. Therefore only a partial mapping from coordinates defined in the volume
space exist to voxels. Voxel values defined at the corners of a cell do not necessarily rep-
resent a continuous signal inside the cell, minute details smaller than the resolution of the
raster resolution are lost. To accurately reconstruct a signal from samples, twice the fre-
quency of the original signal is required (the Nyquist frequency or critical frequency). A
sampling frequency at just above the maximum frequency contained in the original signal
allows for perfect reconstruction, however additional oversampling is required to use less

2.2 Signal Reconstruction Filters 11

- T

(a) Ne%rcst N::ighbour (box) (b) Lin‘léar intérpolatié"n (tent) () Desirea filter (sinc)

Figure 2.5: 1D Reconstruction filters

complex reconstruction filters (generally twice the frequency of the original). Since aquired
volume data will in most cases be scanned at a frequency less than twice the original max-
imum frequency, a perfect reconstruction can not be obtained from the scanned volume. A
close approximation can be obtained using interpolation within reconstruction filters. If the
acquired volume data is scanned at twice the maximum frequency of the original signal, a
perfect reconstruction can be obtained using the sinc filter. Figure 2.5 depicts 1D filters.

2.2.1 Nearest Neighbour

The nearest neighbour or box reconstruction filter for a point within a cell is the nearest
element or voxel value spatially:

V(z,y,2) =V (lz+05],|ly+0.5],2+0.5]) (2.3)
Where (z,v, 2) € E3 is a point in Euclidean space.

This approach delivers a fast and easy implementation, however the image quality is poor
due to not attempting to calculate an approximation of the original signal. This results in
under-sampling the original signal by simply using the raster blocks original resolution.
Figure 2.5(a) shows a 1D nearest neighbour or box filter kernel.

2.2.2 Trilinear Interpolation

Trilinear interpolation attempts to reconstruct the original signal by means of averaging the
eight neighbouring elements. A point inside a volume cell can be trilinearly interpolated by
firstly linearly interpolating the bottom and top edge of the front face, the same process is
then applied on the bottom and top edges of the back face. These two linearly interpolated
points are then used for a third linear interpolation between the computed points:

2.2 Signal Reconstruction Filters 12

Figure 2.6: Trilinear interpolation in a volume cell

V([x] bl> 20 #B= ~— T 2= 3 *
VIM o Ly f2Y (x- Lxj)(i-¢y- Lyl)(l-fz- W)) +

VW mj el (x- [XT) (1 - Lyl) (z- fal) +

VIR BT e (- (x- LAY (1 (v [y D)) fz- L) 4
V(*T i 20 (- (x- X)) (y- Ly)) (- (z- LA+

v(W Dl 2 (x- [x})(y- LyIMI-(z- LM)) +

VW i, e (x- xi) (Y- [y (z- [z) +

V(XD w.tal (- (x- L) - Lyl) @- LY)

(2.4)
Where (x, v,z) € E3is a point in Euclidean space. Figure 2.6 demonstrates trilinear inter-
polation in a volume cell

This approach is relatively fast and easy to implement. The image quality produced is
comparable to higher order interpolation schemes. Trilinear interpolation provides a good
trade off between speed and quality. Many modern graphics processors include trilinear
interpolation operations implemented in hardware. However software implementations take
several operations and could potentially become a bottleneck. Figure 2.5(b) shows a 1D
linear interpolation or tent filter kernel.

2.2.3 Tricubic Interpolation

Tricubic interpolation uses a 64 voxel neighbourhood to approximate the original signal.
Mitchell and Netravali [MN88J implement a BC family of cubic splines:

(12 —9B —6C)|£|3+
(18 + 12B + 6C)£24 (6 —2B) if|t] < 1

j6 (-B - 6C)\t\3+ (6B + 30C)|£|2+ (2.5)
(-12B - 48C)|t| + (8B + 24C) ifl< el <2
0 otherwise

Where B and C are used to control the spline kernel.

2.3 Volume Data Classification ' 13

To reconstruct a non integer spatial location’s intensity:

2 2 2 [V(al+lly)+m] +n)
Vzy2)= 3 3 S| kscln—(z- z))ksc(m - (v - ly)

n=—1m=—11=—1 kpc(l— (z - [z]))

Where (z,y, z) € E3 is a point in Euclidean space.

Tricubic interpolation does produce better approximations of the original signal than trilin-
ear interpolation. Most often these differences are marginal in most circumstances, however
allow higher quality output for large images. There is also an issue when computing values
close to volume edges as a 64 voxel neighbourhood will not be present, lower order inter-
polation techniques such as trilinear interpolation can be employed near volume edges as a
substitute.

The algorithm is more demanding to compute than lower order interpolation techniques and
therefore is used for high accuracy rendering that is not heavily dependent on time. There
has been several publications [MMMY96, MMMY97, MMK *98] geared towards higher
order filtering specifically for volume visualisation signal reconstruction.

Recent advancements [HE99, HTGO1, HVTHO02, HHMO03] have allowed real time rendering
with tricubic filters using modern consumer level hardware. Multiple passes are employed
to convolute with filters over 3D volume textures or volume datasets. Figure 2.5(c) shows
a 1D cubic filter kernel.

2.3 Volume Data Classification

The fundamental advantage to volume visualisation is that a dataset can represent multiple
objects in one structure, additionally internal details of objects are also represented. For
example the CTHead dataset contains information for bone and skin by encoding the den-
sities discovered at scanned locations. Visualisations can be generated to concentrate on a
particular medium within the volume via the process of segmentation. Most segmentation
tasks are automatic as the whole volume is to be considered for the final image. Certain
regions of interest (ROI) within volumes require a specific segmentation that in some cases
are not automatic and require a pre-processing step or user interaction.

Classification is the process of assigning a colour and an opacity to a voxel chosen for
display, this is done with a transfer function containing colour and opacity information.
Transfer functions can either be categorized as binary or fuzzy segmentation [THB+90].
Volumes predominately encode an intensity as a scalar (see Equation 2.2) that will produce
grey scales if rendered directly. The opacity property of a transfer function can be used
to segment the volume data in an automatic manner and is defined by an opacity transfer
function (see Eqn 2.6). The colour component of a transfer function is defined similarly in a
colour transfer function (see Equation 2.7). These two functions are usually combined into
a single transfer function and encoded as a rasterized look up table:

a:E3—0,1] (2.6)

2.3 Volume Data Classification 14

where a(z, vy, z) defines the opacity at (z, v, z) € E3, a point in Euclidean space.

rgb: E3 — 0,1 2.7)

where rgb(z, vy, z) defines the colour at (z,y, z) € E3, a point in Euclidean space. [0,1]3
defines a colour triple < r,g,b >.

To iso-surface (see section 2.5 for definition) a volume dataset for a given iso-value ¢, an
opacity transfer function is defined. This opacity transfer function will perform a binary
segmentation required for the iso-surface:

_J 1 ifV(z,y,2)>¢

o(z,9,2) = { 0 otherwise

Volume datasets can also exhibit multiple iso-surfaces (for example the CTHead as de-
scribed above). The opacity transfer function can be encoded to cope with multiple (n)
iso-surfaces by encoding different opacity information to each voxels intensity («;). The
ordering of iso-values within the transfer function is important to describe which surfaces
are considered first. This mapping of arbitrary opacity value to arbitrary voxel intensities is
fuzzy:

ar ifV(z,y,2) >

a(z,y, z) = : :
(Y) Qn lfV(.’II,y,Z)Z¢n

0 otherwise

The opacity transfer function for fuzzy classification can be categorized as a one dimen-
sional transfer function as there exists a one-to-one mapping between voxel intensity and
opacity value. Higher order opacity transfer functions can be constructed by utilizing fur-
ther information from neighbouring voxel values. There is not always a perfect interface
between two boundaries described in a volume. For example the CTHead boundary be-
tween skin and bone can exhibit intensities that could belong to both mediums.

Levoy [Lev88] describes an opacity transfer function that calculates a weighting to describe
if a voxel is included in the object of interest. The length of the gradient vector (see section
2.4) is used to address this weighting by assuming that the gradient will be longer if it lies
in a well founded boundary. This transfer function is relatively generic for medical volume
data:

(1 if |[VV(z,y,2z)| =0and V(z,y,2) =7

if ['VV(z,y, z)| > 0and
V(z,y,2) — o |VV(z,y,z)| < 7and (2.8)
|VV(z,y,2)| > T

1

N T_V(zvyaz)
o

a(z,y,z) =< 1 VV(z.y,2)|

(O otherwise

2.3 Volume Data Classification 15

Where ¢ is the width in voxels of the neighbourhood of the iso-value 7.

Algorithms for automatic and semi-automatic generation of transfer functions have been
developed [PLB*01]. Bajaj et al. [BPS97] use a data-centric method for estimating an iso-
value to derive a transfer function. He et al. [HHKP96] use genetic algorithms to iteratively
refine on a transfer function. This process can involve user interaction during the refinement
process or can be fully automated.

Kindlamann and Durkin [KD98] employ a two dimensional histogram scatter plot of the
volume signal and gradient magnitudes to determine possible boundaries. They present a
semi-automatic transfer function generator via user analysis of the scatter plot. Kniss et
al. [KKHO1] extend this work by introducing a set of direct manipulation widgets as an
interface for defining multidimensional transfer functions.

Ma et al. [Tze05, TLMO3] introduce algorithms to automate transfer function generation
by directly painting on volume dataset slices to select regions of interest. Machine learning
is employed to extract a transfer function for the whole volume dataset based upon the users
initial interaction on a small subset of the volume.

The best results for generation of transfer functions is still considered to be achieved best
with manual user interaction. This process is aided by providing the user information about
the volume dataset in the form of histograms or scatter plots. The goal is to provide an
automatic transfer function generator for a volume dataset to remove the burden of transfer
function design from the user, allowing novice users powerful volume visualisation tools
without having to learn about classification.

2.3.1 Pre-Classification

Pre-classification is a pre-processing step carried out before rendering to transform raw
voxel values into colour and opacity quadruples. A reconstruction filter can be applied
during rendering to obtain interpolated colour and opacity values. Interpolating between
samples that are classified produces a blurring of the data.

Pre-classification is unable to represent high frequency details in the original signal correctly
due to signal reconstruction being applied after a colour and opacity have been assigned.
Pre-classification is the fastest form of classification, especially when attempting real-time
display. Interactive change of the transfer function is not always possible due to the expen-
sive requirement to recompute the classification pre-processing step. Figure 2.7(d) shows a
pre-classified image.

2.3.2 Post-Classification

Post-classification occurs after a reconstruction filter has been applied to the sampled signal.
Applying reconstruction filters before classification results in the best possible approxima-
tion of the original signal. Classification is applied to the approximation of the original
signal and therefore accurately accounts for high frequencies within the volume due to sig-
nal reconstruction. Post-classification also provides a means for faster interactive transfer

2.4 Gradient Computation and Shading 16

function change because only updating the transfer function is required. Figure 2.7(c) shows
a post-classified image after interpolation where high frequencies are maintained.

(a) Binary - Iso-surface of skin (b) Binary - Iso-surface of bone

(¢) Fuzzy - Post-classified (d) Fuzzy - Pre-classified

Figure 2.7: Classification examples ofthe CTHead dataset: (a) is binary segmented iso-surface
with the chosen density representing skin; (b) is binary segmented iso-surface with the chosen
density representing bone; (c) is a fuzzy segmentation applied after signal reconstruction (post-
classification) with red depicting skin density and green depicting bone density; (d) is a fuzzy
segmentation applied before signal reconstruction (pre-classihcation) with red depicting skin
density and green depicting bone density. Each example is generated using image-order pvR
techniques with interpolation applied between samples. These techniques are explored later in
this thesis.

2.4 Gradient Computation and Shading

Understanding of visualisations is greatly increased by providing visual cues. Simply pro-
viding the colour and opacity information after classification often does not adequately
portray spatial detail. A spatial perception of depth and orientation is required to provide an
intuitive and easily recognisable image. Depth cuing [FvDFH96] introduces a level of depth
perception by proportionally encoding the depth reached from the image plane at the clos-
est sample point in the volume into the final image pixel’s intensity. Thus contributed depth

2.4 Gradient Computation and Shading 17

intensity decreases further away from the image plne. The depth value to alter the final
pixels intensity can be calculated using a z-buffer. Iepth cuing is fast to compute but does
not describe orientation. An extension to this metlnd [THR97] uses gradient differences
within the z-buffer to construct gradient normal estinates.

Methods for adding visual depth perception and oientation information to an image in-
volve shading. Gradient normals from the original wlume data are computed and used in a
lighting model to derive a colour at final image pixds. Section 2.4.1 examines computing
gradient normals and section 2.4.2 examines lighting models.

2.4.1 Gradient Computation

Hohne and Bernstien [HB86] use central differences-o construct a volume datasets gradient
normals. The differences in density in a voxels surromnding neighbourhood is used to derive
the surrounding gradients of density which are conbined to form the gradient normal for
that voxel G : E® — R3. The simplest central dfference method considers the 6 face
connected surrounding voxels:

G:=V(z+1,y,2) -V —1,y,2)
Gy=V(z,y+1,2) - Viz,y—1,2) 2.9
GZ =V(x,y,z+1) _anyaz_ 1)

Where (z,v, z) € E3 is a point in Euclidean space aid is a location on the rectilinear grid.

Gradients with increased accuracy can be computed sy considering 26 neighbours:

Viz+l,y+a,z+0)—(z—1Ly+a,z+06) (2.10)

"M“

Viz+a,y+ 1,2+ 0) —(z+o,y— 1,2+)

521;
P

II

1 1
Viz+a,y+6,z2+) —(z+a,y+8,2—1)

G.= >
f=—la=-1

If neighbouring voxels on a plane are both higher or lower than the voxel being computed
forward or backward differences are used to replace central differences.

26 connected forward differences:

1 1
= Z ZV(.’L’+1,y+a,z+ﬁ)—(xay+a)z+ﬂ)
= =—1

1 1
- Z Y Vatey+lz+8) — (z+a,y,2+f)

—1la=-1

2.4 Gradient Computation and Shading 18

1 1
G.= > > Vi@+oy+phz+1)—(z+ay+p2)

p=—1la=-1

26 connected backward differences:

1 1 :
G;:Z :E: jz: V($4~a,y4‘ﬂaz)"(24‘a,y4"ﬁ>z'“1)
B

=—1la=-1

1
Z Z V(z,y+a,z+8) - (z—Ly+a,z+8)

f=—1la=—1

G

1 1
2{: 2{: V($4_a7y7z+'ﬁ)"($4'a,y"1,24'ﬁ)

B:— 1 a=— 1

Gy

This 26 connected method will not correctly process a volume dataset’s borders, so 6 con-
nected central differences are computed in these situations.

After calculating the gradients they are normalised to N = (nz, ny,n,)
G

A/ G2+ G2 +G?

Additionally a filtering step can be employed to smooth the gradient normal vector field.
This step can improve visual aesthetics because discontinuities in the gradient field produce
sharp edges in the final output.

2.11)

n; =

2.4.2 Shading

Gradient shading algorithms that consider depth and surface orientation provide the best
visual perception. These algorithms require a gradient normal which is analogous to a
normal vector in surface graphics, which represents a normalized vector pointing away
from a surface. Since volume techniques can represent substrates with no surface the term
gradient normal is used in favour of surface normal since it is derived from the rate of
change from surrounding voxels. Grey level shading [HB86] uses gradient normals from
grey level data to incorporate directional shading. This method has largely been adapted to
work with lighting and colour classification.

Several illumination models are defined in surface graphics that model light contribution,
scattering and surface properties such as colour, reflectance and opacity. These models can
be defined for volume rendering techniques, however must additionally define appropriate
opacity information to be evaluated by the volume rendering light model. Generally ambient
light defines the contribution of random low level light throughout a scene, diffuse light
models the contribution light emitted from an object and specular light defines light that is
reflected from an object.

2.4 Gradient Computation and Shading 19

(a) Gouraud (b) Phong

Figure 2.8: Normal vectors defined for Gouraud and Phong shading models across a primitive
face between two vertices. Gouraud shading interpolates the colours dchned at each vertex
along a primitives face where phong shading firstly interpolates the normal vector across a
primitives face and allows more precise illumination.

Phong [Pho75] introduces the Phong reflection model which describes the calculation of
lighting at each sample point for a set of light sources (see Eqn 2.12). This model is gener-
ally regarded as a simplification of the physically based modelling of light transport through
a scene in surface graphics.

I = IdkaCa + Cpf kdld
1

where Id is the intensity of light at a given point, ka is the ambient reflection co-efficient at
a given point, Ca is the ambient light colour, Cv is the light source colour, kd is the diffuse
reflection co-efficient, ks is the specular reflection co-efficient, /s is the specular colour, N
is the normal vector, L is the light direction vector, R is the reflectance vector, V' is the view
direction vector and / is the number of lights in a light set.

Gouraud [Gou71l introduced per vertex lighting, an approach that calculates a lighting
model at each vertex in a polygonal mesh and interpolates the final colour at final image
pixels over the surface of a primitive. Normal vectors are calculated for each vertex only
and thus do not accurately allow representation of specular contributions. Additionally the
resolution of the polygonal mesh determines the quality of the final image since a dense set
of primitives allow more accurate results. Gouraud shading is considered a faster alternative
to the later more accurate Phong shading model. Figure 2.8(a) details the normal vectors

encountered in Gouraud shading.

Phong [Pho75] describes an extension to Gouraud shading where the lighting calculations
are applied at each final image pixel. This is also referred to as per-pixel lighting. At each
vertex, the normal vector is interpolated across the face of each primitive, and the lighting
calculations occur after rasterization. This allows greater accuracy in determining the exact
contribution of lighting properties at each final image pixel and allows accurate modelling of
specular highlights. Figure 2.8(b) details the normal vectors encountered in Phong shading.

Blinn [Bli77] developed an approximation of the original Phong reflectance model. The
reflectance vector is computationally expensive to derive and therefore a half angle vector
is used to replace this expensive operation. Blinn-Phong shading describes Blinn’s approx-
imate reflection model coupled with per-pixel lighting. Although Blinn’s approximate re-
flectance model does not produce the high accuracy of full Phong reflectance with respect to

(2.12)

2.5 Iso-Surface Reconstruction 20

specular contributions, a suitable approximation allows rendered images to exhibit specular
highlights that appear accurate to the viewer.

Kautz [Kau(04] provides a thorough review of lighting techniques focusing on hardware
implementation. These lighting models can be directly employed in surface graphics and
adapted to volume visualisation.

Phong shading is generally used in volume rendering applications where lighting contribu-
tions and object surface properties as each sample being considered contains its own gra-
dient normal information. However some object-order techniques can employ the cheaper
Gouraud alternative with less visually pleasing results.

2.5 Iso-Surface Reconstruction

Surface tiling or surface tracking algorithms describe a method of obtaining a polygonal
mesh from a volume dataset that represents an iso-surface of a given iso-value. An iso-
surface is a set of points inside the volume that match a given iso-value:

iso(V,7) = {(:L', y,z) € B3V (z,y,2) = 'r} (2.13)
Where 7 is the iso-value or threshold.

This polygonal mesh can be rendered using traditional surface graphics approaches. These
methods typically consider gradient normal estimation, or calculate surface normals to in-
clude in shading algorithms. This intermediate polygonal representation is capable of pro-
ducing high quality images for a chosen iso-surface, however does not contain any infor-
mation describing the interior or exterior of an extracted object.

There are two basic approaches iso-surface reconstruction.

o Surface Tiling - March though the dataset one cell at a time and construct a polygon
mesh within each cell of the approximated iso-surface.

e Surface tracking - Start with a given cell that contains the iso-value and construct an
iso-surface by visiting neighbouring cells recursively, building a polygonal mesh.

Figure 2.12 shows images obtained by using the marching tetrahedra algorithm on the
AvSHydrogen volume dataset 1.

2.5.1 Contour Tracking

Keppel outlined contour tracking [Kep75] as the first method of extracting an iso-surface
from a volume dataset. Each 2D planar slice is assessed with an iso-value to construct a set
of vertices on the iso-surface. These vertices are connected to form an iso-contour. After
processing the stacks of planar slices in the volume, the algorithm connects points from
each planar iso-contour to form a polygonal mesh representing the iso-surface. Fuchs et

"Thanks to M. W. Jones for marching tetrahedra code

2.5 Iso-Surface Reconstruction 21

iv v,

v, A

Figure 2.9: Marching cubes vertex enumeration scheme

al. [FKU77] and later Christiansen and Sederberg [CS78] used heuristics to minimise the
surface area of triangles produced. These approaches exhibit ambiguity when an iso-surface
is not closed, or there are multiple iso-contours. The resolution of the extracted polygonal
mesh is also lower than later techniques [JC94].

2.5.2 Marching Cubes

Wyvill et al. [WMW 86] use surface tiling techniques to extract polygonal iso-surfaces from
field functions with an iso-value. The main focus of this work is to enable soft-objects to be
represented in surface graphics systems. Known key points describing the iso-surface from
the field function in 3D space are stored in a hash table and traversed to find seed cells. Field
functions describing stochastic characteristics are explored rather than rasterized volume
datasets. Six connected neighbouring cells are then examined from seed cells to determine
a set of cells that intersect the iso-surface. These intersected cubes are then tiled with respect
to the field function along each cube edge.

Lorenson and Cline [LC87] describe the marching cubes algorithm which visits all cells
in a volume and categorises each corner voxel (cell vertex) as being inside or outside the
iso-surface. The enumeration scheme for each vertex is given in Figure 2.9. A cell is con-
sidered transverse if the iso-surface is discovered to be inside this cell. This categorization
is achieved by constructing an eight bit word encoding each vertices respective state; inside
the boundary (1) or outside the boundary (0).

An eight bit word b = b"b-jb"b"b"b"bi as an unsigned integer representing each vertices
respective binary state:

1 ifVi)y>r

2.14
0 otherwise ()

Where zcorresponds to a bit in the unsigned eight bit integer, v/ G E3is a point in Euclidean
space and r is the iso-value.

A cell is transverse if the constructed eight bit integer satisfies:

0 < b< 255

2.5 Iso-Surface Reconstruction 22

Figure 2.10: Marching cubes basic case table

A transverse cell is tiled according to a case lookup table defined with the eight bit integer.
There are 14 base cases in the marching cubes algorithm although there are 256 cases in
total (28 — 256 cases based on 8 vertices’s). The total cases can be simplified to 14 cases
(Figure 2.10) because many cases are derivable under symmetry, rotation and inversion.
These simplifications can leave ambiguities in certain cases and and are not topologically
equivalent to the full case table. Interpolation is used in each transverse cell to position
vertices in the generated mesh. The linear interpolation function approximates each vertex
being positioned on the iso-surface along a given cell edge. This ensures that vertices along
edges of a cell correspond to neighbouring sub meshes:

The interpolation function:

y=v+] v(215)

Where r is the iso-value, Vi,v3 6 E3 are points in Euclidean space and represent vertex
locations at each end of the edge being considered. 7 is the interpolated value along the

edge being considered.

Durst [Dur88]noted that due to simplification, the original algorithm suffers from ambiguity
problems. These ambiguities occur when two opposing vertices are diagonally opposite
within a cell face [WG90, NH91], this leaves holes in the final mesh. This is due to using
linear interpolation along a cells edge, and an over simplified case table.

Neilson and Hamann [NH91] solved these ambiguous case problems by using bilinear inter-
polation across a cells face and choosing a correct triangulation based upon an asymptotic
decider. Vertices are also added in the cell rather than strictly along edges. They further
adapted existing case tables for all possible ambiguous cases in the original algorithm. This
solves ambiguity issues for the bilinearly interpolated faces and is topologically correct.

Natarajan [Nat94] and Chernyaev [Che95] recognised ambiguities that arise inside a cell
in certain cases. They interpolate the internal body with trilinear interpolation and decide

2.5 Iso-Surface Reconstruction 23

Figure 2.11: Marching tetrahedra basic case table

upon an appropriate extension case. These methods are topologically correct. Hamman
et al. [HTF97] employ quadratic bezier patches to improve the accuracy of iso-surface
reconstruction within a cell.

Lopes and Brodlie [LB03J rehne upon internal cell ambiguity and accuracy by considering
points within a cell which are important to correctly represent the iso-surface. Neilson
[Nie03] further detailed and refined the above algorithms to include trilinear interpolation
within the cell and a three level case table. This method solves ambiguous cases within a
cell and produces non-ambiguous meshes.

2.5.3 Marching Tetrahedra

The marching tetrahedra algorithm is similar to marching cubes, however uses tetrahedra
as the base primitive for triangle consideration. Each cell is subdivided into tetrahedra.
Bloomenthal [BI0O88] splits a cell into six, five cornered pyramids and each pyramid is sub-
divided into two tetrahedra. This work is used on implicit surfaces to construct iso-surfaces.
Payne and Toga [PT90J and later Neilson and Sung [NS97] recognised the ambiguity prob-
lems in the original marching cubes implementation. They resolved these ambiguities by
simplifying a cell by subdividing it into five tetrahedra. Each tetrahedra within a cell can
be tiled with zero, one or two triangles depending the iso-surfaces intersection. These three
basic cases (see Figure 2.11) are simplified from the sixteen possible cases (24 = 16 cases
based on 4 vertices) by exploiting symmetry, rotation and inversion. See Figure 2.12 for
example renderings with the marching tetrahedra algorithm.

Triangle meshes produced using the marching tetrahedra are topologically simple and cor-
rect, iso-surfaces are also correctly closed due to removing ambiguity problems. Whilst
the algorithm is simple, the resulting triangular mesh complexity is much greater than
meshes produced from the marching cubes. A post-processing step can be introduced
[HDD+93, SZL92, Tur92, ILGS03] to reduce mesh complexity, however this can lead to
under-sampling the iso-surface due to multiple triangles being over simplified.

2.5.4 Iso-Surface Tracking

Surface tracking algorithms [WMWZ86, ZJ91J operate by following the surface from one
location outward recursively. Surface tracking algorithms do not require a pre-processing

step to determine if a cell is transverse. A transverse seed cell must either be discovered or

2.5 Iso-Surface Reconstruction 24

(a) Wireframe (b) Flat shaded (¢) Smooth shaded

Figure 2.12: AvsHydrogen dataset images from the marching tetrahedra algorithm

known to begin tracking. A cell that contains the surface is tiled and neighbouring cells are
evaluated to ascertain if they also contain the iso-surface.

Generally a 14 connected strategy is used; cells that are vertex, edge or face connected are
considered for surface reconstruction. If the iso-surface is discovered in neighbouring cells,
these cells are recursively processed, cells discovered during this recursion are added to a
stack to be processed later. Processing continues until an iso-surfaced cell is discovered, at
this point the seed cell becomes the top of the stack.

The result is a polygonal mesh describing the iso-surface. These algorithms exhibit a re-
duction in complexity due to considering less cells but only reconstruct closed surfaces
correctly. This method is not well defined if there are multiple surfaces in the volume
dataset sharing the same iso-value. Without a known seed point, the algorithm must scan
the volume to discover a starting cell. This can be expensive in some cases, although usually
starting from the centre of a face and working inward towards the centre of the volume will
discover the iso-surface with few lookups.

2.5.5 Octree Encoding

A surface tiling algorithm must visit every cell within the volume in order to decide if the
iso-surface is present. Wilhelms and Gelder [WG92J pre-process the volume dataset to
learn as much information as possible, the resulting pre-processed data structure is a min-
max octree [Mea82]. They state that the time spent in surface reconstruction visiting empty
cells is between 30% and 70%.

An octree is a higher order binary tree where the root node represents the whole volume,
and subsequent branches represent one of eight sub cubes. The minimum and maximum
intensity for each sub cube is recorded at each branch for discovering empty regions. Other
information can also be stored, for example average values for level of detail rendering.
The octree’s leaf nodes are the original voxel data. Traversing this structure during sur-
face reconstruction facilitates skipping empty regions of the volume for the iso-value being
considered. Figure 2.13 shows an octree structure.

2.6 Direct Volume Rendering 25

/

Figure 2.13: Octree data structure overview

2.6 Direct Volume Rendering

Direct volume rendering (dvr) methods produce a visualisation from raw volume data.
There is no intermediate surface representation as described in section 2.5. Surface repre-
sentations can extract iso-surfaces form volume data, however boundaries between differing
mediums in the volume dataset are difficult to represent due to binary segmentation at best.
Surface techniques also do not allow any representation of amorphous or gaseous phenom-
ena intrinsically. Multiple iso-surface extraction in surface representations include problems
due to semi-transparency and self occluding surfaces.

DVR methods can utilize binary or fuzzy classification enabling a higher-order of objects
to be visualized. Surface based techniques grow with increasing object complexity, where
the complexity of DVR methods remains constant for increasing object complexity since an
object has usually been rasterized into a volume. Implicit surfaces and f-rep models are
sampled at regular intervals if not rasterized as a pre-processing step, thus rendering com-
plexity is also constant for these models. DVR methods are well defined for representing
multiple surfaces, semi-transparent medium, amorphous phenomena, internal and exter-
nal object detail. Direct volume rendering algorithms can be categorised into image-order
(backward mapping) and object-order (forward mapping) approaches. Algorithms can also

exhibit characteristics from both approaches, these are hybrid algorithms.

* Image-Order algorithms concern deciding which voxels are visible from a particular
image position in the image plane.

* Object-Order algorithms concern processing the volume and deciding which voxels

will be projected onto the image plane.
* Hybrid approaches combine features in image-order and object-order approaches.

A dvr algorithm attempts to approximate the volume rendering integral [KH84, Max95,
B1i82] which describes the passage of light through a volume dataset or volumetric scene.
There are many differing light transport models for volumes. The most common model
described in equation 2.16 is the absorption-emission model [Max95]. Absorption models

2.6 Direct Volume Rendering 26

light interacting with a density encountered in the volume and can both extinguish or scat-
ter. Emission models light that passes through the volume after considering absorption. A
uniform white light in the background of the volume is assumed. Particles are modelled
to absorb and emit light, a pixels final intensity I of wavelength A is derived from discrete
samples along a ray inside the volume. The volume rendering integral in its low-albedo
form:

L
I, =/ Cx(s)u(s)e” Jo nt)dt g (2.16)
0

where light rays of length L composite light C(s) of wavelength A reflected at point s
in the direction ds. These wavelengths usually consist of red, green and blue for an RGB
colour space. Other colour spaces can be used [ARCO05, Max95], however most computer
monitors and graphics hardware adopt the RGB model. A mapping would be required for
other colour models.

For computation purposes this model must be simplified to allow discretised rays to approx-
imate the lighting equation though composited discrete samples. The Riemann sum can be
used to approximate and discretise the continuous volume rendering integral:

n i—1
I, = Z Cy(iAs)u(iAs)As H exp(—u(jAs)As)
i=0 §=0

where n is the number of samples taken at separation distance As = % along the ray.

A further approximation can be achieved using the first two terms of the Taylor expansion
for the exponential term:

n i—1
Iy =) _ Ci(iAs)a(ias) [[(1 — a(jAs))
i=0 =0

During DVR the volume rendering integral is usually calculated using the following com-
positing equations. This compositing equation is the discretised per sample integration step.
Back-to-front order compositing and front-to-back order compositing are performed differ-
ently. Additionally associated colours (or opacity weighted colours) can be used where the
colour is pre-multiplied with its corresponding opacity. Using associated colours can reduce
artifacts in the final rendering [WMG98, B1i94].

Porter and Duff [PD84] define the over operator which is the per-sample integration step
defined in these operations. They describe further additional compositing operations for
more specific applications. Equation 2.17 details associated colouring, equations 2.18 and
2.19 describe back-to-front, and front-to-back compositing using the over operator for each
sample.

d =ca 2.17)

2.6 Direct Volume Rendering 27

where ¢’ € [0,1]3 is an < 7, g,b > triple and @ € [0, 1] the associated colour is usually
stored with the alpha component in an < 7, g, b, & > analogous to a non associated colour.

C,Ii =ci+(1—a¢)c§+1 (2.18)

where ¢/ is the composited colour value for sample i and ¢}, ¢;, ¢, € [0,1]2are < r, g,b >
triples and «; represents the opacity component of the < r, g, b, « > quadruple. The alpha
component of previously composited colours is not required with associated back-to-front
compositing.

c=c_1+1—-ai_q)c (2.19)

of =0 (1 — 1) + oy

where ¢ is the composited colour value for sample ¢ and «; is the composited opacity
value for sample i, ¢}, ¢;, ¢i_; € [0,1]3 are < r, g,b > triples and o; represents the opacity
component of the < 7, g, b, @ > quadruple. The alpha component of previously composited
colours is required for front-to-back compositing.

The number of samples along a ray effects the over operator, more samples generate a more
opaque image. Alpha correction can be employed to weight the compositing with respect
to the number of samples taken along the ray and produce consistent images for differing
quantities of samples.

Alpha Correction:
A
o =1—(1—a)as (2.20)

where o' is the new alpha obtained from the original alpha value o, At is the sampling
distance and As is the original sampling distance for the transfer function which is usually
1.

Another important compositing operator is the maximum intensity projection (MIP) operator
[ASK94]. MIP does not composite along a ray, instead the largest sample value encountered
along the ray is used for final pixel intensity. A comparison of the largest voxel value found
so far at each discrete ray sample is used.

When processing a discretised ray at regular sampling intervals:
di+1 = maz(d;, ds); 2.21)

where d; € R3 is the maximum encountered scalar along the ray so far and d, € R3 is the
scalar for the current sampling position along the ray.

MiIP visualisations provide extremely useful visual cues to a user in an intuitive manner
(see Figure 2.14). This method is often most useful in medical visualisation where the
images are similar to traditional x-rays, although x-ray absorption is not modelled and the
information presented is different than a x-ray which displays densities along a 2D plane
through an object instead of the maximum densities encountered through a 3D object. It is

2.6 Direct Volume Rendering 28

possible to model pseudo x-ray absorption in a 3D object with the absorption only volume
rendering integral during DVR evaluation of a volume dataset [Max95].

MIP algorithms must consider all of the samples along the ray in order to render an image.
This is due to requiring the maximum value along a ray. Thus this methods complexity
defines an upper bound or worst case for DVR algorithms as it must process or consider
every sample point during discrete ray traversal. The general run-time of computing each
ray step is drastically reduced because no compositing operation needs to be performed and
the maz function is extremely efficient. There are also no gradient normals or complex
shading functions to compute.

It is also possible to normalise the intensity that is rendered by the min and maz values
of the volume dataset. This will yield a greater resolution of intensity when the range of
values in the volume dataset are less than the range of available values. MIP algorithms
under rotation are not well defined, a rendering of a given viewpoint a will be exactly the
same as rendering b that is 180° around an axis of rotation away from the original viewpoint.

Depth cueing (see section 2.4) techniques can be used to add visual cues for depth percep-
tion by assigning the position where the maximum valued scalar was encountered along
the ray. Heidrich et al. [HMS95] describe a two pass method to add depth cuing to MIP,
however this can be achieved in one pass by storing the position where the maximum scalar
was encountered along the ray. Rotation is well defined with MIP using depth cuing as
renderings 180° around an axis from each other will have differing depth information.

Mora and Ebert [MEOS5] present an investigation into MIP rendering with tree structures
and detail an optimised algorithm that uses hierarchical occlusion maps in an object based
manner. They further investigate the complexity and derive an optimised traversal algorithm
for image and object based approaches. This provides a lower bound to MIP rendering in
average cases by eliminating traversal of several octree nodes. The previous complexity of
O(n?) is simplified to O(n?) in average cases. The worst case still demonstrates O(n3)
complexity.

2.6.1 Image-Order Algorithm

Image-order approaches [Sab88, UK88, DCHS88] originally developed by Levoy [Lev88]
have been the main focus of development for volume visualisation. These trends had been
noticed earlier by Kajiya et al. [KH84]. These methods allow direct computation of a
visualisation from the raw volume data. No intermediate stages are generated which differs
from surface reconstruction (see section 2.5) methods.

The ray casting model essentially fires rays from image pixel from the image plane into the
volume, integrating the contribution of each value encountered along the ray. Figure 2.15
provides an operation overview of the algorithm and Figure 2.16 depicts the equidistant
sampling points along a discrete ray. Figure 2.17 shows a 2D plane of where possible
sample positions could occur on a rectilinear grid and show how an interpolation scheme
would be required to attempt recovery of the original signal. Levoy’s [Lev88] original
algorithm calculated ray entry and exit points in the volume and traversed each ray from
back-to-front.

2.6 Direct Volume Rendering

Figure 2.14: MIP rendering ofthe CTHead

Volume (x,y,z)

Figure 2.15: Ray-casting overview

29

2.6 Direct Volume Rendering 30

Final pixel
Sampling point

Ray

Figure 2.16: Equidistant ray sampling during ray-casting

Samples are generally taken at equidistant points along the ray, Kajiya ez al. [KH84], Levoy
[Lev88] and Sabella [Sab88J all conclude that samples should be taken at regular intervals
along the ray when approximating the volume rendering integral. Increasing the number of
sample positions along the ray will yield better images, however this comes at the expense
of having to calculate a greater number of sampling positions. Many volume datasets that
exhibit small structures can be under-sampled by choosing a large stepping distance along
the ray. The small structure could be present between the sampling positions and therefore
be missed altogether, or introduce an atrifact by effecting the interpolation function. Large
structures can also be under-sampled producing artefacts in the final image due to the struc-
ture not being correctly reconstructed between sample points. Generally the under-sampling
of large objects still leaves the end-user with visual cues to the objects general form.

This integration typically follows a volume rendering integral model as discussed earlier in
this section. The contributions along the ray are usually the result of a signal reconstruction
filter and classification.

Image-order approaches yield the best image results due to a correspondence to sampling at
each pixel, this can result in super-sampling since multiple rays can be cast for the size of
one volume cell. Image-order approaches can also be parallelised since each ray’s traversal

is disjoint from one another.

Levoy [Lev90] later reported that rendering in a front-to-back order enables the possibility
to include adaptive ray termination. This observation is based upon an opaque sample
occluding any samples further along the ray. Traversing the ray in a back-to-front manner
requires the whole ray to be sampled since an opaque sample can occlude samples towards
the back of the ray, resulting in unnecessary processing of samples. Traversing the ray in a
front-to-back manner allows discovery of opaque samples before processing the remaining
samples along the ray. Levoy also reported using an octree structure (see section 2.5.5) to
achieve empty space leaping by skipping regions of the volume dataset that are empty.

Yagel and Kaufman [YK92] introduce template based volume viewing which avoids the
costly trilinear interpolation signal reconstruction in image-order rendering. They compute
a template of voxels encompassing all voxels to be considered for ray contribution for a
particular viewing orientation. This template is moved through the volume to compile the
image plane. The template is chosen such that holes in sampling are avoided. Normal ray
casting methods can miss voxels based upon step size. The voxels in each template are
sampled without any interpolation to derive each sample point. These samples are then

2.6 Direct Volume Rendering 31

Figure 2.17: 2D ray-casting overview

composited in the standard manner. This algorithm is faster in comparison to standard ray
casting techniques because trilinear interpolation is not computed. Images computed with
this technique lack the image quality of the original image-order approach using trilinear
interpolation.

2.6.2 Object-Order Algorithm

Westover [Wes90] introduced splatting as a technique to project voxel contributions to the
final image as a footprint. It is possible that a voxels projected contribution to the final image
will affect more than one pixel. Westover observes that a voxels energy contribution will fall
off from its centre to surrounding mediums. The chosen footprint is spherical to model this
behaviour. Since splatting considers voxels independently without grouping voxels together
with a ray, each voxel can be processed separately. This allows massive parallel processing

of a volume dataset.

This fall off is modelled by a reconstruction filter from a voxel’s centre # : E3 —> IR,
The contribution of a voxel with centre (i,j, k) G E3 on a point in 3D Euclidean space
(x,v,z) GE3is:

contribution(x, y, z) = V(z,j, k) h(x —i,y —j, z —k) (2.22)

The contribution for a pixel in the final image is the integral of sampled contributions along
a line perpendicular to the image plane.

00
/ h(x —i,y —j,w)dw (2.23)

-CO

The original splatting algorithm exhibited some artifacts such as colour bleeding and fuzzy
edges. It also is only suitable for rectilinearly defined datasets. Zwicker et al. [ZPvBGOl,

2.6 Direct Volume Rendering 32

ZPv(G02] introduce elliptical weighted average (EWA) splatting based on elliptical Gaussian
kernels. They provide methods to filter reconstruction kernels which reduce aliasing and
use different shaped elliptical kernels for the splatting footprint.

The EWA spatting algorithm also works on unstructured and irregular grids and overcomes
artifact problems of previous methods. EWA splatting produces high quality splatted images
in volume rendering but can also be applied to surface rendering of point clouds. Chen et
al. [CRZP04] later implemented the EWA splatting algorithm in hardware for interactive
display.

Lacroute and Levoy [LLL94] report on shear-warp rendering, a method to traverse a volume
dataset without trilinear interpolation. The premise of the algorithm is to take advantage
of spatial coherence between a volume’s face plane that is parallel to the final image plane.
When the image plane is parallel to a volume’s face plane, sampling can occur at regular
intervals at each grid location. This approach needs no interpolation as each grid position
can be addressed directly, generally bilinear interpolation is used to improve quality within
2D virtual slices.

The shear-warp method traverses a volume dataset by shearing virtual 2D slices that are the
most parallel to the image plane, resulting in a stack of sheared slices parallel to the image
plane. Conventional object-order rendering is then used to produce an intermediate image
from regularly sampled dataset positions. This image is not correct due to the initial shear,
a warp operation is then applied to the image to form the correct result. This describes an
orthographic projection. A perspective projection is possible by additionally scaling each
slice away from the viewpoint.

A run length encoding scheme is used to enable space leaping, each virtual 2D slices z
direction is run length encoded as a pre-processing step. This allows fast traversal and ef-
ficient memory alignment, although burdens memory consumed. Shear warp is considered
the fastest software approach to date, however does exhibit artifacts at 45° rotation angles
resulting in a popping effect under rotation. A pre-classification scheme is used to speed up
signal reconstruction so fuzzy edges result and this method is prone to under-sampling.

The shear warp algorithm has been implemented in specialist volume rendering hardware.
The VolumePRO [PHK'99] series of graphics cards use shear warp with trilinear inter-
polation and super-sampling schemes to take advantage of spatial coherence and memory
alignment inherent in the original algorithm. The VolumePRO graphics processor represents
the fastest method available to render volumes on a single machine currently.

Both Cabral er al. [CCF94] and Cullip and Neumann [CN94] implemented an object-order
approach using conventional graphics processing units (GPU). They represent the algorithm
by using 3D texture mapping hardware on high end workstations. A set of view aligned
slices are rasterized in hardware and subsequently textured from a 3D texture map (or vol-
ume dataset) to encode each sampling position’s intensity. These are then passed through
a fixed function blending operation which provides compositing. Hardware acceleration
techniques will be explored further in the next chapter.

2.7 Volume Graphics 33

2.6.3 Hybrid Approaches

Mora et al. [MJCO02] introduce object-order ray casting as a technique to combine the good
features of image-order and object-order approaches. The premise of the algorithm is to
locally compute the contribution to the final image for each cell. A hexagonal primitive is
used to represent how a cell will map to the image plane when projected. Local ray inter-
sections are pre-computed to approximate image-order ray casting cell traversal. The cell is
then sampled with each ray that will pass through it and the appropriate pixels are updated.
Each pixel update performs the compositing step along each virtual ray. This method can
therefore benefit from leaping empty space in the volume with a min-max octree.

Hong et al. [HQKOS] implement the object-order ray casting method on consumer level
graphics hardware (GPU’s) for large datasets. They decompose a dataset into a min-max oc-
tree and load non-empty cells into video memory for ray casting. Each cells traversal is then
composited into a final image. The non-empty cells are sorted into planes for compositing
order and uploaded to video memory when required.

2.7 Volume Graphics

Volume graphics is a field of computer graphics in its own right that has grown from volume
visualisation DVR techniques to provide a superset of graphical methods to the graphics
community. Using voxels as a primitive opposed to triangles in surface graphics allows
many more features, operations and techniques to be modelled effectively. Kaufman et
al. [KCY93] examined the emergence of volume graphics as a field in its own right by
observing trends in volume visualisation.

Surface based graphics exhibit fundamental problems:

o Surfaces can not accurately represent internal object detail or surface/boundary thick-
ness.

o Surface representations can not represent mediums that are not intrinsically solid.
Such mediums include gasses, clouds and particles (amorphous phenomena).

o Semi-transparent objects are difficult to model when there are several meshes over-
lapping.
e Computational complexity grows with increasing mesh complexity.

Volume based graphics provide intuitive and comprehensive representations:

e Volumes can model internal object detail, a chosen object of interest, external obJect
detail and multiple objects.

e Volumes can model amorphous phenomenon such as gasses, clouds and particles
without extending existing techniques.

e Boundaries and surface thickness are well defined.

e Semi-transparent objects and substrates are well defined.

2.7 Volume Graphics 34

o Computational complexity remains constant for rendering different objects of the
same size and additional acceleration methods are possible from the base complexity.

e Volume techniques can import surface and f-rep representations as rasterized scalar
fields or distance fields.

To represent a graphical model of a human head, (for example the CTHead) many thousands
of triangles are required in a tessellated mesh, where as a standard volume dataset will be
required for volume approaches. Volumetric approaches also yield superior image quality
in this case due to optical models being evaluated on rasterized per sample primitives and
not defined at each vertex and interpolated across a polygons face. -

Having voxels as a primitive object also allows deformation to be unconnected to surround-
ing object representation. By changing voxel values one can manipulate a volumetric ob-
ject, however in surface based graphics, a subset or the entire tessellated mesh would have
to be recomputed. A rasterized representation is analogous to the way images are displayed
to a user, continuous surface representations must first be rasterized before display. Thus
volume approaches are well defined for intuitive high quality images, modelling arbitrary
primitives and animation.

Winter and Chen [WCO01] introduce a software based volumetric primitive API viib for use
in volume visualisation and volume graphics modelling. This API can be used to model
constructive volume geometry, spatial transfer functions and other volume modelling tech-
niques by treating volume objects as scalar fields. It provides an environment to explore
volume datasets for volume visualisation and graphics and provides flexibility for volume
modelling.

2.7.1 Distance Fields

Distance Fields or distance volumes are volumetric datasets that encode distances to struc-
ture within the objects domain. Distance fields represent a flexible tool in volume graphics
to effectively add surface based representations, compute efficient volume metamorphosis
and allow image-order rendering speed-ups. Distance fields can also be used to encode iso-
surfaces from other voxelised data. There are other further uses for distance fields, such as
examining differences between triangular meshes. Jones et al. [JBS06] provide a detailed
review of distance field uses in computer graphics.

Distance fields are sets that encode the euclidean distance to a point on the objects surface
within its domain. In some cases the gradient of the distance function can also be utilised
to derive a direction toward the surface. When using signed distance fields, it is possible to
ascertain if a point is outside the object, inside the object or on the surface of the object. The
distance fields covered here are signed rasterized approximations of a continuous distance
function. Equation 2.24 defines the distance field as a set.

D:RESR (2.24)

D(p) = sgn(p) -min{lp—q| : ¢ € S}

2.7 Volume Graphics 35

sgn(p) = —1.0 if p outside object
IMP) =\ 1.0 if pinside object

where p € R? is a point in the 3D grid throughout the objects domain, S is the set of points
on the surface of the object and |p — ¢| is the euclidean length of the vector between point
p being sampled and ¢ a point on the objects surface.

Rasterized distance fields can be computed with a variety of methods [SB02, GPRJ00,
Jon96, SJO1]. The brute force algorithm for computing discrete distances is computation-
ally very expensive, each point on the objects surface must be considered for each voxel
location in the rasterized distance field. These approaches intelligently use neighbouring
computed distances to build up the distance field and reduce complexity.

Voxelisation of surfaces and functions can be performed to yield a rasterized distance field
volume, thus surface representations and functional representations can be rendered with
DVR techniques. The complexity of highly complex surfaces and functions can be reduced
by using the volume rendering approach.

In image-order algorithms, observing that normal rasterized volume densities can be empty
and disregarded, distance information can be employed to space leap. If a distance value en-
countered at a sample location along the ray does not contribute to the surface, this distance
can be skipped safely because it represents the distance to the closest point on the surface.
[Sr496, SK0O]

Distance fields are also well defined for gradient normals. Conventional central difference
(see section 2.4) can be used to generate gradient normals for iso-surface shading.

Distance fields will be explored later in this work for advanced texture synthesis and accel-
eration techniques.

2.7.2 Global Illumination

Global illumination is the computation of light transport through a scene to derive how a
point in space is lit. Global illumination will usually include multiple light sources, reflec-
tion, refraction and shadowing effects. Yagel et al. [YKZ91, YCK92] introduce a raster
ray-tracer (RRT) to ray trace volume densities. They build on standard ray-casting to in-
clude recursion analogous to surface based ray-tracing techniques. Rays are cast into the
volume using image-order techniques and on discovery of a non transparent voxel, rays are
spawned for reflection and towards each light source. Sobierajski and Kaufman [SK94]
refine the original RRT algorithm to include other representations such as surfaces and add
radiosity based rendering to the volume model.

Global illumination remains a complex problem to compute in volume representation due
to the complex emission-absorption model employed to describe light transport though the
volume dataset. Surfaces benefit from only considering light at a point on the surface and
do not require modelling the light though the interior of the object. Ray-tracing algorithms
yield the best possible images as they closely model real world physics.

2.7 Volume Graphics 36

2.7.3 Shadows

Shadows in volume graphics have been defined in work covered in section 2.7.2, however
shadows have also been defined for locally illuminated DVR algorithms. The premise of
adding shadows to a ray-casting algorithm is to fire a single ray at each sample point towards
any light sources. If there are non transparent samples encountered, the sample is in shadow.
The magnitude of the shadow is dependent on accumulated opacity between the light source
and sample point.

Behrens and Ratering [BR98] add shadows to object-order texture based volume rendering
on GPU’s by reconstructing 2D planar volume slices. The reconstruction works separately
to visualisation and produces a new volume dataset for rendering. Firstly a slice is taken,
and the following slice is also taken with an offset defined for the lighting position. These
two slices are then blended into the frame buffer. Each slice through the volume is processed
until a shadow volume is produced. Recalculation of the volume is required when the light
vector is changed. The rendering of the shadow volume is not described with lighting,
additionally orthographic projections must be used and only one light source is considered.
The reported speed is half that of normal rendering when calculating the shadow volume.

Nulkar and Mueller [NMO01] also employ a 3D shadow volume representation however
render with the original volume and blend with a lookup into the shadow volume during
rendering.

Zhang et al. [ZC02] describe shadowing volumes using splatting. This approach is to keep
a shadow buffer to describe accumulated opacity from the light source. Processing is carried
out on a slice by slice basis in software. They compute contribution at a sampled point from
the light sources with a shadow buffer and viewpoint with standard volume rendering. At
each sampled point the shadow buffer is blended into the viewpoint slices final image. Both
buffers are composited slice by slice as rendering continues. They describe multiple lights
using multiple shadow buffers. The reported speed is under half the rendering of the volume
for computing the shadows.

Kaniss et al. [KPHE02, KKHO02] also employ a 2D shadow buffer, however they change the
orientation of each slice being rendered to halfway between the eye and light vectors. this
allows simple compositing by observing that spatial coherence between buffers is main-
tained.

2.74 Constructive Volume Representation

Complex objects or scenes can be built up using a variety of simpler objects. Volume
visualisation concentrates on rendering single volume datasets to produce a final image.
In volume graphics it is desirable to combine objects to build up more complex objects
or scenes to render. This ability is fundamental to any graphics representation that wishes
to enable modelling and rendering of arbitrary shapes and collections of objects. These
constructions can be modelled using trees where the root node represents the final scene
description. These trees are often referred to as a scene graph. Leaf nodes of the tree
encode definitions for simple objects and nodes define operations to apply to its branches.

2.7 Volume Graphics 37

A commonly used surface representation for construction is constructive solid geometry
CSG, introduced by Requicha and Voelcker [RV77, Req80]. This representation defines
- boolean operations for solid construction of objects from surfaces, however the binary do-
main does not adequately allow construction of volume primitives since internal and exter-
nal structure need to be included.

Wang and Kaufman [WK93] voxelise geometric primitives such as CSG objects in to a
volume dataset. Objects are voxelised into one volume dataset for rendering. Anti-aliasing
schemes for voxelised geometries are discussed to better approximate original geometry
rather than blur jaggy edges for smoother display. This method can produce large sparse
datasets in the event that objects are small and far apart.

Breen et al. [BMW98] discuss scan-converting CSG trees into distance fields for rendering.
They employ distance fields for comparison of CSG representations and to use distance field
modelling techniques such as morphing.

Fang et al. [FSV98] extend CSG operations to the volume domain and introduce volumetric-
CSG (VCSG) by allowing operations on the real and integer domains instead of simply the
boolean domain. Some boolean operations are redefined for real domain operation, how-
ever there can be different interpretations of their original meaning. They also suggest that
constructing a single volume dataset to encode the VCSG tree is time consuming and does
not allow interactive change of the tree. They solve this problem by subdividing the target
dataset space and render sub-volumes for projection.

Constructive volume geometry (CVG) introduced by Chen and Tucker [CT00] provides an
algebraic framework for describing volume construction using scalar fields. This represen-
tation provides a mechanism to apply operations to any field attribute in 3D environments.
A small set of operations are defined for a volume datasets spatial, colour and opacity prop-
erties. These operations can be used to build up complex objects at the field level. These
objects can then be positioned in a CVG tree. This modelling approach allows inclusion of
Jf-rep or implicit surfaces and rasterized volume data such as distance fields or conventional
scalar densities.

Chen [Che05] later introduced point clouds to the volume graphics pipeline using CVG.
This method can include vertices from surface meshes to the volume rendering paradigm
which gives surfaces a thickness and allows interaction with other volume primitives. Point
clouds are regarded as scalar fields with attributes for spherical radius. Recently a large
body of graphics research concentrates on the point as a display primitive. Levoy [LW85]
originally highlighted the use of points as a fundamental display primitive.

2.7.5 Deformation and Animation

Volume rendering algorithms and volume modelling techniques can be used to render true
3D primitives, however their adoption as a general graphics primitive requires intuitive de-
formation and animation techniques. There are many surface methods that exist to deform
polygonal meshes or parametric surfaces, these methods concentrate on moving vertices in
the polygonal mesh before any rasterization. This can be counter intuitive since a collection

2.7 Volume Graphics 38

of points contained within one triangle can not be moved without changing the representa-
tion of the mesh. Since the volume is already rasterized, individual voxels in the volume
can be changed without affecting the overall structure. This provides a mechanism for in-
tuitive deformation such as sculpting and carving. Models can also be employed to allow
deformation in a structured manner. Animation is closely linked to the ability to deform the
structure of an object.

He et al. [HWK94] describe volume morphing using wavelets. Morphing involves calcu-
lating intermediate steps for transforming one start volume into an end volume smoothly.
The use of wavelets allows smooth transition between models since high frequencies in
the data can effectively be removed. Interpolation schemes are used to control the wavelet
morphing function. Wavelets are used to attempt correspondence between the two volumes
and no user interaction is required. This method does not allow control of the morphing for
arbitrary properties such as colour and texture, control of features is also not well defined.

Lerios et al. [LGL95] describe Feature-based volume metamorphosis. They utilize warping
with control points in the start and end volumes to allow features to morph into one another
and blending is used to interpolate voxels between the target volumes for each frame. This
method requires a good deal of user interaction. Control of the morph is possible in this
manner and smooth results are presented.

Gibson [Gib97] describes a physically based strategy for deforming volumes based on 3D
chain mail. A chain mail lattice is encoded through the volume by using a 6 connected
voxel neighbourhood. Expansion, compression and relaxed states are modelled in each
neighbourhood to allow fast deformation. Moving a chain in the lattice will deform the
volume by changing the distance between voxels in a neighbourhood.

Gagvani and Silver [GS01] introduce skeleton based volume animation. The process of
volume thinning [GS99] produces an unconnected set of voxels describing the skeleton of
a binary segmented object. These voxels are then connected to form the skeleton. Distance
field information is used from skeleton voxels to describe the original object. This skeleton
is then deformed with existing animation techniques and packages. A volume is generated
in respect of the deformed skeleton using distance information and rendered using standard
volume rendering techniques.

Chen et al. [CSW™103] describe Spatial transfer functions as a framework for modelling
deformation. This framework is capable of encompassing several deformation methods as
described above. The application of the spatial transfer function is performed for a point
before interpolation and classification. This allows arbitrary deformation and animations of
volumes by enabling on the fly transformation operations or pre-computing the result of a
deformation technique as a spatial transfer volume:

¥:E - E3 (2.25)

V'(p) = V(¥(p))

Where ¥ can be defined for sub functions as scalar fields ¥, ¥, ¥, : E3 — R allowing
individual field attributes to be represented separately:

2.7 Volume Graphics -39

, ‘I’z(PzapyaPZ)
P = V(P py,pz) = | Wy(Dz, Dy, Dz)
‘I'Z(px,Pyypz)

Islam et al. [IDSCO04] demonstrate splitting operations over scalar fields and spatial transfer
functions. Implicit and explicit split operations are defined to enable splitting on attribute
fields such as volume density and user defined explicit splitting with some user interaction.
A splitting operation can result in multiple sub chunks of the original volume data and
individual processing of their spatial transfer and volume rendering steps. They outline
several operations for controlling the spatial location of split objects such as translation,
rotation and scaling.

Walton and Jones [WJ06] introduce volume wires as a method of defining skeleton defor-
mations using distance information to relocate samples. This method is computed on the
fly during rendering and thus avoids a reconstruction of the volume for each deformation.
The volume wire is defined using control points and encodes a skeleton of voxels. The
wire is moved to perform deformation and new distance values are computed for rendering
in respect of the original control wire. These distance values are used during rendering to
relocate voxel positions and perform the deformation.

2.7.6 Procedural Texture

Procedural texture [EMP103] can be evaluated over different domains and involves defin-
ing a function or collection of functions that operates in the desired domain. The discussion
here is limited to a 3D domain which is also viewed as the solid texturing domain. Solid
texturing describes the carving of a substrate material with an object’s definition to produce
the notion of a solid object. A Solid object is therefore effectively fashioned from a block
of raw material. This material is generally defined procedurally using fractal contributions
to model real world materials, although is not limited to procedural definition. Figure (see
Figure 2.18) shows a procedurally generated marble substrate which is used for solid textur-
ing a sphere’s surface to represent a solid marble sphere. Procedural texture synthesis has
also been a focus of providing shaders which allow definition of object surface properties
and lighting conditions.

Blinn and Newell [BN76] discuss procedural techniques using Fourier synthesis. Simple
wave and bump patterns are generated using Fourier transforms to apply image processing
to a 2D texture image. These techniques produce computer generated images with natural
appearances and represent early consideration of procedural techniques.

Fu and Lu [FL78] proposed a syntactic grammar for describing procedural texture. This
allowed texture to be described with a texture language that includes arbitrary functions.

Fournier et al. [FFC82] utilize Brownian motion to describe stochastic variations of surface
properties. The original Brownian motion computations are expensive and an approxima-
tion is presented to allow a small footprint function for evaluation.

2.7 Volume Graphics 40

(a) Block

Figure 2.18: Solid texture block mid solid lextured object

Cook [Co084] introduced shade trees as a method to describe texture, lighting, material
and object properties as a specification of rendering parameters. This method of defining
a tree structure to describe a complete set of surface properties allows simple inclusion
of procedural techniques at any level and provides an extremely flexible modelling and
rendering framework.

Peachey[Pea85] and Perlin[Per85] independently describe solid texturing which is an exten-
sion to basic 2D texturing which instead considers a 3D volume texture which represents
a solid material or substrate. 2D texture synthesis over 3D primitives involves computing
texture patches from a 3D position into a 2D texture lookup table or procedural function.
There are a variety of sampling and filtering functions to compute this mapping, however
most suffer from aliasing and are prone to introducing artifacts (Some 2D texturing meth-
ods are explored later in this thesis). This is due to the texture having to be wrapped or
projected onto the object’s surface. Both authors describe computing procedural synthesis
for solid texturing.

Perlin [Per85] introduces noise (Perlin noise) along with a complete procedural texture
generation language. Noise is a function that generates pseudo-random band limited white
noise over a number of dimensions. The approach to providing a stochastic function is to
encode a regular grid through the texture domain and provide pseudo-random gradients at
each grid point. The scalar value at grid points is encoded as zero and internal grid point
scalars are derived from interpolating along the random gradients at each grid corner. A
cubic interpolation function is used to describe a complex waveform within the grid’s cell.
The comer contributions are then linearly interpolated for the final noise scalar. Perlin later
improved on his noise implementation [Per02] to iron out artefacts introduced whilst cubic
interpolation is performed for each pseudo-random gradient.

Lewis [Lew89] provides a comprehensive review of noise functions and suggests improve-
ments and good qualities of several established noise algorithms. Additionally two algo-

2.7 Volume Graphics 41

rithms are presented that are more efficient and allow finer control than reviewed algorithms.

Hanrahan and Lawson [HL90] describe the RENDERMAN shading language, a descendant
of the shade trees model used widely in software graphics pipelines for describing surface
properties, texture and lighting parameters for rendering. These language definitions have
formed the basis for many modern programmable shader languages.

Ward [War91] implements a lattice based noise implementation similar to Perlin noise,
however replaces the pseudo-random element of the function to be a hash function. The
computation is recursive and the performance of this method is improved, however the
visual results of this noise function are not visually comparable to Perlin noise which is the
target application.

Rhoades et al. [RTB*92] describe a real-time procedural texturing language and imple-
mentation for high-end graphics workstations. This implementation is an early precursor to
more modern commodity hardware GPU implementations.

Westermann and Ert] [WE98a] use solid volumetric textures to texture polygonal meshes
and additionally volume datasets are considered for future GPU implementations. GPU hard-
ware was not capable of flexible vertex shading which required any display lists to be re-
compiled before upload to the GPU memory to change texturing coordinates. The outlined
method instead renders the vertex object space coordinates into the frame buffer as colour
values with no lighting. The frame buffer is read back to main memory and passed into the
GPU as a texture map. A second pass renders these colour values back into the frame buffer
with pixel texturing enabled. The colour values are then used as texturing coordinates to
perform a dependent texture fetch for each fragment. The solid texture space can then be
manipulated with the colour matrix to perform transformations. These operations can now
be performed on the fly with vertex and fragment shaders.

Hart et al. [HCK*99] define procedural solid texturing for GPU architectures. This model
performs texture generation on the fly with pre-processing of texturing primitives. The
object to be textured is then parameterised to map 3D object space coordinates of each
vertex into a 2D texture map in hardware. Another pass performs fragment shading for
the geometry and each fragment is textured with the parameterised texture map. Seams
and aliasing can result from the 2D parameterization and filtering methods are provided to
avoid discontinuities. The parameterization into a 2D texture map benefits from avoiding
the host bus transfer speed whist uploading large solid texture volumes. Initial results are
based on most of the pipeline being performed in software due to limiting hardware. Carr
and Hart [CHO2] later performed these techniques in hardware with the addition of mip-map
generation ability.

Hart [Har0O1] implemented Perlin noise on earlier GPU’s before flexible fragment shaders
became available. Multiple passes are used to implement a lattice based noise model by
rendering solid texturing coordinates as colours and then adjusting the output colours in
subsequent passes to compute the integer points, the linearly interpolated fractional parts
and the lower front corner and upper back corner of the lattice. Applying a dependent
texture into a random texture map and interpolating between lattice corners provides the
stochastic noise effect. Whilst this method is transferable to more modern fragment shaders,
the method is not very efficient due to the large multi-pass overhead. Additionally the output

2.7 Volume Graphics 42

noise is visually not as impressive as Perlin noise.

Satherley and Jones[SJ02] introduce solid texturing for volume objects in software. They
perform binary segmentation on a volume object to obtain an iso-surface definition and
colour the sample using procedural techniques on the fly. Lighting is then performed to
produce a solid textured volume object. This software implementation performs the volume
rendering pipeline in full without pre-computation but does not achieve real time results.

Mark et al. [MGAKQO3] introduce Cg as a high-level shading language to program GPU'’s.
Cg allows real-time performance for shading languages and is capable of controlling most
of the overall GPU pipeline. Procedural texturing techniques can be evaluated directly on
graphics hardware using this approach.

Rushmeier et al. [JDR04] have demonstrated that it is possible to closely model naturally
and man made materials by studying their construction. 2D cross sections of materials
are examined in order to segment possible structures. These structures are then graded by
shape, size and spatial relationship. A solid texture can then be derived using the spatial
information with pseudo-random placement. This gives rise to being able to model many
more materials such as concrete, stone and rock. Highly detailed natural looking images
can be synthesised in this manner.

Green [Gre05] describes a fragment shader implementation of Perlin noise for GPU hard-
ware. Texture maps are used to provide pre-computed lookup tables containing the pseudo-
random function and the pseudo-random gradients. The function is computable is one pass
and accelerations are introduced into the original algorithm to take advantage of single cycle
vector arithmetic and additionally reduce texture lookups. This represents the best available
noise function for single pass techniques on GPU hardware to date and provides a reference
implementation of Perlin noise which generates visually superior results.

2.7.7 Hypertexture

Perlin and Hoffet [PH89] extended the solid texturing paradigm to produce hypertexture, a
space filling texturing approach allowing modelling of natural phenomena such as fur, fire
and smoke. Hypertexture is a method of manipulating surface densities whilst rendering,
instead of evaluating colouring at the local surface. The actual surface definition is changed
during rendering since a soft-region outside the original object surface is considered mal-
leable and deformable with procedural synthesis. Because of this rendering outside the
conventional surface definition, a ray marcher must be used. This does not suit the surface
based graphics pipeline as a ray marcher must be implemented to provide hypertexture ef-
fects in complex scenes. An implicit surface is used to overcome the surface paradigms
infinitely thin surface model.

Hypertexture is modelled with an object density function (see Eqn 2.26), giving rise to the
notion of a soft object, or object which has a surface with depth associated. This gives three
possible states to define an object:

o Inside - The point is inside object

e Qutside - The point is outside the object and soft-region

2.7 Volume Graphics 43

Figure 2.19: Sphere with object density function defining a soft-region. The soft region is
clipped to show its relationship with the object

* Boundary - The point is in the soft-region or soft surface.

The following object density function models the implicit surface of a sphere sphere with a
soft-region. Figure 2.19 shows a graphical representation of a object density mapped sphere
with a clipped soft-region.

iff{p)2<r2
D{p) =4 0 iff(p)2 >, (2.26)
, otherwise.
ri-rf

where ry = inner radius, » Q= outer radius and f(x) is the sphere radius function .

Hypertexture effects can now be achieved by the repeated application of density modulation
functions (DMF functions) to the soft-region of D(p), as shown in Eq. 2.27.

H(D(p),p) = DMFn(...(pMFO(D(p)jy\ (2.27)

The base DMF functions are the functions bias and gain which are used as control curves,
noise and turbulence to create pseudo-random patterns and general mathematical func-
tions including as periodic functions such as sin and cos. Higher order DMF functions
are defined with these base primitives for manipulating the soft-region of a hypertextured

object. D mF functions can be characterised into the following groups.
* Position dependent - functions which depend on p
* Position independent - functions which exhibit scalar arguments

* Geometry dependent - functions which require local surface geometry (e.g. gradient

normals)

Bias is introduced to hypertexture as base a function for pmr functions (see Eqn 2.28).

Figure 2.7.7 depicts differing values for the bias function and the resulting curves. DMF

2.7 Volume Graphics 44

(a) 0.2 (b) 0.5 (c) 0.8

Figure 2.20: Bias curve functions with differing b values

(a) 0.2 (b) 0.5 (c) 0.8

Figure 2.21: Gain curve functions with differing g values

functions are linear across the width of a soft-region. Bias can be used to alter the linear
nature across a soft-region, power curves are used to focus attention to a particular area
within a soft-region.

biass(D(p)) = D(p) ™3 (2.28)

Gain is introduced to hypertexture as base a function for DMF functions (see Eqn 2.29). Gain
is built up from two bias functions to control the midrange rate of change in the soft-region
(see Figure 2.7.7).

b’iasl—ggzD(p)! lfD(p) < %’

gaing(D(p)) = 2 (2.29)
1- bias1 —9(2-2D(p)) 22_2D(p) otherwise.

Both the bias and gain functions are also useful for altering the output of noise functions
and control their statistical and spectrum compositions.

Satherley and Jones {SJ02] introduce hypertexture for distance fields which removes the re-
striction of simple implicit surfaces. They procedurally generate the soft-region with noise
primitives and built up DMF combinations in software. The object density function is re-
placed to define a soft-region from a distance field volume, the inner radius representing the
chosen iso-surface and the outer radius being the chosen soft-region boundary. In this man-
ner complex volumetric objects can be hypertextured. The object density function replaces
the standard binary segmentation performed on volume datasets for iso-surfacing. These
techniques however are not achieved in real-time.

2.7 Volume Graphics 45

2.7.8 Texture Mapping

There are many well known 2D texture mapping techniques that improve the visual aesthet-
ics and complexity of a surface definition for surface graphics. These methods are utilised
to allow more complex looking surfaces without impacting rendering performance by re-
forming, refining or re-modelling the entire polygon mesh. A uwv parametrization of the
surface is required to address the texture space, which is generally the unit square.

Catmull [Cat74, Cat75] and Blinn [Bli78a] introduce texture mapping as a technique for
adding colour information to an object without increasing the object’s geometric complex-
ity. Colours are contained in an image map from any source capable of defining a 2D do-
main. This allows digitized photographs or output from 2D image modelling and drawing
packages to be applied to an object’s surface. Images obtained from this technique appear
flat as this method does not include detailed physical properties from the underlying colours
such as reflectance and gradient. '

Textured objects are obtained by computing parametric patches in texture space by assign-
ing texture space co-ordinates to each object vertex. These texture space co-ordinates are
interpolated over an object primitive such as a triangle or polygon to obtain texture space
co-ordinates for each point on the surface defined in screen or pixel space. Aliasing can be
introduced since the texture map’s resolution does not accurately match that of the screen
space. Methods such as weighted contributions are discussed to avoid these issues. Using
this technique requires objects that can be assigned a uv parametrization and fall short of
defining texture on all objects.

Williams [Wil83] introduced mip-mapping (see Figure 3.5), a technique to describe level
of detail texturing. Objects in rendered scenes can be subject to differing magnifications
depending on a scene’s construction. Artifacts and aliasing can be introduced under magni-
fication and minification since the texture space can be addressed at differing frequencies.
Mip-mapping avoids artifacts, aliasing and additionally performance degradation by encod-
ing the original texture resolution at the root level with progressively half sized textures
defined at subsequent levels. The images in these levels are generally processed in some
manner to avoid aliasing and artifacts. The original algorithm describes 2D texture space,
however any dimensional space may be used.

Bier and Sloan [BS86] introduce projected texture mapping, a proxy geometry texture map-
ping algorithm that projects in a direction away from the objects surface to an intermediate
simple geometry with known parametric properties. Boxs, spheres, cylinders and planes are
described as proxy geometries and a mapping is formed between a 2D texture map and 3D
object by projecting onto the intermediate surface which contains a uv parameterization.
This effectively shrink wraps a texture map around an object. A reverse of this mapping
process can also be carried out in order to make texture templates to allow texture artists
a 2D version of the object to paint on. This method solves the previous problem of ap-
plying a uv parametrization to objects without well defined surfaces by choosing a known
intermediate representation.

Winter [Win02] noted the importance of including surface graphics texturing techniques for
volume datasets and covered projective texture mapping. Winter and Chen [WCO01] describe

2.7 Volume Graphics 46

vlib where 2D and 3D texture mapping are features of the API in software. The projected
texture mapping algorithm is used for 2D texturing operations since volume datasets cannot
be parametrised for a 2D texture space.

Shen and Willis [SWOS] describe the use of 2D projective texture mapping algorithm for
volume datasets. They additionally demonstrate level of detail, tiling and arbitrary position-
ing the texture over a volume objects surface in software.

2.7.9 Bump Mapping and Displacement Mapping

Blinn [Bli78b] introduces Bump mapping which allows a smooth uniformly defined surface
to include bump information without increasing the complexity of the underlying object.
The algorithm displaces surface normals with a bump function or height field which de-
scribes a height of pseudo displacement for a point on the surface along the surface normal.
New normals for this proxy surface are then obtained and used in the lighting computation.
This method produces a bumpy object surface however the perturbed effect is not defined
at the silhouette of an object since no geometry is altered.

Peercy et al. [PAC97] used a pre-computed normal map to speed up rendering in hardware
and avoid the expensive normal computations involved per fragment. Two techniques are
presented that pre-compute displaced normal vectors from a monochrome height field. The
scalar differences are used to pre-compute normals in texture or tangent space. Graphics
hardware is used to map each surface normal from object space into tangent space, allowing
fast replacement of tangent space pre-computed bump normals. Additionally object space
bump maps are computed such that the surface parametrization is taken into account during
pre-processing. This allows direct replacement of object space normal vectors. The lighting
is described in object or tangent space to avoid mapping each displaced vector into eye
space for lighting. '

Kilgard [Kil00] discusses hardware implementation of several bump mapping algorithms.
Tangent space and object space are discussed for efficient lighting of surface mesh bump
map techniques. Pre-computed normal maps are used to accelerate rendering on GPU hard-
ware. In addition implementation specific detail is presented to allow the efficient tangent
space and object space normal mapping techniques to be realised on older GPU architec-
tures.

Cook [Coo084] introduces Displacement mapping which solves the problem of rendering
a bumpy or wrinkled surface at the silhouette of an object, however this algorithm is sig-
nificantly more computationally expensive. Generally a surface based wire frame mesh is
displaced with a height field which is analogous to bump mapping. Since displacement
mapping is performed before rasterization the complexity of the algorithm is described by
the underlying object representation.

Hirche et al. [HEGDO04] introduce a post-rasterization displacement mapping technique.
Extra geometry is rendered around the object to displacement map and each pixel from
the resulting geometry is used to ray-cast into this proxy displacement geometry in the
fragment shader. Complex intersection equations evaluate if the fragment is part of the
object’s displacement and coloured accordingly. This method benefits from not having to

2.8 Summary 47

specify level of detail since fragments considered perform this step and additionally no
object geometry is dynamically changed during rendering.

Wang et al. [WWT03] use a height field to generate a view dependent displacement
function. This displacement function records the distance to the reference surface along
the viewing direction with an additional surface curvature term. This 5D lookup table or
function is computed by firstly rendering a highly detailed surface mesh representing the
displacement. This object is then subject to ray-casting with different viewing parameters
to define the view dependent function. The simplified surface is then subjected to fragment
shading and inward displacements are calculated from a uv parameterization of the surface,
viewing direction and curvature term. In this manner no geometry is changed or refined
during rendering.

Wang et al. [WTL104] expand their previous work [WWT*03] to provide a generalised
displacement map that is capable of modelling structure that is not connected to the original
surface. Previously displacements were restricted to emanating from the original surface.
This approach allows arbitrary mesostructure to be defined using a volume displacement
map. This method is still described as view dependent and a 5D function is required to
sample the displacement map where viewing parameters are also required. The surface cur-
vature is not modelled directly in this algorithm and is replaced with an additional texture
space coordinate dimension describing height. The volume representing mesostructure is
subject to ray-casting from differing viewing positions to determine a distance to mesostruc-
ture surface.

Porumbescu et al. [PBFJ05] define a displacement mapping mechanism that introduces fur-
ther geometry into the rendering pipeline to define a displacement region and use geometric
or volume procedural textures to fill this space. A tetrahedral mesh is utilised by directly
encoding the outermost surface with the same construction. The space between these two
identically constructed surfaces is then subject to tetrahedral division which guarantees a
mapping from geometry to texture space where each tetrahedra has an individual disjoint
region. This method therefore depends on the detail represented in the displacement region
as more tetrahedral primitives are required for refined detail.

Max and Becker [BM93, MB94] later adjusted the original bump mapping algorithm to suit
displacement mapping. This facilitated easy change between the two techniques for level of
detail approaches, however this adjustment involved new terms which are more expensive to
compute and adds further complexity into both bump mapping and displacement mapping.

2.8 Summary

In this chapter a thorough review of volume rendering techniques has been explored from
their inception through important developments to current research. The whole volume ren-
dering pipeline is defined with attention to surface reconstruction techniques and direct vol-
ume rendering techniques. Surface reconstruction is shown to provide binary segmentation
at best and not include internal and external object detail. In contrast direct volume render-
ing disciplines are shown to exhibit fuzzy and binary segmentation and include internal and

2.8 Summary 48

external object detail, as well as amorphous and semi-transparent properties. Direct volume
rendering has also been shown as a more intuitive approach to volume representations.

It is noted that volume visualisation techniques primarily used to visualise medical data have
spawned an important sub field in computer graphics, namely volume graphics. Volume
graphics is explored as a general graphics primitive with several important characteristics
defined. Techniques to create, combine, deform, texture and animate volumes are explored
as an analogous to important surface techniques, which highlights the importance of this
representation as an intuitive and rich domain for general graphics computation.

A further observation has been noted concerning recent research achieving real-time dis-
play of volume data through the use of high-end workstation hardware and consumer level
hardware. Hardware acceleration and direct volume rendering methods will be utilised for
this work in later chapters.

Chapter 3

Direct Volume Rendering

Contents
31 HardwarePipeline ¢ it it ittt ittt i e 50
3.2 GPU Volume Rendering Algorithms 60
33 ImprovementsS oo o o s o s o o o0 oo s o e eens 73
34 Comparisonttt ittt e e e 80
35 Summary ittt e et e e e e e e 109

Recent research in volume visualisation has involved the use of high-end graphics hard-
ware and consumer level graphics hardware (GPU’s) for rendering volume datasets in real-
time. These graphics processors typically encompass multiple pipelines to compute graph-
ics algorithms with surface base primitives in parallel. Use of GPU’s can drastically reduce
the runtime of rendering algorithms by exploiting this parallelism on a single workstation.
GpU’s also offer vastly increased memory bandwidth and specialized vector processing
units and functions in hardware.

There are schemes for parallel rendering that utilize multiple processors, but are fixed to
single processors on a single machines over a network. Parallel rendering in this manner
can be fast, however the overall cost of such a system is vast in comparison to a specialised
parallel GPU on one machine. If a volume dataset fits into GPU memory it is often faster
to take advantage of the parallelism on a single platform due to network overheads and the
expense of multiple machines. Specialist volume rendering hardware has also been devel-
oped [PHK199], although this is restricted to high-end users due to cost and availability.
Additionally no mixture with surface primitives is described which makes it inflexible for
general graphics techniques with volume graphics techniques.

High-end graphics workstations with specialised graphics hardware [Ake93] and GPU hard-
ware is geared towards surface based graphics and processes over primitives used in this ap-
proach. These hardware graphics pipelines share similar architectures but are available on
differing machine architectures at drastically different costs. The high-end graphics work-
‘station machines are considerably more expensive than consumer level GPU hardware and
additionally represented the earliest means of encompassing hardware pipeline techniques.

49

3.1 Hardware Pipeline 50

These pipelines later became available on modern GPU hardware and the techniques de-
tailed are transferable between platforms. Both architectures now exhibit extremely similar
programmable pipelines although differences are evident which makes fully cross platform

solutions infeasible.

The ability to mix surfaces and volumes in the same rendering environment is an advantage
to using high-end graphics workstations with specialised graphics hardware and GPU’s over
more expensive specialist volume rendering hardware, additionally new features are added
at a vast rate to GPU’s which allow possible extensions of volume rendering techniques.
Gpu’s are available on most modern machines as standard giving rise to techniques using
this cheap and widely available hardware becoming predominant for development. The base
primitives that a GPU processes are vertices’s from a polygonal mesh which are rasterized,
and the fragments resulting from rasterization. An overview of the pipeline between CPU
and GPU is given in Figure 3.1 where vertex and fragments can be seen as the GPU’s base
primitives for computation.

The evolution of GPU hardware is rapid and new features are introduced with each genera-
tion. Some algorithms are not possible to implement on older generations of the hardware
so an overview of the architectures and generation changes are detailed in section 3.1. The
possibilities to define both image-order and object-order volume rendering algorithms on
GPU hardware is explored in section 3.2. Improvements to the hardware based volume ren-
dering techniques are detailed in section 3.3. A comparison of these approaches is detailed
in section 3.4 with details of implementation. Finally a summary is given in section 3.5.

3.1 Hardware Pipeline

CPU GPU
Polygonal
Mesh
Vertex Fragment
Processing Processing £ 9 0
Texture
Maps
Rendering
State Vertex Texture
Memory Memory

Figure 3.1: GPU pipeline overview - Red elements represent memory, green elements repre-
sent programmable units on some generations and blue represents fixed function configurable

elements

Gpu’s were originally introduced into the graphics pipeline to offload and accelerate parts of
the complete surface rendering pipeline. They have become more complex over time, allow-
ing a rich set of new techniques to be included in real-time rendering. Real-time software

3.1 Hardware Pipeline 51

Vertex Processing Rasterizer Fragment Processing
Transfor- Per Vertex Tessala- Clipping Rasterize Texture Fragment Alpha Stencil Depth Alpha
mation Lighting Projection Triangles Fetch Shading Test Test Blending

Vertices Primitives Fragments

Figure 3.2: Generic hardware pipeline - Yellow elements represent programmable elements
and white elements represent fixed function configurable elements. Arrows depict the primi-
tives or representation at each point in the pipeline.

rendering is limited due to heavy processing constraints on vector types with architectures
not suited to high throughput. Software techniques allow arbitrary techniques to be defined
because of a more general architecture. However the emergence of programmable commod-
ity graphics hardware allows adoption of some software rendering techniques to a hardware
implementation allowing an increase in rendering performance. More algorithms available
in software can be adapted to GPU’s as feature sets grow allowing real-time rendering of
more complicated scenes and more photo-realistic images.

Complex surface based techniques such as ray-tracing [Whi80] and radiosity [GTGBS84] for
large and complex scenes are still considered a software problem, although recent efforts
have been made to allow GPU ray-tracing of small scenes with low complexity surfaces
[PBMHO02],

GPU’s are stream processors that apply functions to their input in a continuous manner.
The fundamental surface graphics pipeline is depicted in Figure 3.1. It demonstrates the
boundary between CPU and GPU with reference to vertex lists and texture maps. The CPU
sets state options to configure hardware resident rendering algorithms, builds a vertex array
in graphics memory and uploads texture maps to graphics memory. The vertex array and
texture maps are passed over an appropriate bus (usually accelerated graphics port (AGP)
or Peripheral Component Interconnect Express (PCl-x)) to the graphics hardware for use
during the rendering pipeline. Graphics memory is used to differentiate RAM which is
resident on the main system and available to the main CPU and additional RAM available
on the graphics hardware. The graphics memory in the graphics hardware must be either
loaded or read after processing of the entire pipeline. Once loaded into the GPU vertex
arrays are accessible from the vertex processing unit, whilst texture maps are accessible
from the fragment shading unit. Recent hardware (5¢th Generation, NvIDIA 6800) includes
the ability to allow texture map lookups during vertex processing.

For each frame, the vertex array is traversed per vertex with tessellation being derived from
the configured rendering state. Each vertex is passed through the vertex processor and
passed on to a rasterizer unit. At this point the tessellation of a collection of vertices from
the vertex processor is used to rasterize the faces of the encoded geometry into fragments
by scan converting from the image plane. These fragments are passed to the fragment
processing stage where the result is eventually written into the frame buffer for display. The
display device is directly connected to the graphics hardware and receives a frame buffer

3.1 Hardware Pipeline 52

for output.

3.1.1 GPU Generations

GPU’s began as fixed function processing units in the graphics pipeline with the ability
to transform and light vertices, rasterize polygonal meshes defined by vertices and texture
these primitives by changing individual fragments according to a texture map. Functions
have increased since the GPU’s introduction, a table outlining generations and capability is
given in Table 3.1. Differences can be better visualised by referencing Table 3.1 with Figure
3.1 which provides an overview of the architecture and Figure 3.2 which is more detailed.
The overview in Figure 3.1 shows that vertex processors and fragment processors are pro-
grammable in some generations. Figure 3.2 expands this pipeline into individual elements
and depicts which elements are programmable. Programmable fragment processing is seen
as part of rasterization hardware but is referred to as fragment processing because of the
primitives involved.

GPU generation Capability

software No hardware capability
15t Generation Rasterize geometry and texture
2nd Generation Transform and light vertices
374 Generation Basic vertex programs and configurable rasterization
4" Generation ~ Additional vertex instructions and fragment programming
5" Generation Vertex texturing and loops for fragment programs

Table 3.1: GPU generations and additional hardware capabilities

Each generation provides increased clock speed, richer instruction sets, additional parallel
pipelines, increased on board memory and other features such as additional texture units,
additional memory and additional memory bandwidth. There are two main API’sfor pro-
gramming the complete graphics pipeline and utilising GPU’s, DirectX [Mic06] and OpenGL
[SA]. OpenGL is considered the best platform to develop GPU rendering algorithms as
features are added when they become available and the implementation is cross-platform.
Example GPU cards are presented in Table 3.2.

Generally vertex and fragment programs (shaders) are written in assembly language that
is transformed into machine code for specific GPU’s via a graphics hardware device driver.
There are different sets of assembly language available and in OpenGL are defined by Ar-
chitecture Review Board (ARB) [Ope] extensions to the standard API. Vendors of GPU’s
generally use their own assembly languages which are provided to the APIvia extensions.
There are generalised assembly languages available via extensions that a vendors driver im-
plementation can translate into its own native assembly language to provide cross-vendor
shaders. New features are generally added in the native assembly language and filter down
to generic assembly languages at a slower rate.

There are numerous higher level languages that can be compiled to different code bases for
vendor specific and generic assembly languages. Mark et al. [MGAKO3] describe C for

3.1 Hardware Pipeline 53

Generation NVIDIA ATI
1%t GeForceTNT Rage
gnd GeForce 2 Radeon 7
3rd GeForce 3 &4 Radeon 8
4th GeForce 5 Radeon 9

5th GeForce 6 & 7 Radeon X

Table 3.2: Example GPU series

graphics (Cg) as a high-level language with C like syntax for compilation to GPU assem-
bly languages. Cg is capable of compiling DirectX and OpenGL style shaders for a variety
of vendors instruction sets. Kessenich er al. [KBR] introduce OpenGL shading language
(GLSL) which is only available to OpenGL but compiles assembly code for a variety of ven-
dors instruction sets. GLSL contains more functions than Cg and exhibits a tighter syntactic
definition.

Table 3.1 shows that the 1t generation of hardware was only capable of rasterizing and
texturing, the vertex processor would be omitted from Figure 3.1 for such capability. From
the 2"¢ generation upward the whole pipeline in Figure 3.1 can be utilised to some de-
gree by configuring the hardware fixed function algorithms state, however later generations
exhibit more functions and programmable vertex and fragment processors using shaders.
3¢ generation vertex processors are programmable with vertex shaders and 4" generation
architectures upward allow programming of vertex and fragment processors with shaders.

It is possible to use GPU’s for volume rendering from the 37¢ generation up, and although
later generations allow more complex algorithms to be defined in hardware. Although it is
possible to define rendering algorithms on 37¢ generation architectures, shaders provide a
superset of configurations to be realized. Thus shaders are described in the remainder of
this thesis as they are available on hardware used.

3.1.2 Data Types

Vertex and fragment processors operate on 1, . .. ,4 component vectors and matrices
(1,...,4 element arrays of vectors):

:[Fn < fl,...,fn>

Where each f; € R builds up a n-tuple vector F.

Vector components are arbitrarily selectable using a vector swizzle. An n component vector
FF,, can be swizzled using:

e Identity: < z,y, z,w > .xyzw — < z,y, 2, W >
e Explicit ordering: < z,y, z,w > .wzyr — < W, 2,Y,T >

o Component selection: < z,y, z,w > .22yy — < Z,Z,Y,Y >

3.1 Hardware Pipeline 54

e Smaller n-tuple selection: < z,y,2,w > .22 —= < z,2 >
e Larger n-tuple selection: < z,y > .zzyy — < Z,Z,Y,y >

GPU’s can compute a 4-component vector operation in one instruction allowing a four fold
increase on vector arithmetic. The stream based execution model also allows parallel pro-
cessing of primitives since there is no dependency on one primitive to another. Additionally
some vertex processors and all fragment processors can utilize texture maps from texture
variables passed as a global. The output of the fragment processor will go through the
fixed function fragment processing part of the pipeline and be output to the frame buffer for
display.

3.1.3 Memory and Registers

Instructions for processing are downloaded to the graphics memory and fetched from pro-
cessing stages into fixed instruction registers. These registers are not subject to any manip-
ulation.

Vertex arrays are downloaded to graphics memory for use with fixed function hardware
which delivers a single vertex description to the vertex processor via specialised input reg-
isters. A single vertex is fetched from graphics memory and loaded into these registers.
This fixed function hardware delivers vertex descriptions in parallel to the available parallel
pipelines defined for the vertex processor by multiplexing. - After a vertex has been pro-
cessed, the results are written into specialist output registers for presentation to the fixed
function rasterizing hardware. Another multiplexer stage is used at this point since there
can be differing numbers of vertex and fragment pipelines and tessellation of vertices must
be considered. There are generally more fragment pipelines than vertex pipelines since a
simple triangle will usually yield many more fragments than vertices. The fixed function
rasterizer presents fragments to the fragment processor with specialist input registers anal-
ogous to vertex processing.

Each hardware implementation will have a fixed number of specialist registers that are avail-
able to define vertices in a vertex array and additionally a fixed number of specialist reg-
isters throughout the remainder of the pipeline. Additional general input registers are also
available to allow global variables to be included. These registers are not writable within
processing and are not available per primitive. There are also a number of temporary reg-
isters present in both processing units used for intermediate computations. The number of
these additional input registers and temporary registers are also fixed for a specific hardware
implementation.

Texture maps are downloaded to graphics memory for use in computations, these portions
of memory are addressed directly when texture instructions are encountered and results are
loaded into a temporary register.

3.1 Hardware Pipeline

Instruction

Memory

Input

Registers

Temporary

Registers

Filter

Texels

Texture

Maps

Output

Registers

Figure 3.3:

Fetch

Instruction

Read

Registers

Swizzle

Values

Fetch

Texels

Execute

Instruction

Write Result
to Register

Texture
Fetch

Program

Terminated

Output
Pixel Data

Vertex shader execution algorithm

55

3.1 Hardware Pipeline 56

3.1.4 Vertex Processing

The vertex processing unit is used to process each vertex individually using vertex descrip-
tions resident in specialist registers. Additionally other registers can be used during compu-
tation.

A vertex description (resident in special registers) can contain:
e Position
e Colour
e Normal
e Texture Co-ordinates (1...n)

Where 1...n denotes the number of texture coordinates definable for each vertex on a
specific hardware platform.

The vertex processor outputs a set of vectors into special output registers. The output of
the vertex processor will be rasterized once vertex tessellation is computed and each special
register will be interpolated across a tessellated triangles face for each fragment. These
interpolated values are then presented to the fragment processor as special input registers
per fragment.

e Position
e Colour

e Texture Co-ordinates (1-...n)

3.1.5 Fragment Processing

The fragment processing unit is used to process each rasterized triangle primitive that comes
from the fixed function rasterizer. A fragment description is held in special input registers
to the fragment processor.

A fragment description can contain, analogous to the vertex processor output:
e Depth
e Colour
o Texture Co-ordinates (1...n)
A Fragment processor can output to special output registers:
e Colour
e Depth

The depth output register is used to update the optional depth buffer whilst the colour output
register is used to update the frame buffer for display.

3.1 Hardware Pipeline

Instruction

Memory

Input

Registers

Temporary

Registers

Filter

Texels

Texture

Maps

Output
Registers

Fetch

Instruction

Read

Registers

Swizzle

Values

Fetch

Texels

Execute

Instruction

Write Result
to Register

Texture
Fetch

Program

Terminated

Output
Pixel Data

Figure 3.4: Fragment shader execution algorithm

57

3.1 Hardware Pipeline 58

3.1.6 Texturing and Buffers

Early GPU texturing units only address texture dimensions that are < ds,dt,dr >E 2n
where n G N for a 3D texture. These strict dimensions are defined for easy MIP-MAP
generation and addressing. A mip-map is a recursive texture definition that at the top level
encompasses the complete texture. Subsequent levels are half the size of the previous level
to a defined smallest level. The mip-map texture is addressed with an additional argument
describing the level of detail to address. Various operators can be applied to the texture
map to compute each sub-level, the average, maximum and minimum values are common.
Figure 3.5 depicts various mip-map levels. Additionally texturing units could only address
1D or 2D texture maps. Strict non power of two texture dimensions are not required on

newer generations of hardware and 3D texturing is implemented.

Figure 3.5: 2D Mip-map texture

Texture co-coordinates are defined as < s,¢,7 >E [0,1] or normalized co-ordinates. This
allows differing texture modes to allow repeating textures, mirrored textures and clamped
textures when the texture co-ordinates fall outside the [0,1] range. Later generations are
capable of addressing the physical dimensions of a texture map directly.

A texture map is defined as a ID, 2D or 3D regular grid. Each individual element is a
texel (texture element) which is analogous of pixel and voxel for pixel elements and volume
elements respectively. When a location in texture space is encountered that does not directly
address the regular grid, two signal reconstruction filters are available in hardware. These

are nearest neighbour and linear interpolation (see section 2.2).

Texel formats were originally clamped to the [0,1] range in hardware with fixed point
scalars. A texture map with ranges beyond [0,1] has to be quantised. Later generations
of GPU’s allow arbitrary floating point scalars to be defined for each texel. A texel is limited
tobe a 1,2, 3 or4 component vector type describing a single scalar, an < r,g,b > colour or
an < r, g,b,a > colour. Remapping functions can be used to firstly encode a texture in the
[0,1] range, denoted forward remapping (see Eqn 3.1) and reverse this mapping to obtain

the original values (see Eqn 3.2).

t' =— tmin

Imax fmih

where ¢t' E [0,1], £is the original non normalised texel, tmin and tmax are the minimum and
maximum texel values in the texture map.

(3.1)

3.1 Hardware Pipeline 59

t= tl (tmaa; - tmin) + tmin (3-2)

A detailed table of texture unit capability is given in Table 3.3.

GPU generation Non 2" 3D textures outside [0,1] outside [0, 1]

dimensions addressing range texels
15t no no no no
ond no no no no
3rd no yes no no
4th no yes yes no
5th yes yes yes yes

Table 3.3: GPU generation texture unit capabilities

There are three special buffers defined in the regular pipeline. These are the frame buffer,
depth buffer and stencil buffer. The frame buffer is ultimately used to capture an image
and acts as input to a physical display device. The depth buffer is used to optionally reject
fragments based on a boolean decision between the current fragments depth value (in image
space) and the associated entry in the depth buffer (in image space).The depth buffer in
surface graphics can be used for hidden surface removal [FvDFH96]. The stencil buffer
is used to optionally reject fragments based on binary values in the stencil buffer. Usually
these special buffers are the same resolution and are defined for a particular image space
viewport. These special buffers can additionally be double buffered to allow asynchronous
reading of one buffer and writing of the other. This allows a speed-up in rendering. The
special buffers are not readable and writable in the same pass though the pipeline.

Aucxiliary buffers in the graphics memory can also be created to divert fragment output
into memory and not into special buffers. Depth and stencil buffers can also be created in
addition to new general buffers. Auxiliary buffers are not readable and writable in the same
pass through the pipeline. An algorithm that can compute an output image or frame in one
iteration of the pipeline is labeled as a single pass algorithm. It is possible to encode multiple
passes through the graphics pipeline without auxiliary buffers by leaving the frame buffer
intact between passes. Auxiliary buffers are also used to collate intermediate information
that is only possible to compute in one pass, where more processing is required to compute
the remainder of a particular algorithm. Since the buffers are not readable and writable
in the same pass, the buffer is uploaded to the machines main memory, constructed into a
texture map and downloaded back into graphics memory for reading during a pass through
the pipeline.

Recent GPU’s (5" generation, NVIDIA 6800) have enabled reading and writing to a buffer
without the need to upload the buffer contents to main memory and download this back to
graphics memory. These buffers are still not readable and writeable in a single pass, however
the buffer can remain in graphics memory and reading or writing the buffer is switched
before each pass. This can accelerate multiple pass algorithms considerably since a pipeline
stall is required to both upload and download from GPU memory. The host computer’s bus
speed defines the maximum speed at which reads and writes from the GPU are possible. If

3.2 GPU Volume Rendering Algorithms 60

a 0.5 GB per second download speed and a 2GB per second upload speed is assumed (AGP
8x bus) then an application requiring a read of a texture map in GPU memory (0.5GB in
size) will save a second on every frame for each read since downloading the texture map is
not necessary. Further savings are also possible since the upload is also no longer required.

3.1.7 Branching

Looping and conditional expressions pose a problem on GPU hardware as they involve
branch instructions. The original GPU hardware is designed as a stream processor that
does not suit out of order execution or branches in the source code. Newer hardware does
include the ability to perform branches (see Table 3.1) in the fragment shader, however it is
an expensive operation to perform.

Older hardware deals with looping by unrolling the loop at compile time and therefore
dynamic loops are not possible on this hardware without performing loops with successive
rendering passes. This can drastically affect performance and the computational expense of
an algorithm due to requiring additional buffers.

Conditional expressions on older hardware are computed with condition code registers. The
outcome of an operation additionally updates a condition code for examination by subse-
quent instructions. This implies that all instructions must be executed and large bodies of
instructions cannot be skipped.

Instruction Cost (Cycles)
If/EndIf 4
If/Else/EndIf 6
Call 2
Ret 2
Loop/EndLoop 4

Table 3.4: GPU Branching Costs

Recent hardware has included dynamic branching in the fragment processing stage of the
pipeline. Kilgariff and Fernando [KFO05] lists the expense of branch instructions (see Table
3.4) and it is clear that a substantial overhead is required to successfully include dynamic al-
gorithms. In comparison the same architecture can perform a four component multiply-add
and four component dot product in one cycle. In situations where the complete conditional
instruction block can be executed without a branch with less cycles than the overhead, con-
dition code registers should be used as a substitute.

3.2 GPU Volume Rendering Algorithms

There are two main approaches to volume rendering on the GPU, object-order and image-
order. Object-order approaches are analogous to splatting [Wes90], however exhibit im-
proved coherence between object samples and final image pixels. There is a one-to-one

3.2 GPU Volume Rendering Algorithms

61

(a) Regular pprspective (b) Object space perspective (c) Image space perspective

XIS

W28
777777

NS

(d) Regular orthographic (e) Object space orthographic (f) Image space orthographic

Figure 3.6: Differing proxy slice strategies

3.2 GPU Volume Rendering Algorithins 62

mapping from object space samples to the final image plane pixels which highlights a spe-
cial case of the original splatting algorithm where no footprint computation for multiple
final image pixels is required. Since no volumetric primitives can be processed with GPU’s,
surface primitives have to be employed to encode volumetric approaches. Available primi-
tives include points, lines and planar polygons. The surface primitives employed to encode
volumetric approaches are referred to as proxy geometry. Axis aligned proxy slices (or ob-
ject space proxy slices, see Figure 3.7(b)) and view aligned proxy slices (image space proxy
slices, see Figure 3.7(a)) can be used to encode object-order approaches. Image space proxy
geometry can also be used to encode image-order ray casting.

Object space sample planes describe proxy geometry that is parallel to a volumes bounding
face. Sampling distances encoded in this manner are inconsistent along different rays when
using perspective projections (see Figure 3.6(a) and 3.6(b)). Rotation of the volume changes
the sampling distances along different rays. Orthographic projections also exhibit differing
step sizes along different rays (see Figure 3.6(d) and 3.6(e)), these step sizes also change
under rotation of the volume. Rotation of object space sample planes leads to visible gaps
through the volume since a proxy slice is infinitely thin when viewed perpendicular to its
plane. This effect is eliminated by switching proxy geometries that are most parallel to the
image plane. A total of six cases are required, one for each volume face plane (see Figure
3.7(b)). Texture coordinates remain constant for each case.

Image space sample planes are fixed planes parallel to the image plane. Translation opera-
tions are not applied to the proxy geometry as it remains fixed parallel to the image plane
at all times. Translation operations are applied to the texture co-ordinates for each comner
of a proxy geometry. Step sizes using this method also change along different rays when
using perspective projection (see Figure 3.6(a) and 3.6(c)) however remain consistent for
any rotation of the volume. Orthographic projections exhibit a consistent sample distance
with orthographic projection for any rotation of the volume (see Figure 3.6(d) and 3.6(f)).

3.2.1 Object-order Proxy Slice Rendering Using Volume Textures

Most modern GPU’s contain hardware to address 3D texture maps with trilinear interpola-
tion. Earlier high-end graphics workstations also exhibited 3D texture mapping hardware
capable of trilinear interpolation. Approaches that involve 3D texture addressing can use
image or object space proxy geometry. The majority of approaches in the literature are
based on high-end graphics workstations because GPU’s did not encompass 3D texture ad-
dressing hardware.

Wilson et al. [WVW94] encode texture co-ordinates in image space sampling planes to al-
low arbitrary rotations of the volume. This approach was described with high-end graphics
hardware. Encoding a unit bounding box will clip parts of a volume under some rotations
(where the volume is oriented by 45° for example). The texture co-ordinates are set outside
the bounding box of the volume to allow such rotation angles, this results in unused raster-
ized fragments. 3D texture mapping hardware is utilised to encode direct volume rendering
using pre-classification to colour the volume before processing. Hardware resident trilinear
interpolation is also utilised to perform fast signal reconstruction. This provides interactive
volume rendering by utilising fast hardware operations however no shading is computed.

3.2 GPU Volume Rendering Algorithms

(a) Image aligned

(b) Object aligned

Figure 3.7: Image and object aligned proxy geometries

63

3.2 GrU Volume Rendering Algorithms 64

Cullip and Neumann [CN94] describe a similar image space sample plane strategy although
additionally include six clipping planes in order to process the minimum number of frag-
ments defining the interior of the rotated volume bounding box. The cut planes are the
unit volume bounding box and are moved with each rotation of the texture co-ordinates.
Direct volume rendering with 3D texture mapping hardware on high-end workstations is
described. They demonstrate two methods of generating proxy geometry, object space sam-
ple planes and image space sample planes for perspective projection. Shading is described
with pre-computed shading coefficients based on a voxels gradient. The shading extension
does not provide interactive results.

Cabral et al. [CCF94] describe 3D texture map direct volume rendering for accelerating
numerical radon transforms on high-end workstations. They utilise texture hardware to
construct volumes from CT scanner data and render volumes with the standard approach.
Image space sampling planes are used for rendering and no shading is computed. Post-
classification is implemented using another texture map during fragment processing, the
scalar value encountered from the volume is looked up in a transfer function texture map.
Interactive rates are reported for this method including post-classification.

Van Gelder and Kim [GK96] introduce shading to 3D texture map direct volume rendering
on high-end workstations. A pre-classification scheme is employed to include shading.
Gradient magnitudes are used in a pre-processing step to segment the volume into lit voxels
and ambient voxels. Each voxel is assigned a gradient index into a quantised gradient
lookup table. A lookup table is constructed to map each lit voxel value and gradient index
toa < r,g,b, a > colour. The size of this lookup table is a function of quantized gradients
and segmented gradient magnitudes. A lookup table is also generated for ambient voxels
that is independent of gradient, the size of this table is a function of density values for
ambient voxels. The volume is then pre-classified according to the lookup tables. This
requires processing the entire volume in software and can be time consuming in respect of
the volume’s size. The volume is then loaded into texture memory of the graphics hardware
and rendered using 3D texture map direct volume rendering. If the lighting position or
volume orientation is changed, the lookup tables must be recomputed and the volume must
be subjected to further pre-classification with these lookup tables. The method detailed does
not produce interactive frame rates.

Dachille e al. [DKC98] introduce shading at interactive rates by utilizing graphics hard-
ware in the software volume rendering pipeline. Graphics hardware is utilized to perform
fast signal reconstruction for ray samples. Proxy geometries are oriented perpendicular to
the image plane to reconstruct samples contributing to a row of pixels in the final image.
The sample locations are copied from the frame buffer into main memory to perform soft-
ware ray casting. A lookup table is used for pre-computed Phong illumination. The final
image is copied to the frame buffer for display. This method is similar to the shear-warp
algorithm [LL94], however since it is mostly image-order, avoids both the shear and warp.

Westermann and Ertl [WE98b] extend 3D texture based direct volume rendering to include
shaded iso-surfaces, arbitrary clip geometries and rendering of unstructured grids through
tetrahedral projection. Their implementations are described for high-end graphics worksta-
tions. Arbitrary clipping geometries are constructed from triangular meshes and rendered
to update the stencil buffer. Fragments are subject to a stencil test to determine clipping

22 GPU Volume Rendering Algorithms 65

beations during rendering. Lit iso-surface rendering is based on the 3D texture map direct
wlume rendering algorithm by including an alpha test before rendering the fragment into
tie frame buffer (see Figure 3.2). Additionally if clipping geometry is being considered,
tie stencil test is also performed against the stencil buffer. A user defined alpha thresh-
dd is used to reject transparent and semi-transparent alpha values. Iso-surface shading is
gpproximated using the gradient normal and material density by encoding the gradient nor-
nals in the texture maps < 7, g,b > channels in the [0, 1] range which are rescaled during
endering. The material value is encoded in the texture maps « channel. Standard volume
rzndering is carried out on the volume and composited gradient normals and material values
ae rendered into the frame buffer which are subject to a transformation by the colour ma-
tiix to compute shading. The application of the colour matrix requires copying of the frame
tuffer to itself in order to allow pixels to be subjected to frame buffer arithmetic. Ambient
and diffuse lighting is defined for parallel light sources positioned at infinity.. These meth-
ads work on raw volumetric data and provide binary segmentation for iso-surfaces based on
the o values, thus only monochrome images are possible due to storing gradient normals
i the volume textures colour channels and additionally the matrix multiplication can only
consider one light source.

Meifner et al. [MHS99] introduce post-classification and shading of semi-transparent ma-
terials into the 3D texture map direct volume rendering pipeline for high-end graphics work-
sations. Unclassified volume data is rendered with the standard 3D texture map direct vol-
ume rendering approach. The gradient normals are present in the volume texture map as
< r,9,b > colour channels. The voxel density is encoded in the a channel of the volume
texture map. Gradients have to be stored in the [0, 1] range and are scaled and biased with
OpenGL fragment operations. Volume rendering is performed on the proxy geometry and
a pixel copy operation is carried out on the resulting frame buffer to invoke colour matrix
aiithmetic. A colour matrix is defined to calculate the shading intensity which depends
upon the voxel’s gradient and retains the original density value. The resultant value is used
to fetch a classified and shaded colour from a texture map. More advanced classification
approaches that use additional information other than a voxel’s density are also described.
This method allows computation of post-classified semi-transparent direct volume render-

ing.

LaMar et al. [LHJ99] introduce shell rendering to provide consistent sample locations in
orthographic and perspective volume rendering using high-end graphics workstation hard-
ware. The premise of the algorithm is to use spherical shell proxy geometry instead of
parallel slice geometry. Figure 3.8 outlines the proxy geometry as applied to projection
rendering. The proxy geometries remain fixed parallel to the image plane and texture co-
ordinates are transformed to allow rotation of the bounding box. They further describe
adaptive multi-resolution rendering of large datasets by subdividing the volume with an
octree and rendering octree nodes.

3.2.2 Object-order Proxy Slice Rendering Using 2D Textured Slices

Volume rendering on GPU’s that do not have 3D texture mapping capability (2"¢ generation
or earlier cards, see Table 3.3) is approximated using 2D texture maps and substituting tri-

3.2 GPU Volume Rendering Algorithms 66

-

(a) Original (b) Rotated

Figure 3.8: Spherical shell proxy geometry

linear interpolation with bilinear interpolation. Proxy geometries are employed to represent
virtual 2D slices through the volume and are axis aligned (see Figure 3.7(b)). These proxy
slices are textured from a set of 2D textures encoding each volume slice’s scalar field. Ro-
tation of the proxy geometry produces gaps in the final image due to fragments not being
present between slices for a particular axis. To overcome this problem, sets of axis aligned
proxy geometries are used for each axis of the volume dataset. To correctly texture each set
of axis aligned proxy geometry additional 2D textures are needed for each axis.

2D Texturing techniques do benefit from better memory alignment since 2D texture maps
are accessed across a proxy slice, bilinear interpolation is also faster to compute than the
trilinear interpolation required for 3D texture maps. This substitution is performed by sam-
pling each 2D texture map on cell faces which avoids the additional interpolation step. In
addition this method also benefits the visualisation of large datasets since uploading 2D
textures proves less expensive. A dataset that does not fit in GPU memory can be uploaded
as a stream of textures during rendering.

Brady et al. [BINN97] introduce a direct volume rendering algorithm for interactive volume
navigation based on 2D texture mapping hardware. At the core of this approach to inter-
active volume navigation with sub-volumes is a 2D texture hardware proxy slice renderer.
2D Axis aligned proxy geometry is textured and blended into the frame buffer to provide
a volumetric view. Reported rendering speed of 2D texturing opposed to 3D texturing
implementations is greater since memory alignment issues are improved by computing bi-
linear interpolation within 2D textures. This speed-up is similar to the shear-warp rendering
method [LL94] by substituting full trilinear interpolation with bilinear interpolation.

Rezk-Salama er al. [RSEB100] describe direct volume rendering on graphics hardware
using 2D texture mapping hardware. Object space proxy slices (figure 3.7(b)) are rasterized
and textured with a set of 2D textures encoding voxel information. They describe three sets

3.2 GrU Volume Rendering Algorithms 67

of proxy geometry and texture sets to overcome visible gaps between proxy geometries
when the volume has rotations applied to it. This reduced number of proxy sets is possible
by either using the front or back faces of the proxy geometry during rasterization. They
further employ multi-texturing to allow more than one sample per proxy slice fragment.
This approach allows an interpolation between adjacent virtual proxy slices to perform full
trilinear interpolation. These intermediate slices are generated in respect of perspective
projection.

Multi-texturing is also explored as a means to accelerate rendering by reducing the amount
of proxy slices and encoding multiple steps in each proxy slice. Lit iso-surface rendering
can be computed in one pass by using the fragment processor configuration to perform the
lighting equation for each sample. The volume texture map contains each voxels gradient
normal in the < r,g,b > components and the voxels scalar is contained in the o chan-
nel. The alpha test is used to reject fragments that do not contribute to the iso-surface by a
comparison with the volume scalar in the alpha channel and a predefined iso-value. Semi-
transparent rendering is demonstrated with fixed ambient contributions for each voxel by
blending the proxy geometry instead of utilising the alpha test to reject fragments. The hard-
ware described only allows two texturing units at a time to be used and post-classification
is not described because both texture units are used to provide trilinear interpolation. Post-
classification can be implemented at the cost of trilinear-linear interpolation. More recent
hardware allows this technique to compute full trilinear interpolation for post-classified im-
ages.

3.2.3 Ray Casting

Levoy [Lev88] originally described image-order ray-casting in software. The implemen-
tations described in this section describe hardware acceleration techniques for the original
ray-casting algorithm.

Westermann and Sevenich [WS01] utilise 2D texturing hardware to accelerate volume ray-
casting in software. They employ object space proxy slices and 2D texturing hardware.
Standard volume rendering is performed and the depth buffer updated. The alpha test is used
to reject fragments from updating the colour and depth buffer. Rendering a frame will yield
a view aligned depth buffer representing iso-surface sample locations. Additional slices are
added to the proxy geometry set depending on the volumes rotation. This allows the sample
distances to be maintained under rotation for orthographic projection (see Figure 3.6(d)
and 3.6(e) for uncorrected sample distances). Ray-casting in software is then performed by
using depth information obtained from classified volume rendering with proxy geometry.

Kriiger and Westermann [KW03] introduce direct volume rendering via ray-casting on the
GPU. This approach computes image-order ray-casting entirely on the graphics hardware
using multiple passes. This approach allows empty space leaping, adaptive step sizes and
early ray termination. In the first pass, the volume bounding box is rendered to avoid pro-
cessing fragments outside the volume. The second pass processes the back faces of the
volume bounding box. These values are used to derive the ray direction vector. These
values are rendered into two floating point buffers which are used as texture maps in sub-
sequent passes. This allows computation of orthographic and perspective projections. A

3.2 GprU Volume Rendering Algorithms 68

number of passes are then made using the front face proxy geometry to encode ray loops.
A ping-pong scheme is used to allow blending since reading and writing to the same buffer
is undefined. One buffer will be used as a texture map in a pass for texture access, the other
will be a render buffer. The roles of these two buffers are swapped after each pass. Each
pass renders proxy geometry (front face of the volume bounding box) to allow access to
the starting ray positions in the bounding box. The number of steps and step size is used in
conjunction with the ray start location and ray direction vector to derive each passes,sample
point inside the bounding box. This allows each iteration along all rays to be processed in
parallel.

Signal reconstruction, post-classification and lighting is then computed in one pass for each
ray step. The result of this pass is written into a buffer to collate the composited ray con-
tributions. Another intermediate pass is performed for each proxy slice that computes early
ray termination. If an iso-surface is discovered or the opacity written into the collation
buffer is full, the depth buffer is updated so processing of fragments contributing to this
ray are halted. This intermediate pass allows the early z test to be utilised. Empty space
skipping is also described by using an octree encoding scheme for an additional 3D texture
map. One level in a min-max octree is defined to encode a collection of leaf level voxels.
This implementation describes encoding an eight voxel neighbourhood at each texel. Mul-
tiple samples are described for each pass to limit the number of passes if multiple texture
lookups are allowed. Lighting is defined for iso-surface rendering by means of looking up
gradient normals from the 3D volume dataset. Lighting must be performed for every frag-
ment processed since no conditional operators are defined. This method requires that the
number of passes is known before hand as no stopping criterion is implemented to decide if
fragments are still being processed.

Roettger et al. [RGW103] implement clipping and oversampling in GPU hardware with pre-
integrated rendering (see section 3.3.3). Their approach is to use multiple passes through
the graphics hardware to compute an image-order ray casting algorithm with multiple ren-
der targets. Early ray termination is described with adaptive step sizes and empty space
leaping. The first pass computes the ray sampling locations in a floating point buffer (ray
buffer). Ray directions in this approach are computed on the fly. A ping-pong method is
then employed to traverse the rays by encoding a ray loop. Ray samples are computed
by looking up texturing co-ordinates or ray sample locations from the ray buffer. These
samples are then classified with the pre-integration scheme and lit in the first intermediate
rendering pass. This intermediate set of ray samples is then blended into another floating
point buffer and ray sampling positions are updated according to the space leaping strategy
into the ray buffer using multiple rendering targets. The oversampling is described to use 4
volume classification steps instead of one, so 4 pre-integrated samples are composited be-
fore blending into the image buffer. The second intermediate pass computes ray termination
by updating the z buffer. If the ray leaves the volumes bounding box or the accumulated
opacity is approximately full then the depth buffer is updated to reject further fragments.
This method can also exploit the early z test. Additionally an occlusion test is used to deter-
mine if any fragments were written during the first intermediate pass, each remaining pass
is not performed if this criterion is met. The floating point image buffer is finally displayed
in the frame buffer.

3.2 GPU Volume Rendering Algorithms 69

Miller and Jones [MJ05] and Stegmaier et al. [SSKEO5] independently introduce single
pass ray-casting on GPU’s. Using 5t* generation GPU’s allows the inclusion of branch in-
structions in fragment shaders. Proxy geometry is not used in these approaches, instead a
single image aligned quadrilateral is rasterized into fragments and the entire volume render-
ing algorithm is computed in the fragment shader. This is analogous to the above approach,
however multiple passes and intermediate ping-pong buffers are not necessary. A front-to-
back rendering strategy is employed to allow early ray termination, empty space skipping
and adaptive step sizes. Sampling distances are better defined in this manner, as parallel
proxy geometries are not used to encode one of the spatial directions. This reduces to shell
rendering (see Figure 3.8) by computing each step in the fragment shader. This is also possi-
ble using multiple pass approaches. Orthographic and perspective projections can therefore
be computed with correct sampling positions being maintained. Stegmaier ef al. [SSKEOQ5]
compute ray starting locations and directions in an initial pass. Miller and Jones {MJO5]
compute the ray starting locations with texture-coordinates that are passed into the graphics
hardware for orthographic projection which removes the first pass. The fragment shader
will loop though each ray’s sampling positions for each fragment of the rasterized quadri-
lateral. At each iteration volume rendering can be computed by firstly looking up a trilinear
interpolated scalar sample from a 3D volume texture. Subsequently a classification can be
carried out with a dependent texture read. These values can then be composited with the
standard volume rendering over operator (see Eqn 2.19). This composited structure can be
maintained in temporary registers during the loops execution. Since blending into the frame
buffer is not computed, higher accuracy blending can be performed in the fragment shader
for each sample location of the ray. This is achieved in multi-pass techniques by using high
precision floating point render targets, however blending per pass is still computed and the
graphics hardware blending units currently do not support full precision. Stegmaier et al.
[SSKEO5] use two nested loops to allow more than 256 ray steps to be computed. Without
nesting two loops the hardware describes a maximum of 256 iterations per loop instruction.
Miller and Jones [MJO0S] only use one loop with multiple samples defined inside the loop.
This allows the restriction of 256 ray steps to be removed and additionally benefits from
less loop instructions to be considered which are currently costly to perform.

The ray setup described above can be achieved by using texture-coordinates only for or-
thographic projection. Texture co-ordinates can be trivially set to determine entry and exit
points for the volumes bounding box. Using these positions a vector can be created to define
the direction of the ray. Step sizes can thus be generated that allow arbitrary sampling of the
volume and additionally encode consistent step sizes for arbitrary rotations of the volume.
Perspective projections can be generated using this approach, however the linear interpola-
tion scheme used during rasterization will result in sample locations located on proxy slices
analogous to Figure 3.6(c). The computation of steps on the fly allows the discontinuities
to be removed between perspective ray steps.

3.2.4 Distance Field Rendering

Distance fields describe iso-surfaces and therefore previous iso-surface rendering tech-
niques can be employed. Distance fields generally contain one iso-surface and each voxel
describes the distance to the closest point on the iso-surface (see Eqn 2.24). To render an

3.2 GPU Volume Rendering Algorithms 70

iso-surface, a binary decision is made on the distance value at the sample location. Gen-
erally negative values are used for voxels that are outside the iso-surface, zero for the iso-
surface and positive values for the interior of an object. Older generations of GPU’s do not
contain floating point texturing units so a quantisation is required to map the distance val-
ues into an available range (see Eqn 3.1). Typically older generations were capable of 8
or 16 bit unsigned integers which are treated as fixed point scalars internally in the [0, 1]
range. This pre-processed quantisation of the distance field will introduce artifacts due to
under-sampling the original data resolution and also introduce a costly pre-processing step.
Additionally a remapping might be applied during fragment processing to compute over the
original range if required (see Eqn 3.2).

Yamazaki et al. [YKIO3] perform distance field rendering on GPU’s by utilising a 3D tex-
ture hardware volume rendering approach for iso-surfaces. Pre-integration is discussed
to accurately represent iso-surfaces between proxy-geometry slices and an interpolation
weight transfer function generation method is outlined for multiple regions in the distance
field. Generally considering if the iso-surface is present between samples provides much
improved image quality by approximating if the original signal contained the iso-surface
between points.

Image-order ray casting algorithms can be adapted to accelerate distance field rendering by
skipping the distance defined at a voxel along the ray if the iso-surface is not encountered.
Generally floating point texture targets are required for this approach since quantised dis-
tance values would have to be remapped for each sample and the quantisation might not
accurately represent the correct distance. 5" generation GPU’s are capable of reading and
writing arbitrary floating point textures and buffers, where older generations must quantise
to a fixed point representation and a possible remapping during fragment processing. The
ability to use floating point textures cuts out the quantising pre-processing step and possible
multiplications during fragment processing for remapping the values.

A single pass image-order ray caster on the GPU can be defined to include early ray ter-
mination, empty space skipping and adaptive step size sampling. These methods can also
incorporate consideration for iso-surface values lying between sample positions such as
pre-integrated rendering techniques. The single pass renderer allows floating point texture
targets as well as increased floating point precision during fragment processing due to im-
provements in hardware architecture. Interactively segmenting the distance field provides
a faster mechanism for traversing the volume on this hardware because individual samples
can be skipped and rejected.

Figure 3.9 shows an example ray being sampled at regular intervals. The first lookup at
sample a produces the encoded distance to the object as represented by the line from the
sample position to the closest point on the surface. This distance may be skipped along
the ray since it is guaranteed that it is at least this distance to the surface. The next sample
location b does not contain the surface but three samples along the ray have been skipped
upon sampling this scalar.

During computation of space leaping the negative and positive values must be taken into
account to accurately perform a step along the ray. In simple iso-surfacing situations this is
not necessary as once the iso-surface is intersected, early ray termination can be performed.

3.2 GPU Volume Rendering Algorithms 71

skipped distance vector along ray

RAY

regular sampling

OBJECT

Figure 3.9: Distance held rendering: Empty space leaping along a ray. Samples are taken at
the bold intervals along the ray where the distance vector allows stepping over a number of

samples. The distance is rounded down to the equidistant sample points.

Extended iso-surfacing techniques that choose iso-values outside of the originally defined
surface in the distance field require consideration of the sign. In these cases, the sign can be
removed by remapping the entire distance field to encode 0 as the maximal value, with each
other value having the maximal value subtracted from it. These values can then be made
positive, to describe a distance value in respect of the maximum. This allows arbitrary
iso-values to be correctly computed as the computation skips along the distance from the
sample location (remapped) and the iso-value (also remapped). The equations outlined
below assume this linear mapping. Without this mapping internal samples for the object
will produce negative increments along the ray. If this mapping is not carried out explicitly,
an abs function can be used to avoid this problem.

Space leaping can be carried out using two approaches, both of which perform adaptive step
sizes for sampling close to the object’s surface. The correspondence between sample dis-
tance and voxel width is required in the first approach. Each distance field scalar represents
the distance in voxels to the closest point on the iso-surface, thus only the vector describing
the distance to skip one voxel is required to perform an advancement along the ray for a
distance value above 1. When the distance values encountered are a voxel or less, sampling
must be performed using a constant step vector to ensure that the surface is accurately found
efficiently. This is due to sub voxel precision possibly requiring many small advancements
when the distance value is under the one voxel length threshold. Since the step vector can
be an arbitrary length, the step vector size can be larger than a defined skipping vector for
values over one voxel. Therefore the largest vector is chosen to advance the ray position
(see Eqn 3.3).

((v(f-i) - 1.0)d if(f-i)—1.0> 1.0
step(d,s,v,i,f) =1 and v(f —i) — 1.0 > s (3.3)
[ds otherwise

where d 6 R3 is the normalised direction vector, s 6 R is the step size, v E M is the voxel
step size, z ¢ R is the iso-value and / G R is the sample encountered along the ray. The

remapping described above is assumed.

The second method disregards the acceleration of choosing the longest vector to skip along

3.2 GPU Volume Rendering Algorithms 72

a ray and only allows the step vector to beemployed when the sampled distance values
arebelow a giventhreshold. Generally a good threshold is one voxel, although a larger
adaptive region is sometimes used to ensure correct sampling is achieved with possible
small irregularities in the distance field. This method is not as efficient with large step
vectors, however produce a comparable result when the step vector is smaller (see Eqn 3.4).
These adaptive rendering strategies with empty space leaping can be regarded as refining

the ray marching process towards the object surface Figure 3.10.

stevid s v itep@ | W SV ~ h°)d if (/" i] ~L°> 10 dsothwiderd.4;

where d E is the normalised direction vector, s G Mis the step size, v E M is the voxel
step size, i E K is the iso-value and / E M is the sample encountered along the ray. The
remapping described above is assumed.

skipped distance vector along ray

a
RAY

Adaptive sampling

OBJECT

Figure 3.10: Distance field rendering: Adaptively rendering along a ray. Samples are taken
at bold intervals along the ray. These samples are not rounded down toward the equidistant
samples and are taken at exactly the distance vectors length along the ray.

(a) Ert only (b) Space Leaping only (c) Space Leaping with ERT

Figure 3.11: Distance field ray samples through volume with; (a) early ray termination, (b)
empty space leaping and (c) empty space leaping with early ray termination. The grey scales
define the number of samples taken along the ray with black being no samples towards white
being the maximum samples.

Figure 3.11 shows an example rendering of the CTHeadDist dataset with empty space leap-

3.3 Improvements 73

ing employed as an acceleration method. The number of samples evaluated along a ray are
encoded as monochrome values where black represents no samples and white represents
256 samples. The difference in evaluated samples along a ray between early ray termina-
tion, empty space leaping and empty space leaping with early ray termination are given. It
is clear that the latter method is the most efficient in terms of visited samples along a ray. A
trade off generally exists around performing the space leaping function and producing less
instructions to consider by sampling at regular intervals. Most real-world examples benefit
from this approach since it reduces the burden of sampling many times along the ray where
no contribution to the final image is present. The CTHead for example contains regions
of interest (skin and bone) in the centre of the dataset. Defining a distance field for this
dataset (e.g. CTHeadDist for bone) allows skipping upto the bone structures, sampling the
bone structures and skipping empty space inside the object if further sampling is required.
A more scalable solution to the volume rendering problem is thus defined with empty space
leaping with early ray termination.

This function can be pre-computed as a quantised 1D lookup table. Since linear interpo-
lation is resident for texture fetches on GPU architectures this quantised approximation is
acceptable since the function is linear in nature. A mapping of all voxel values must firstly
be undertaken as a pre-processing step (see section 3.1.6) since a dependant texturing step
for each voxel’s scalar distance value encountered along the ray must be used to address the
lookup table space which is defined in the [0, 1] range. This benefits older generation GPU’s
that are not capable of addressing outside this range, and additionally use texture maps that
contain values outside the [0, 1] range since a remapping during shading is not required.

The acceleration technique of empty space leaping along a ray is most suited to image-order
techniques since the front-to-back or back-to-front ray casting can benefit directly. Object-
order approaches do not benefit from this approach. It is therefore possible to compute a
distance field for a given volume dataset exhibiting scalar densities to accelerate it’s render-
ing. This requires more GPU memory as two volume textures are required if the gradient
normals are stored in the target dataset.

3.3 Improvements

This section explores developments made to the standard GPU volume rendering frame-
work. Section 3.3.1 reviews clipping geometries to the GPU volume rendering pipeline to
enable cut away views of the volume dataset. Section 3.3.2 covers methods to compute
higher order signal reconstruction filters than are available as hardware operations. Section
3.3.3 explores pre-integrated rendering techniques to consider an additional sample at each
location.

3.3.1 Clipping

Westermann and Ertl [WE98b] introduced arbitrary clip geometries using the stencil buffer
and stencil test available in the GPU hardware pipeline. The stencil buffer must be updated
for each proxy slice to be correctly clipped. The geometry is a tessellated triangular mesh.

3.3 Improvements 74

A proxy slice is then subjected to fragment processing, blending is then performed into the
frame buffer after an intermediate stencil test for the proxy slice against the stencil buffer.

Weiskopf et al. [WEE(02] describe arbitrary clipping geometries for GPU volume rendering.
Two algorithms are presented to clip volumes during proxy slice based rendering. The first
method utilizes depth information from clipping geometry rendered into the depth buffer
to perform clipping. This method can accommpdate two clipping boundaries by rendering
the clipping geometry front faces into a texture map and also rendering the back faces of
the clipping geometry into the depth buffer in a different pass. During rendering passes
the fragments depth is shifted with the results of the first stages texture map. This leaves
depth values in front of the viewing frustum and thus these fragments are clipped. The
depth buffer test enables removal of fragments behind the clip geometry using the depth
test. The second approach is to use a per fragment kill operation in fragment processing by
addressing a binary volume texture representing the clipping geometry. This approach does
not use the depth buffer which enables its use as a further speedup mechanism.

Weiskopf et al. [WEEO3] expand the clipping approaches to include corrected shading. By
clipping though the centre of a volume iso-surface, gradients are not well defined for the
clipped iso-surface. They employ distance fields as clipping geometries to determine if the
iso-surface being rendered is close to the clipping geometry. If the clipping geometry is
close to the clipping geometry, the distance fields gradients are used for surface rendering
instead of the original gradient. The process of classification must still be carried out firstly
as materials discovered close to the clipping geometry might not be part of the iso surface.
Roettger et al. [RGW™103] expand lit clip planes to include pre-integrated classification as
well as standard classification.

3.3.2 Signal Reconstruction

Hadwiger et al. [HTGO1, HVTHO02] describe higher order signal reconstruction for GPU
hardware. A flexible convolution framework is described which exploits multiple passes
and multi-texturing hardware to compute arbitrary filter kernels. The premise of this al-
gorithm is to reverse the filtering process to accommodate graphics hardware. Usually an
output sample is generated by convolving over several neighbouring samples. These neigh-
bouring samples will be subject to many output sample positions during gathering calcula-
tions. Reversing this process leads to progressively solving the filter kernel in a distributed
manner, each output sample point will distribute to its neighbours.

Multiple passes through the graphics hardware are used for each neighbour of a sample
point, the bounds of the filter kernel dictate the number of passes. Each pass applies the
filter kernel which is stored in multiple texture maps, each texture maps represents a unit
portion of the filter kernel. The results of this work are high quality filtered images that are
computed in real time. However this strategy when applied to volume rendering over 3D
textures will increase the complexity of standard volume rendering techniques and result in
sub real-time display.

3.3 Improvements 15

3.3.3 Pre-Integrated Classification

Figure 3.12: Slab encoded between two proxy slices sy and sy; representing the front and back
slice. The blue region defines the object boundary that is the subject of reconstruction.

Engel et al. [EKEO1] introduce pre-integrated volume rendering. This approach attempts
to further approximate the volume rendering integral. One key problem with 3D texture
based direct volume rendering is the that many proxy geometries are needed to accurately
reconstruct the signal between adjacent proxy slices. Important information can be missed
due to under-sampling the z direction with proxy slice geometries. The addition of more
proxy geometry solves the under-sampling of regions between slices, however results in the
loss of interactive display in many cases. Pre-integrated volume rendering considers the
signal between adjacent slices by performing an integration of the transfer function.

The goal of pre-integrated classification is to minimise sampling artifacts and
under-sampling by performing two integrations, one for the scalar field and another for
the transfer function. Post-classification is employed and the lookup table is pre-computed
according to a 1D transfer function lookup table of scalar values to < 7,g,b, & > colour
values. This method does not treat each proxy slice as an infinitely thin plane through the
volume, instead it encodes each proxy slice as a slab (see Figure 3.12). This is calculated
by altering the standard fragment processing technique of post-classification to include two
lookups into the volume texture map.

The first lookup fetches the trilinear interpolated scalar value for a sample point analogous to
post-classification. The second lookup fetches the trilinear interpolated scalar representing
the next sampling position along the ray (the next proxy slices sampling location). A pre-
integrated transfer function is pre-computed into a 2D lookup table to be addressed by
the front scalar value and back scalar value. This lookup table contains integrated colours
derived from the original 1D transfer function and describes an integration between the
front and back scalar colours. Additionally step size must be taken into account as alpha
correction must be performed, the original description describes a 3D lookup table with
step size being the third dimension. In practice it is desirable to compute the 2D lookup
table with alpha correction included such that the entire 3D lookup table does not have to
be generated for each alteration of the transfer function.

High frequencies in data can be better approximated using pre-integration and additionally

3.3 Improvements 76

less slices are required to accurately represent a volume without under-sampling of the data.
Generation of the pre-integrated transfer functions are described in Equation 3.5. Simplified
versions of these equations for computation are given in Equation 3.6.

1
a,-=1—emp<—/ T((l—w)sf+wsb)ddw) 3.5)
0 .

q=/Olc((l—w)é’f-{-wsb)e:cp(—/OwT((l—w')Sf-l-w'sb)ddw')ddw

where s and sy, are the values obtained from the transfer function for front and back samples
respectively, d is the sampling distance. The colours are associated.

a(sf,sp,d) =1—exp (—— (T (sg)—-T (sb))> 3.6)

Sp— S5

T(s) := /Os 7(s)ds

C(Sf, Sby d) = (K(sb) - K(Sf))

Sp— Sf

K(s) := /OS c(s)ds

where s and sy, are the values obtained from the transfer function for front and back samples
respectively, d is the sampling distance. The colours are associated.

Figure 3.13 shows a 2D pre-integrated transfer function table obtained from a standard 1D
post-classification table (see Figure 3.14).

Slab rendering is further extended to iso-surface rendering by generating a 2D transfer
functions encoding multiple iso-values for front and back sample scalars. Iso-surfaces are
treated as a special case where an interpolation weight is computed to accurately interpo-
late between front and back positions or gradient normals. The lookup table is computed
such that the first iso-surface that is intersected between the front scalar and back scalar is
encoded into a 2D lookup table for colour and interpolation weight (see Figure 3.15(b)),
thus no integration takes place. The first iso-surface discovered in a slab is considered to
occlude all further iso-surfaces since it will be fully opaque. A further channel can also
be used to describe semi-transparent multiple iso-surfaces by including an opacity value.
In this case only one the first iso-surface discovered in the sample slab will be included in
the final image. Additionally two colours can be defined per iso-surface to facilitate front
and back face rendering (see Figure 3.15(c)). Generally back face rendering must firstly
reverse the gradient to successfully be included in lighting models. Figure 3.16(a) shows a

3.3 Improvements 77

V.

Figure 3.13: Pre-integrated transfer function table, opacity discarded for clarity. The bottom
edge rearesents the front slice value encountered whilst the left edge represents the back slice

value encountered during rendering

Figure 3.14: 1D Transfer function, R and D are piecewise linear, G is random and A is identity

(a) Interpolation weights (b) One side colours (c) Two side colours and weights

Figure 3.15: Iso-surface lookup tables for slab rendering, iso-surfaces at 0.5, 0.65, 0.75 and
0.85 where (a) is the interpolation weights, (b) is the front face only colours (back face is
rendered as front face) and (c) both front and back faces with differing colours with the addition
of the interpolation weights. The bottom edge represents the front slab value and the left edge

represents the back slice value.

3.3 Improvements 78

(a) Opaque (b) Semi-transparent

Figure 3.16: Multiple iso-surfaces ofthe SphereDist dataset

front and back face multiple iso-surfacing of the SphereDist dataset, figure 3.16(b) shows a
semi-transparent variant of the same approach.

The interpolation of gradients between the samples with respect to a pre-calculated in-
terpolation factor allows an accurate gradient to be derived for the exact position of the
iso-surface within the slab being considered. The implementation described suggests that
another lookup table should be used for interpolation factors, however on the hardware
described the maximum amount of textures had been used. This does not allow semi-
transparent iso-surfaces since the alpha value is used to store the interpolation weight. The
extra table is required since a full < r, g,b > triple is required for arbitrary colouring of
iso-surfaces and the interpolation factors must be stored. Two methods for including the
interpolation factor and the alpha value in the lookup table are described. Both methods
remove either alpha detail or colour detail from the lookup table to allow inclusion of the
interpolation weights. These methods can produce significant artifacts due to quantising
data or removing a channel to a constant value. By using an additional one channel texture
map to contain the interpolation weights, semi-transparent iso-surface rendering is possible

without compromising image quality.

Lighting is approximated for semi-transparent direct volume rendering with a pre-
integration table. Since no iso-value information is available to correctly derive the slabs
gradient, a constant blend of front and back gradient are used instead. The lighting is
performed in respect to the pre-integrated tables colour and opacity information.

weight{sf,sb,slso) = o _S7 3.7)

Lum et al. [LWMO04] improve pre-integrated classification to iron out discontinuities in
lighting. Previous methods treated iso-surfaces as a special case, with the assumption that
the first iso-value discovered in a slab is used to derive the gradient and colour for lighting.
This method is not well defined for more than one iso-surface in a slab (see Figure 3.17).

3.3 Improvements 79

Additionally semi-transparent volume rendering without iso-values is not well defined since
gradients are constantly interpolated to the centre of a slab. A weighting for front and back
slices is computed with an additional lookup table for diffuse and specular lighting compo-
nents. These weighted lighting contributions are then interpolated for the slab. This method
irons out discontinuity where large changes in gradients are present, and further refines
situations where multiple iso-surfaces are present in one slab. Multiple semi-transparent
iso-surfaces are not treated as special cases as the interpolated lighting derived from the
pre-integration table is sufficient to remove these ambiguities. Whilst this method removes
ambiguity of multiple iso-surfaces and improves lighting calculations in semi-transparent
volume rendering the extra burden of performing two lighting contributions decreases per-
formance. Additionally since iso-surfaces are not treated as special cases, this method suf-
fers from more artifacts in these cases since the iso-surface position is not defined explicitly
in a slab sample.

Figure 3.17: Lighting discontinuity in slab rendering for interpolated gradients. Sample points
are represented as circles. A lighting discontinuity can be observed when two surfaces are
running through the same slab and one of the surfaces moves between slabs. The normals
defined here introduce a lighting artefact.

They further improve the efficiency in calculating the pre-integrated table with subrange
integration. They note that opacity correction for the transfer function must take place to
correct differences in the span of values integrated for a sample. An acceleration is derived
with corrected opacity by observing that the diagonals of the pre-integration table maintain
a fixed span of integrated samples for each sample derived. By calculating on the diagonals
of the table, extra values can be composited on the next diagonal of the table which allows
re-use of previous results. This improves the run-time of the algorithm over the brute force
table generation scheme.

The alpha correction equation for subrange integration accelerated pre-integrated classifi-
cation table generation. This correction is applied before calculating the pre-integration
table:

a=1-(1—a)FT (3.8)

where a is the opacity contained in the original transfer function, d is the sampling distance
and |j — 4| is the width of the span of samples to integrate.

3.4 Comparison 80

3.4 Comparison

Three algorithms are explored in this section for rendering performance and output qual-
ity. Further investigation is given to each algorithms respective complexity. Orthographic
projections are considered as the basis to compare algorithms without interference due to in-
correct sampling frequency and additional overhead to compute perspective ray directions.
The term slice sampling is used to describe the sampling of a point in 3D space and slab
sampling is used to describe taking two samples and performing an integration or interpo-
lation to sample the space occupied between these sample points. The algorithms described
are direct volume rendering:

e Object-order proxy slice rendering (OOP), analogous to splatting with back-to-front
sampling and compositing

o Image-order multiple pass ray-casting (1I0M) with front-to-back sampling and com-
positing

e Image-order single pass ray-casting (10S) with front-to-back sampling and composit-
ing.

Further investigation is given into slice and slab rendering for both fuzzy classification,
iso-surfacing and multiple iso-surfacing:

e Fuzzy classification, Slice sampling, Post-classification with 1D lookup tables

e Fuzzy classification, Slab sampling, Pre-integrated classification with 2D lookup ta-
bles :

e Binary Classification, Slice sampling, Single lit iso-surfaces

e Multiple Iso-surfaces, Slab sampling, multiple lit iso-surfaces. Includes slab sampled
single iso-surfaces.

Figure 3.18 provides a screenshot of the software framework used to compare volume ren-
dering algorithm hybrids from the preceding sections. This software is designed around the
object oriented paradigm and is written in C++[Str00]. The object oriented class hierarchy
allows new GPU rendering techniques by simply overriding a generic rendering class and
providing the implementation specific code. Classes are also provided to implement transfer
function table generation and volume dataset mapping to 3D textures.

The application framework is written using the OpenGL API[SA] and GLUT[KIil96] a utility
windowing framework which are programmable from C [KR88]. A simple C++ wrapper hi-
erarchy has been implemented to allow object oriented programming for GLUTand OpenGL.
This implementation is therefore cross-platform since no operating system specific instruc-
tions are used. This mechanism allows easy inclusion of OpenGL extensions which are
extensively utilised for rendering algorithms.

Classification lookup tables can be pre-computed to include associated colours (see Eqn
2.17) and alpha correction (see Eqn 2.20). Each test conducted includes interactive rotation
using a virtual trackball algorithm [HSHO04], interactive transfer function change (including

3.4 Comparison

Hardware Volume Renderer
(7 Transparency

Render Method
F Pre Int gaps
» 00 Single Pass © Two Side
C 10 Multiple Pass
Iso 1
r 10 Single Pass £ Enables Iso 1

B-

Clip Planes -
R1255

(+ Clip Planes
r No Clipping

Slices 1261
F Wire BB
(1 Clear White
r Clear Black
Classification
r Fuzzy
r iso value
£ Multi Tso

Iso 1
W Enable - Iso 2

Diffuse

Iso 3
F Enable - Iso 3

Light Pos

Update

Spec Power: 117 92

Figure 3.18:

Screenshot of software testing environment

81

3.4 Comparison 82

pre-integration tables [LWMO04]) interactive sample frequency changes, interactive lighting
condition changes and iso-value changes where applicable.

Oopr Iom Ios
Pst Pre Iso Int | Pst Pre Iso Int | Pst Pre Iso Int
ERT| No No No No|[Yes Yes Yes Yes| Yes Yes Yes Yes
Ds|{na na No No|na n/a m m | na n/a Yes Yes
ESL|{ No No No No|Yes Yes Yes Yes| Yes Yes Yes Yes
Ps|{na No na No|fna m na m |[na 0 na O
Bp | 8 8 nfa nfa| 16 16 n/a n/a| 32 32 n/a n/a
Buffers | 1 1 1 1 6 6 3 3 1 1 1 1
Passes | 1 1 1 1 I o ~ 1 1 1 1
OP | Yes Yes Yes Yes| Yes Yes Yes Yes| Yes Yes Yes Yes
PP No No No No|Yes Yes Yes Yes| Yes Yes Yes Yes
DB No No No No|No No No No|Yes Yes Yes Yes
MRT| No No No No|Yes Yes Yes Yes| No No No No
Section 342 | 343 34.6 | 34.7 34.10 | "3.4.11

Table 3.5: Rendering approach and segmentation method comparison matrix. Pst is post-
classification, Pre is pre-integrated classification, Iso is single iso-surface rendering, Int is in-
terpolated iso-surface rendering or multiple iso-surface rendering. ERT is early ray termination,
Ds is deferred shading, ESL is empty space leaping, PS is previous sample reuse expressed in
number of texture lookups in addition to the lowest required for the technique where m is the
number of samples per pass, BP is blending precision in bits per sample, Buffers is the base
number of off-screen buffers required by the algorithm, Passes is the number of passes required
to sample the volume (worst case) where n is the number of samples along a ray and m is
the number of samples per pass, OP denotes correct sampling for orthographic projection, PP
denotes correct sampling for perspective projection, DB is the necessity of the approach to per-
form dynamic branches, MRT is the requirement to use multiple rendering targets to compute
speed-ups.

Gradient computation is treated as a pre-processing step and is not computed on the fly.
There is also no gradient filtering applied in order to work directly with pre-computed gra-
dients defined with central differences. Where gradients are used the volume texture is
constructed so that the < r, g, b > channels contain the gradient normal and the o channel
contains the scalar field. Volumes can be defined with 8, 16 or 32 bit precision. Generally
these volumes will be defined over the [0, 1] range which requires gradients to be remapped
on the fly to the [—1, 1] range. However two simple fragment shader instructions are re-
quired to remap the range. Floating point volume textures are capable of defining values
outside the [0, 1] range and do not require remapping of the gradient normals. Transfer
function textures considered are 8 bit 4 channel lookup tables with 256 locations. These
transfer function dimensions are usually adequate for many real world applications includ-
ing high frequencies. Details of hardware implementation specific issues such as branching
and fragment culling are presented where necessary.

A cut down point lighting model is also used and evaluated in the fragment processing stage
of the pipeline. A function lighting(norm, pos,light) is provided to all fragment shaders
that compute this model where norm is the eye-space gradient normal vector, pos is the

3.4 Comparison 83

eye-space lighting vector and light describes the ambient, diffuse and light colours with the
addition of the specular power. This model is an approximation [Cor06] of Blinn-Phong
[B1i77] shading (see Eqn 3.9).

I=1,+1;1 (]V'o IJ + I (ff . f{)ﬂq 3.9

where I is the resulting colour, I, is the ambient colour, I is the diffuse colour, I; is the
light colour, N is the gradient normal, L is the light vector, H is the half-angle vector and
m is the specular power. Specular colour is assumed to be white.

Each rendering approach and classification method is explored in separate sections. Table
3.5 gives an overview of these techniques and describes each approaches characteristics.
Some of these characteristics have workarounds which are discussed, however this table
represents the abilities of each algorithm as implemented in this work.

3.4.1 OoP Rendering Framework

The algorithm employed for this test is based upon section 3.2.1. Image aligned proxy
slices are used to encode volume sampling positions. Clipping planes are used to reduce the
burden of fragment processing during rendering. Comparison for no clipping planes is also
presented. A 75% increase in total fragments would result with no clipping as the proxy
geometry set must be large enough to cope with arbritrary rotations of the volume bounding
box. The viewport sized proxy geometry is therefore set 75% larger to account for these
rotations. The clip planes are positioned to form a bounding box and clip away redundant
fragments that fall outside the [—1, 1]3 range.

1.75 / slices
texStep * 2

1.375 - texStep
1.375

texStep

vertStep

curTexFront

curTexBack

curVert 1.75

for (i samples; i >= 0; i--)
beginQuad/()
texCoordl (-0.375,

-0.375, curTexFront)

texCoord2(-0.375,
vertex (-1.75, -1.
texCoordl (1.375,

texCoord2(1.375,

vertex (1.75,
texCoordl (1.375,
texCoord2(1.375,

-1.75, curVert)

-0.375, curTexBack)
75, curVert)

-0.375, curTexFront)
-0.375, curTexBack)

1.375, curTexFront)
1.375, curTexBack)

vertex(1.75, 1.75, curVert)
texCoordl (-0.375, 1.375, curTexFront)
texCoord2 (-0.375, 1.375, curTexBack)
vertex(-1.75, 1.75, curVert)

endQuad ()

curTexFront -= texStep

curTexBack —-= texStep

curVert -= vertStep
endfor

Figure 3.19: Image aligned proxy geometry generation

3.4 Comparison 84

fragment vertexShader (vertex, modelViewMatrix, textureMatrix)
fragment.pos = vertex.pos * modelViewMatrix
fragment.tex0 vertex.tex0 * textureMatrix
fragment.texl vertex.texl * textureMatrix
fragment.tex2 vertex.pos * textureMatrix.inverseTranspose

nmonon

Figure 3.20: OOP vertex shader

Corresponding texture coordinates are in the [0, 1]2 range and are also oversized by 75%.
Each proxy geometry slice is issued 3D texture coordinates to address the volume texture
(see Figure 3.19). The order which verticies are defined is important to the APIsince this
determines whether it is front facing or backwards facing. The vertex coordinates are issued
in the [—1.75, 1.75] range so that the coordinate system origin is in the centre of the volume
bounding box such that translations are not required before rotations.

The texture coordinates are in the [—0.375, 0.375] range to allow access without altering
texture coordinates on the fly to the texture blocks in GPU memory. This requires a trans-
lation to compute respective rotations around the origin in texture coordinates space. This
strategy allows the texture coordinate space to represent volume object space coordinates.
Figure 3.19 demonstrates image aligned slice generation for an arbritary number of sam-
ples. This strategy will therefore sample a volume with fewer slices than generated if there
is no rotation applied to the volume. The unused slices and fragments are subject to clipping
before expensive calculations in the fragment shader, however these additional slices and
fragments must be present to allow correct rotations of the volume.

Volume bounding box rotations are accomplished by transforming the texture coordinates
alone. The vertex shader (see Figure 3.20) is configured to apply the modelling transfor-
mations to the geometry, transform the texture coordinates for volume sampling locations
and additionally compute the eye space position for eye space lighting calculations in the
fragment shader. After transformation in the vertex shader, the rasterizing hardware will in-
terpolate the texture coordinate sets across the proxy geometry faces for use in the fragment
shader.

Fragment shaders for each algorithm will perform volume lookups and dependent texturing
for classification. Each fragment’s result is blended into the frame buffer if blending is to be
computed by using the back-to-front compositing equation (see Eqn 2.18) during the alpha
blending stage of the pipeline. Current graphics hardware allows up to 16 bit floating point
precision on blending operations per colour channel, however the frame buffer for display is
8 bit fixed point precision per colour channel. Rendering to an off-screen buffer is required
to take advantage of 16 bit blending per colour channel, however incurs a performance
penalty and requires an additional pass to display the results in the frame buffer.

The discussion is restricted to 8 bit fixed point blending per colour channel into the frame
buffer as multiple passes are required for higher precision. Two sets of coordinates are
defined for each vertex to allow slab rendering algorithms which require locations to fetch
voxels for front and back samples. The standard algorithm does not use the second set of
texture coordinates as sampling is restricted to one location. The modelling and projection
matrices are unchanged to allow the proxy geometry to remain image aligned at all times
including bounding box rotations.

3.4 Comparison 85

3.4.2 OOP Fuzzy Segmentation

In non-lit fuzzy classification, clipped geometry is rasterized by the fixed function raster-
izing hardware which interpolates the texture coordinates for volume texture lookups. A
fragment shader is then employed to lookup a voxel from the volume texture using hard-
ware resident trilinear interpolation. This voxel is then used to address an additional texture
map with a dependant texturing instruction. For post-classification a 1D lookup table is
used (see Figure 3.21). Generally 256 entries is adequate to represent the detail within the
volume as linear interploation can be performed in hardware to return fractional results.

pixel fragmentShader (fragment, volume, transfer)
voxel = volume (fragment.tex0)
pixel = transfer (voxel.a)

Figure 3.21: OOP post-classification fragment shader

For pre-integrated classification an additional set of texture coordinates are issued to address
the volume texture twice and obtain two sample locations (see Figure 3.22). These voxels
are used to address the 2D pre-integrated classification table. The pre-integrated lookup
tables are generally generated from a 256 entry 1D post classification transfer function, the
resulting pre-integrated lookup table contains 256 entries.

pixel fragmentShader (fragment, volume, transfer)
voxelf = volume (fragment.tex0)
voxelb = volume (fragment.texl)
pixel = transfer (voxelf.a, voxelb.a)

Figure 3.22: OOP pre-integrated classification fragment shader

The shaders contained in this section provide no mechanism to compute early ray termi-
nation when the accumulated opacity along the ray reaches a threshold. This is due to the
complete pipeline being used which offers no ability to stop the processing of fragments.
Back-to-front compositing is also used since the fixed function hardware is used for blend-
ing which further restricts this function. Empty space skipping is also not possible with this
approach since a rasterized fragment is used for each sample. A stage before rasterization
of proxy geometry would have to be implemented for this feature to control which samples
are issued fragments. This is currently not possible on current graphics hardware.

The benefit of this approach is the simplistic fragment shaders which allow high throughput
in terms of the number of instructions required to correctly sample the volume dataset.
However since no acceleration techniques can be included, this method degrades poorly

pixel fragmentShader (fragment, volume, transfer, light, textureMatrix)
voxel = volume (fragment.tex0)
normal = (voxel.xyz * 2.0 - 1.0) * textureMatrix.inverseTranspose
light.diffuse = transfer(volume.a)
pixel = lighting(normal, fragment.tex2, light)
pixel.a = light.diffuse.a

Figure 3.23: OOP lit post-classification fragment shader

3.4 Comparison 86

pixel fragmentShader (fragment, volume, transfer, light, textureMatrix)
voxelf = volume (fragment.tex0)
voxelb = volume (fragment.texl)
normal = (lerp(voxelf.xyz, voxelb.xyz, 0.5) = 2.0 - 1.0) =
textureMatrix.inverseTranspose
light.diffuse = transfer(volumef.a, volumeb.a)
pixel = lighting(normal, fragment.tex2, light)
pixel.a = light.diffuse

Figure 3.24: OoP lit pre-integrated fragment shader

with increasing viewport and volume dimensions. This method is also computable in 1 pass
alone. Lit variations for post-classification and pre-integrated classification are detailed in
figures 3.23 and 3.24. These shaders are provided as a comparison to the non lit variants to
show how more instructions begin to complicate the simple fragment shaders and introduce
heavy burden. Dynamic branching on more recent graphics processors can be used to skip
expensive functions such as lighting, however incur a cost when taking each branch.

3.4.3 OopP Binary Segmentation

There are two methods of opaque lit iso-surface rendering, binary segmentation in the frag-
ment shader using conditionals (see Figure 3.25) and using the alpha test to perform the
segmentation step (see Figure 3.26). The fragment shader method of segmentation com-
pares incoming voxel scalar values to a predefined iso-value and performs lighting on these
segmented voxels.

pixel fragmentShader (fragment, volume, isoValue, light, textureMatrix)
voxel = volume (fragment.tex0)
if (voxel.a > isoValue.a)

normal = (voxel.xyz » 2.0 - 1.0) » textureMatrix.inverseTranspose
pixel = lighting{(normal, fragment.tex2, light)

else
discard

endif

Figure 3.25: O0P iso-surface fragment shader using conditionals

The alpha test performs lighting on all incoming samples and sets the fragment’s alpha
value to the voxel’s scalar value. Fragments that do not contribute to the iso-surface are
later discarded via the alpha test. Blending is not performed in hardware as the first hit of
a lit iso-surface will occlude all other samples along the ray. In contrast semi-transparent
iso-surface rendering requires blending to be enabled and the same fragment shader can be
utilized providing the final alpha value can be controlled.

pixel fragmentShader (fragment, volume, light, textureMatrix)
voxel = volume (fragment.tex0)
normal = (voxel.xyz x 2.0 - 1.0) * textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)
pixel.a = voxel.a

Figure 3.26: OOP iso-surface fragment shader for alpha test method

3.4 Comparison 87

Interpolated iso-surface rendering is accomplished by segmenting incoming slab samples
against a weighting table (see Figure 3.15) in the fragment shader. A generic interpolated
iso-surface approach is achieved through weighting tables since single lit iso-surfaces can
be extended to multiple iso-surfaces with no extra complexity. This allows for multiple
iso-surfaces and provides weights for interpolating the gradients within a slab to calculate
the exact iso-surface position. Multiple iso-surfaces without slab consideration reduces to
lit post-classification.

pixel fragmentShader (fragment, volume, weight, colour, light, textureMatrix)
voxelf = volume (fragment.tex0)
voxelb = volume (fragment.texl)
wght = weight (voxelf.a, voxelb.a)
if (wght > 0.0)
normal = (lerp(voxelf.xyz, voxelb.a, wght) » 2.0 - 1.0) =
textureMatrix.inverseTranspose
light.diffuse = colour (voxelf.a, voxelb.a)
pixel = lighting(normal, fragment.tex2, light)
pixel.a = light.diffuse.a
else
discard
endif

Figure 3.27: OoP multiple interpolated iso-surface fragment shader

Generally OOP algorithms under-sample the iso-surface when considering one sample lo-
cation and produce stair-casing artifacts. This method produces more accurate renderings
than single sample methods and allows the number of samples to accurately reproduce an
iso-surface to be greatly reduced. The algorithm is more expensive to compute since four
texture fetches are necessary, however the gain in quality against the number of sample
locations allows a relative increase in speed to accurately reproduce an iso-surface.

This method can not include any accelerations other than blending being disabled through
the graphics pipeline and additionally using dynamic branching on recent hardware to avoid
costly functions such as lighting and matrix multiplication. Early ray termination is not per-
formed as in the back-to-front rendering strategy, all iso-surface samples are lit and then
copied into the frame buffer. Iso-surface samples further along the ray then replace these
values and the last iso-surface sample encountered is used in the final image. Deferred
shading is possible by rendering the gradient normals into the frame buffer rather than lit
samples, however the shading of these iso-surface points with gradient normals must be
done in a second pass. This is not taken into account since the description is limited to
one pass. Empty space leaping is also not possible in this approach since each rasterized
fragment is used as a sampling location only and does not contain information for multi-
ple samples. An empty space leaping stategy would require that the rasterized fragments
be generated with respect to a space leaping function which is not currently possible on
graphics hardware.

3.4.4 OoP Results

The performance results for OOP rendering strategies are listed in table 3.6, rates are taken
with no volume rotation to allow maximum performance during voxel texture fetches, a

3.4 Comparison 88

decrease in performance can be observed for rotated views since memory alignment and
caching in GPU hardware are affected. Non power of two texture sizes also incur a slight
performance penalty due to the mip-mapping hardware implementation on GPU hardware.
The results in this table represent speeds for the respective iso-surfacing techniques for OOp
techniques since the conditionals within the fragment shader are set to condition code mode
which executes every instruction.

Clipping No clipping
Dataset (size) Viewport | .Slices | Pst Pre Iso Int| Pst Pre Iso Int
BuckyBall 5122 128 | 100 90 31 25|32 19 9 7
(32%) 256 58 45 16 13|16 9 5 3
see Figures 3.28 " 512 29 22 8 6| 8 4 2 1
and 3.29 1024 | 15 12 4 3 | 4 2 1 <1
10242 128 31 25 10 8 8 5 2 2
256 16 13 5 4| 4 2 1 1
512 8 6 2 2] 2 1 <1 <1
1024 | 4 3 1 1 1 <1 <1 <1
CTHead 5122 128 97 52 30 22|23 17 9 7
(2562 x 113) 256 | 48 29 15 12|14 8 5 3
see Figures 3.30 512 24 15 7 317 4 2 1
and 3.31 1024 | 12 8 4 1 3 2 1 <1
10242 128 30 21 10 7| 8 4 2
256 15 11 5 4| 4 2 1 1
512 8 6 3 212 1 <1 <1
1024 4 3 1 1 1 <1 <1 <1

Table 3.6: OOP rendering frame rates in frames per second, Pst is post-classification, Pre is pre-
integrated classification, Iso is single iso-surface rendering and Int is interpolated iso-surface
rendering. All frame rates are rounded downward.

Section 3.1.7 shows the cost of including dynamic branching. Lighting routines take the
most amount of time in the fragment shader as a matrix multiplication is required to trans-
form the normal into eye-space and additionally the ambient, diffuse and specular contri-
butions computed. Skipping this routine can accelerate the throughput and produce faster
frame rates where iso-surfaces are more sparse. Each hardware implementation performs
approximately the same in full branch and non branch mode and maximal performance
strategies vary for differing volume datasets and iso-values. The difference in performance
between the two settings is negligible for the iso-surfaces tested which occupy around 50%
of the volume. Very sparse volumes benefit from branching since the total number of cycles
accross all proxy geometry is reduced when including the dynamic overheads.

An additional consideration is the fragment discard that can affect the performance drasti-
cally depending on how the hardware deals with the instructions. On certain GPU implemen-
tations (4*" generation ATI chipsets) there is a 50% speedup. Some current implementations
will continue processing on a discarded fragment thought the remainder of the pipeline of-
fering no speed-up and other implementations completely discard the fragment from any
further processing.

3.4 Comparison

(e) 1024 pre-integrated (i) 64 post/pre-integrated

(f) 512 pre-integrated

(g) 256 pre-integrated

(d) 128 post (h) 128 pre-integrated (j) Error Key

Figure 3.28: BuckyBall dataset post-classification (a) to (d) and pre-integrated classification
(e) to (h) images rendered into a 5122 viewport with differing sample frequencies. Both (b) to
(d) and (f) to (h) are the difference images from (a) and (e) respectively to visualize artefacts
introduced with lower sampling rates. Both techniques (i) are compared to highlight sampling
differences and the error range for difference images is given in (j)

89

3.4 Comparison

(a) 1024 iso (e) 1024 int (i) 64 iso/int
(b) 512 iso (f) 512 int

(¢) 256 iso (g) 256 int

(d) 128 iso (h) 128 int (j) Error Key

Figure 3.29: BuckyBall dataset iso-surface (a) to (d) and interpolated iso-surface (e) to (h)
images rendered into a 5122 viewport with differing sample frequencies. Both (b) to (d) and (f)
to (h) are the difference images from (a) and (e) respectively to visualize artefacts introduced
with lower sampling rates Both techniques (i) are compared to highlight sampling differences
and the error range for difference images is given in (j).

90

3.4 Comparison 91

The purpose of the timings above are to compare the differing algorithms and are performed
on the same GPU hardware unit. Setting the branch mode to condition code mode will yield
a constant performance rate for all iso-surfaces. In general the alpha test mechanism of
segmentation is analogous to setting condition codes on most hardware, although a slight
performance gain might be noticed when using the alpha test as some burden is removed
from the fragment shader and the pipeline is more balanced. Iso-surfacing with the alpha
test can only describe one iso-surface at best and thus is demonstrated to compare per-
formance. Both the alpha test segmentation and the fragment shader segmentation set to
condition code mode perform lighting on all incoming fragments and represent the high-
est complexity for iso-surfacing. In contrast the fragment shader segmentation method set
to use branch instructions has a lower complexity since lighting equations can be avoided,
however branches can introduce more cycles into the overall rendering of all proxy geome-
try when the iso-surface chosen is not small.

The introduction of clipping planes observes an increase in speed based upon the execution
of shaders on less fragments. Since clipping planes are easily added to the rendering method
for any GPU hardware that is capable of volume rendering, this method represents the best
overall approach to reduce fragments presented to the fragment processor. The slab render-
ing techniques incur a performance penalty since at least an additional texel must be fetched
to obtain the front and back voxels. In pre-integrated rendering this is the only additional
requirement of the algorithm since a classification lookup will require one texel lookup in
both techniques.

Observing figures 3.28 and 3.30, the use of pre-integrated rendering techniques greatly in-
creases the quality of the final output for equivalent sampling distances. In most cases
including the outlined tests, pre-integrated outperforms post-classification for a trade off
between performance and output quality. The transfer functions used for comparison con-
tained small spikes to highlight post-classification schemes inability to accurately reproduce
high frequencies.

Comparing Figures 3.28(d) and 3.28(h) it can be observed that pre-classification yields the
best result, Figure 3.28(a) demonstrates the level of slicing a post-classification scheme
requires to accurately represent the same detail. Observing Table 3.6 the performance
throughput to represent the BuckyBall dataset with a high frequency transfer function cor-
rectly is much greater with pre-integrated techniques. Finally Figure 3.28(i) depicts a direct
comparison between post-classification (top left) and pre-integrated classification (bottom
right) for 64 sample slices.

For more complex volumes such as the CTHead dataset that contain higher frequencies
between samples, it can be observed that pre-integrated classification outperforms post-
classification to represent an accurate result (see Figure 3.30). The CTHead dataset is larger
than the BuckyBall dataset and requires more sampling to due to its dimensionality and ob-
Jject complexity. Figure 3.30(a) represents the level of sampling that is required to obtain an
accurate result with post-classification and Figure 3.30(g) represents the level of sampling
required to depict a result to the viewer that contains all the necessary structure information
without visible artefacts or under-sampled regions using pre-integrated techniques.

The performance for a representation that correctly portrays the objects detail without sam-

3.4 Comparison

(a) 1024 single (e) 1024 pre-integrated (i) 64 single/interpolated

(f) 512 pre-integrated

(¢) 256 post (g) 256 pre-integrated

(d) 128 post (h) 128 pre-integrated (j) Error Key

Figure 3.30: CTHead dataset post-classification (a) to (d) and pre-integrated classification (e)
to (h) images rendered into a 5122 viewport with differing sample frequencies. Both (b) to
(d) and (f) to (h) are the difference images from (a) and (e) respectively to visualize artefacts
introduced with lower sampling rates. Both techniques (i) are compared to highlight sampling
differences and the error range for difference images is given in (j).

92

3.4 Comparison

(a) 1024 iso (e) 1024 int (i) 256 iso/int
(c) 256 iso (g) 256 int
(d) 128 iso (h) 128 int (j) Error Key

Figure 3.31: CTHead dataset iso-surface (a) to (d) and interpolated iso-surface (e) to (h) images
rendered into a 5122 viewport with differing sample frequencies. Both (b) to (d) and (f) to (h)
are the difference images from (a) and (e) respectively to visualize artefacts introduced with
lower sampling rates. Both techniques (i) are compared to highlight sampling differences and
the error range for difference images is given in (j).

93

3.4 Comparison 94

pling artefacts and uﬁder-sampling errors is again better with pre-integrated classification.
Finally a more complex transfer function is depicted in figure 3.30(i) which compares post-
classification (top left) and pre-integrated classification (bottom right) for 64 sample slices.

Figures 3.29 and 3.31 depict iso-surface rendering techniques for theBuckyBall and CTHead
datasets respectively. Banding or stair-casing can be observed in Figures 3.29(d), 3.29(c)
and 3.31(d). This is due to under-sampling the iso-surface in the z direction. The result of
this under-sampling is usually a banding effect since fragments that are over the iso-value
are rendered on an image aligned proxy slice when the previous slice’s iso-surface does not
run directly on the neighbouring fragment.

Interpolating with a weighting between front and back samples when considering a slab
instead of a single sample can remove this effect by lighting exactly on the iso-surface and
not using a gradient that is not computed in respect of the exact iso-surface. A comparison of
accurate results 3.29(b) and 3.29(h) for single sampled locations and slab sampled locations
shows that interpolating the gradient to lie on the iso-surface between a front and back
sample yields greater performance. This effect is also noticed on higher frequency datasets
such as the CTHead to a greater degree (see Figures 3.31(a) and 3.31(g)). Finally the two
techniques are shown together in Figure 3.29(i) and 3.31(1).

3.4.5 Iom Rendering Framework

The multiple pass approach allows loops to be constructed to compute ray traversal of a
volume dataset. Both front-to-back and back-to-front ordering can be achieved, however
front-to-back ordering is considered here to take advantage of early ray termination, empty
space leaping and adaptive sampling. The OOP rendering approach cannot incorporate these
acceleration methods. This technique is a hybrid of the techniques described in section
34.1.

Ray setup for orthographic projection is computed with two initial passes. The bounding
box of the volume is issued as a list of polygons which are passed to the GPU and rasterized
into fragments for processing. This ensures unnecessary fragment processing outside the
volume is avoided. The depth buffer is used for hidden surface removal so that there is only
one fragment for each corresponding final image pixel. The subsequent passes compute the
ray traversal through the volume. Each step along all rays are computed in parallel using
the GPU fragment shading pipelines. An occlusion query is used to determine when all
rays have been completely traversed. The occlusion query returns the number of fragments
processed in each pass. There are three floating point buffers employed which are set to
be render to texture targets. Reading and writing these texture maps cannot be performed
asynchronously, and therefore each render target is set to read only or write only in a partic-
ular pass. Each render target’s resolution matches that of the final frame buffer for display
to ensure that texels in auxiliary buffers correspond to final image pixels in the frame buffer.

The first pass renders the bounding box geometry with the depth test set to leave the front
faces (see Figure 3.32(a)). This pass is rendered into a floating point render target for use
as a texture map in the next pass, and the values for each fragment represent the raster-
ized object space coordinates obtained from the corresponding vertex coordinates from the

3.4 Comparison 95

(a) Front (b) Back

Figure 3.32: IOM proxy geometry, front and back faces with colours representing sample

locations for ray entry and exit positions

bounding box geometry. Analogous to the explanation of OOP approaches, the viewport is
set in the [—1.75,1.75]2 range. The vertex co-ordinates for the bounding box are issued in
the [—1, 1]3 range to allow for arbitrary rotations of the volume.

The second pass renders the bounding box geometry again with the depth test set to leave the
back faces, which are the corresponding exit points of the volume (see Figure 3.32(a)). The
texture map from the first pass is accessed to obtain the entry points into the volume. The ray
direction and length is then computed in the fragment shader of the second pass and written
into another texture map (see Eqn 3.10). The normalised ray direction is usually stored,
however in this implementation the normalised vector representing the ray traversal through
the volume bounding box is multiplied with the step size in order to reduce a computation
at each sample location.

The parametric ray equation (see Eqn 3.10) is then directly computable in each sampling
step by adding the step size adjusted direction vector, multiplied with the current sample
index, with the starting location. Additionally if multiple samples are considered in each
step, a simple addition to the current sample location can be performed. Subsequent passes
that compute the ray traversal render the front faces of the bounding box to allow access to
the starting point of each ray.

r(t) = s+ dt (3.10)

where ¢ is the distance along the ray, s is the staring location and d is the direction vector.

dir(f, b's) = (b- f)s

length(f,b) = 16 - fl

3.4 Comparison 96

Front faces

Back faces
[DIR]

Ping Pong

"'W ritten"

fragments?

Framebuffer

Figure 3.33: Ping-pong rendering scheme, red is texture access and black is flow path

fragment vertexShader(vertex, modelviewMatrix)
fragment.texO = vertex.texO
fragment.tex]l = vertex.pos * modelviewMatrix.inversetrans

Figure 3.34: Iom vertex shader

where /, b € M3 represent the co-ordinates of the entry and exit points of the volume bound-
ing box (front and back), s € R represents the stepping distance.

Two texture map render targets are used to compute blending via a ping-pong rendering
scheme (see Figure 3.33). Both render targets are first initialized to the starting criterion of
front-to-back compositing (see Eqn 2.19). At each pass a sample along the ray is computed
and composited with the result of the previous pass or initial setting. This ping-pong ren-
dering scheme can be used to compute direct volume rendering algorithms. Simply using
the ping-pong rendering scheme alone allows increased accuracy during blending opera-
tions due to increased precision being used in computations. The fixed function hardware
pipeline allows only 8 bit (16 bit by using offscreen buffers on 4¢1 generation hardware)
precision and the ping-pong scheme allows full 32 bit precision. However the overhead to
use multiple render targets and switch between them is greater than an OOP method with
off-screen buffers using native 16 bit blending operations. Intermediate passes can be inter-
leaved between the main ping-pong passes to allow the inclusion of speed-up techniques.

It is possible to not use a ping-pong rendering scheme and blend directly into the frame
buffer, however this reduces to 8 bit quantised blending per colour channel, and additionally
incurs the extra burden of blending further along the pipeline which results in a decreased
performance. Using the ping-pong rendering scheme to perform compositing, full 32 bit
precision is available which is not possible by rendering into the frame buffer directly. The

3.4 Comparison 97

previous description of OOP techniques (see section 3.4.1) mentions that it is possible to ren-
der into a floating point rendering target using two passes, however GPU hardware currently
is only capable of blending up to 16 bit precision.

These increased precision blending operations in the specialised segment of the GPU pipeline
incur an additional performance loss where the multiple pass ping-pong approach allows 32
bit precision by default as the fragment processors operate natively at 32 bits. In practice the
rendering targets used in this algorithm have to be 16 bit floating point types as current GPU
hardware does not allow 32 bit floating point rendering targets so the results are quantised,
however this quantisation occurs after the result is computed and offers the best available
precision on current GPU hardware implementations without computing the entire ray in a
single fragment shader.

To allow for successful inclusion of the speed-up mechanisms of empty space leaping and
early ray termination, intermediate passes are inserted after each main ping and pong pass.
These passes are used to set the depth buffer and reject future fragments from main passes
for processing based on the early z test. The early z test suppresses fragment processing
for a given fragment by executing the depth test before fragment processing. Fragment
shaders writing their own depth value cannot utilize the early z test because the result of
the fragment shader might effect its passing or failing. Fragment shaders writing their own
depth information must therefore be subjected to the depth test after fragment processing
which is present in all GPU pipelines. Typically intermediate pass fragment shaders contain
many less instructions and can be executed quickly. The more expensive shaders in the
main passes are then successfully suppressed with a small overhead. This overhead can be
negated because the complexity of ray sampling is reduced. The reduction in complexity is
dependent on the volume dataset and additionally the transfer function.

In both original implementations [KW03, RGW 03] multiple ray steps are computed in one
pass, this mechanism can greatly increase the throughput of the algorithm since altering
the rendering target is a costly operation as the pipeline must finish before it occurs and
additionally the geometry list reprocessed which results in a non constant usage of the GPU
pipeline as no fragment shading will occur until the geometry is rasterized. In contrast
the OOP techniques offer a constant throughput with minimal overhead at each stage of the
pipeline, however more complicated algorithms (e.g. lighting) begin to swamp the fragment
stage of the pipeline. A balance can be achieved by using differing quantities of multiple
ray steps per pass. Older hardware generations only allow a maximum of four samples per
pass because the maximum texture instructions in a single fragment shader are reached.
More modern architectures allow many more texturing instructions which allows greater
flexibility in balancing the pipeline. In practice around eight steps for each pass appear
optimal. This is expected to increase with newer hardware implementations. A trade off is
evident in this approach where the more steps taken in one pass can reduce the overheads
of each pass but also extend the amount of samples processed before early ray termination
can be performed.

3.4 Comparison 98

pixel fragmentShader (fragment, volume, dir, res, transfer, step)
ray = dir(fragment.wpos) ’
blend = res(fragment.wpos)
raypos = fragment.tex0 + (ray.xyz * step.aaa)
if (length(ray.xyz x step.aaa) < ray.a)
voxel = volume {(raypos)
output = transfer(volume.a)
blend = composite(blend, output)
raypos += ray.xyz

// further samples

else
pixel = blend
pixel.a = 1.0
endif

Figure 3.35: IOM post-classification fragment shader

3.4.6 I0M Fuzzy Segmentation

Fuzzy segmentation is achieved with the ping-pong rendering scheme enabled for blending.
Standard post-classified 1D lookup tables (see Figure 3.35) and pre-integrated 2D lookup
tables (see Figure 3.36) are both possible. The complexity of the pre-integrated rendering
method is reduced since multiple ray steps are computed in one pass, which enables re-use
of previously fetched voxel values. In general n — 1 less samples are required in a single
pass that computes n steps along the ray.

Early ray termination is performed by examining the result of the previous main rendering
pass. The texture map containing the result used in the last main pass is queried to fetch the
texel corresponding to the fragment that was just processed to obtain the alpha component.
Any update to this fragment will not have been composited into the next buffer, if the last
pass filled the opacity, the depth buffer will still get updated to allow the next shader to
pass. This will allow both buffers to contain the correct result, and each subsequent pass
will result in no main fragment shader being executed. The texel is examined to determine
if the opacity is full and no further compositing operations will effect the final result. Based
upon this test the depth buffer is updated to control the next pass access to the resulting
fragment via the early z test.

Additionally the direction texture map is queried to determine if the next sample will fall
outside of the volume bounding box by querying the alpha component which contains the
length of the ray. In the original implementation [KW03, RGW*03] only a single depth
buffer is used with the depth test set to allow fragments with a greater depth. Since no
depth output is changed in main passes, on passing the early z test, the depth buffer will
be updated with the fragments own rasterized depth. This requires that the depth buffer is
reset before each intermediate pass since the front face geometry being rendered with the
intermediate shader pass will not pass the final depth test even though the fragment shader
is executed. By setting the depth test function to greater or equal, the depth buffer does not
require clearing, which increases performance.

Empty space leaping can be performed by adapting the intermediate passes to include an
additional texture lookup into an empty space data structure. The original implementation

3.4 Comparison 99

pixel fragmentShader (fragment, volume, dir, res, transfer, step)
ray = dir (fragment.wpos)
blend = res (fragment.wpos)
raypos = fragment.tex0 + (ray.xyz * step.aaa)
if (length(ray.xyz x step.aaa) < ray.a)
voxelf = volume (raypos)
raypos += dir.xyz
voxelb = volume (raypos)
output = transfer(voxelf.a, voxelb.a)
blend = composite(blend, output)
raypos += dir.xyz

// further samples

else
pixel = blend
pixel.a = 1.0
endif

Figure 3.36: I0M pre-integrated classification fragment shader

[KWO03] described using one level of a min-max octree structure at %th of the original res-
olution of the volume dataset. This texture map is queried for the minimum and maximum
voxel values in the 8 x 8 neighbourhood. The minimum and maximum values are then used
as dependent texture coordinates into an additional texture map that is generated against the
current transfer function as a pre-processing step. This texture map is encoded to contain a
binary value representing empty space or samples to be considered. When transfer updates
are issued, this texture map must be recomputed. The intermediate pass is used to access
this texture map from information obtained from the octree level structure. For this purpose
the depth buffer must be cleared before intermediate passes since empty space skipping
must be continually computed. This method requires that empty space leaping is examined
at each pass. Consideration at each pass is required since no correspondence between ray
direction and current octree level cell can be guaranteed without heavy overhead to compute
exactly how much space can be skipped along the ray direction towards the boundary for
the next octree level cell.

3.4.7 IoM Binary Segmentation

Fully opaque iso-surfaces do not require blending since the first sample encountered along
a ray that contributes to an iso-surface will occlude all other samples along the ray. The
multiple pass mechanism can accelerate opaque iso-surface rendering as a special case due
to no blending being required and the inclusion of early ray termination. Additionally a
localised version of deferred shading can be employed when analysing multiple samples in
one pass, since only one shading calculation is required to correctly render the iso-surface.
The looped passes mechanism can be cut down to allow one rendering buffer as the only
requirement for the ping-pong scheme is to facilitate blending.

IoM iso-surface also offers an improvement in interpolated iso-surfacing since each main
pass will compute multiple rays which allows reuse of previous values and reduces the
amount of texture fetches performed.

3.4 Comparison 100

pixel fragmentShader (fragment, volume, dir, step, isoValue, light,
textureMatrix)
ray = dir (fragment.wpos)
raypos = fragment.tex0 + (ray.xyz * (step.aaa + samples))
if (length(ray.xyz * step.aaa) < ray.a)
voxel = volume (raypos)
if (voxel.a < isoValue.a)
temp = voxel;
endif
raypos -= dir.xyz

// further samples
if (temp.a > isoValue.a)

normal = voxel.xyz % 2.0 - 1.0 » textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)

else
discard
endif
else
pixel.a = 1.0
endif

Figure 3.37: IOoM iso-surface fragment shader

The multiple pass scheme outlined computes front-to-back ray traversal. Multiple sampling
per pass in the fragment shader can be locally adjusted to compute back-to-front ordering
to enable the first iso-surface hit to be recorded in a temporary variable (see Figures 3.37
and 3.38). This reverse sampling is necessary since no early ray termination is computed
in the main pass, instead this is performed in the intermediate pass. Since no ping-pong
rendering scheme is required an early ray termination can additionally stop the intermediate
passes for a given fragment when the depth buffer is updated. These iso-surface rendering
performance improvements are especially suited to older hardware that must evaluate all
instructions and cannot issue dynamic branch instructions.

A localized deferred shading is computed in each main pass and therefore does not require
that dynamic branching is computed in the main sampling of the ray because their are few
instructions to consider. A dynamic branch can be computed for the lighting equation at the
end of the shader on newer hardware which can offer an improvement in cases where the iso
surface is located towards the back of the volume. Older hardware must use condition codes
to skip this lighting equation which involves executing the instructions, however this still
offers an improvement over the OOPstrategy due to reduced numbers of lighting calculations
along the ray. Full deferred shading can be performed by rendering the gradient normals
into the frame buffer for an additional lighting pass. This will require clearing the z buffer
and additional shaders.

Empty space leaping is performed by turning of the main passes by setting the z buffer
accordingly with the intermediate pass shader. Any empty space leaping therefore must be
computed in the intermediate shader. An octree structure can be used to perform empty
space leaping analogous to the description of fuzzy classification (see section 3.4.6), how-
ever this structure must be queried at regular intervals since no correspondence from sam-
pling position to the next octree cell along the ray can be guaranteed without costly inter-
section calculations. The intermediate shader must be kept as simple as possible to facilitate

3.4 Comparison 101

pixel fragmentShader (fragment, volume, dir, weight, colour, step, isoValue,
light, textureMatrix)
ray = dir (fragment.wpos)
raypos = fragment.tex0 + (ray.xyz * (step.aaa + samples))
if (length(ray.xyz * step.aaa) < ray.a)
voxelb = volume (raypos)
raypos -= dir.xyz
voxelf = volume (raypos)
wght = weight (voxelf.a, voxelb.a)
if (wght > 0.0)
tempf = voxelf
tempb = voxelb
tempwght = wght
endif

// further samples

if (tempwght > 0.0)
normal = (lerp(tempf.xyz, tempb.xyz, tempwght) *-2.0 - 1.0) =*
textureMatrix.inverseTranspose
light.diffuse = colour (voxelf.a, voxelb.a)
pixel = lighting(normal, fragment.tex2, light)

else
discard
endif
else
pixel.a = 1.0
endif

Figure 3.38: IOM interpolated iso-surface fragment shader

fast rendering.

Roettger et al. [RGW™03] use multiple render targets to encode the current sampling po-
sition, this mechanism allows for much greater flexibility in empty space skipping since an
offset can be computed and rendered into this buffer to facilitate a complete skipping of this
space. Distance fields may be rendered in this manner to take advantage of distance infor-
mation contained in the sampled distance field (see section 3.2.4). However the original
implementation does not compute empty space skipping. No wasted intermediate passes
are necessary with this approach since the offset can be performed for each sample in the
main shader. Updated sampling conditions can then be written into the ray buffer along
with blending into the image buffer with multiple render targets.

3.4.8 IoM Results

The visual quality of direct volume rendering with the multiple pass strategy is similar to
that of OOP approaches. The only difference being that when the volume is under-sampled,
artifacts appear non-uniform since rays are not started from the same plane which results in
samples not being taken on equidistant planes throughout the volume. Starting the rays from
differing planes does produce more meaningful renderings when slightly under-sampling
the volume since the perception of depth is not interrupted by apparent striping effects in
the z direction. The quality of rendering is similar to the previous examples in Figures 3.28
-3.31.

3.4 Comparison 102

Dataset (size) Viewport | Samp | Pst Pre Iso Int
BuckyBall 512° 128 | 38 35 74 55
(32%) 256 | 22 18 43 32
see Figures 3.28 512 12 10 24 17

and 3.29 1024 | 4 5 12 9

10242 128 7 7 10 7

256 4 3 5 4

512 1 1 2 2

1024 | <1 <1 1 1
CTHead 512° 128 | 36 34 70 56
(2562 x 113) 256 | 20 18 40 30
see Figures 3.30 512 11 10 22 16

and 3.31 1024 | 5 5 11 8

10244 128 8 7 9 7

256 4 4 5 3

512 2 2 2 2

1024 | 1 1 1 1

Table 3.7: oM frame rates in frames per second, Pst is post-classification, Pre is pre-integrated
classification, Iso is single iso-surface rendering and Int is interpolated iso-surface rendering.
All frame rates are rounded downward.

The performance results are listed in Table 3.7, rates are taken with no volume rotation to
allow maximum performance during voxel texture fetches, a decrease in performance can
be observed for rotated views since memory alignment and caching in GPU hardware are
affected. This technique may.also process more fragments. With the inclusion of early ray
termination this value could increase as every different view of the volume can affect this
property. Non power of two texture sizes also incur a slight performance penalty due to the
mip-mapping hardware implementation on GPU hardware.

A further increase in speed could be included by negating to process the first two passes if
the viewing parameters do not change per frame, however to compare this strategy to others
the first two passes are computed for every frame. The results here are computed with-
out empty space leaping since for direct volume rendering and iso-surfacing approaches,
the octree is sampled at every intermediate pass which introduces a large texture lookup
overhead and additionally distance field space leaping is not considered for iso-surfaces as
multiple render targets are required which further adds to the burden of computation. These
measures should be considered for very sparse datasets and large scale rendering problems,
the general rendering problems explored in this thesis perform slower with the inclusion of
these strategies.

Multiple passes introduce overheads to consider when processing each sample. These over-
heads are required to correctly perform blending and ray stepping, extra texture lookups are
required to fetch the previous passes result for blending and the ray direction and step. Ad-
ditional instructions are also required to compute blending and additionally to identify rays
that have left the volume bounding box. Therefore the instructions to be executed by this al-
gorithm is greater than the more simplistic OOP. In worst case scenarios such as when there

3.4 Comparison 103

are no voxels to render and no early ray termination is performed, multiple pass algorithms
are significantly slower than the OOP counterpart. The inclusion of empty space leaping
can accelerate this case significantly, the worst case then becomes when every voxel must
be considered and no early ray termination is possible. The rendering of the front faces of
the volume bounding box to reduce fragments to process can be seen as an analogous to
clipping planes for the volume bounding box in OOP techniques and offer no improvement.
With the inclusion of empty space leaping however, multiple pass algorithms can perform
better than the constantly performing OOP approaches.

Multiple pass approaches also benefit from not requiring a dynamic loop instruction as the
loop is created through the multiple pass approach, conditional expressions are generally
simplistic and do not contain many instructions and thus can be evaluated in condition
code mode. In some cases, such as locally deffered shading strategies a dynamic branched
conditional expression can offer an improvement in rendering sparse datasets.

3.4.9 1I0s Rendering Framework

The 10s approach relies on newer hardware (5¢* generation, NVIDIA 6800) that is capable
of dynamic branch instructions in the fragment shader. The entire algorithm is computed
in a single pass within the fragment shader which allows greater flexibility and reduced
overheads. No intermediate passes are necessary with auxiliary buffers which increases
performance due to no switching between rendering buffers and reading in previous results
using expensive texture instructions. The pre-integrated classification and multiple iso-
surface algorithms also benefit from reduced texture lookups analogous to 10M rendering
(see section 3.4.5). In addition the memory footprint of this approach is restricted to lookup
tables and volume datasets since the inclusion of acceleration techniques can be computed
locally without an increase in memory reserved for viewport sized buffers.

The computed precision is also the best possible since no quantising occurs for blending
operations as the blending is computed locally in the fragment shader. This is analogous to
10M rendering, however since a maximum of 16 bits can be stored in texture maps currently,
the algorithm quantises the blending operations for every n samples that is made in one pass.
The OOP approach also quantises at every sample due to blending directly into the frame
buffer (see section 3.4.1). The precision with this approach can be increased, however in
practice makes the algorithm more complicated by using off-screen rendering targets as
in the multiple pass approach. The greatest precision with this approach is currently 16
bits. In addition to these advantages over the other algorithms, 10S volume rendering offers
early ray termination, empty space leaping and adaptive sampling without the overhead of
computing intermediate passes to perform these functions, which in most real world cases
does not provide a large speed-up because of the heavy buffer overheads and additional
texture fetches involved.

The fragment shader loop instruction is only capable of providing 256 iterations at most
since the loop counter is 8 bits. Stegmaier et al. [SSKEOS5] allow for more samples to
be taken along the ray by nesting two loops to allow 65536 iterations. Break instructions
are provided to exit the loop early in cases where the maximum number of iterations is
not required, or early ray termination is to be performed. This method does rely on the

3.4 Comparison 104

break instructions being honoured and only recent hardware and driver implementations
(5”‘ generation, NVIDIA 6800, Release 80 drivers) provide this mechanism. The overall
performance of shaders that include loops depends heavily on the number of instructions
to be executed inside the loop. Further branch instructions inside the loops also affect the
performance of the overall algorithm. Since any branch currently has a high overhead (see
section 3.1.7) it is necessary to balance the pipeline with further samples as an analogous
to a speed-up mechanism in IOM techniques (see section 3.4.5). This approach reduces the
number of cycles that loops require by computing more samples for every expensive branch
instruction.

Considering the necessary pipeline balancing to achieve maximal throughput and the care-
ful choice of condition code registers or branch instructions for bodies of conditionally
executed instructions, it is clear that there is an optimal number of instructions to pad each
iteration of a loop. In practice this is more than one sample in most volume rendering ap-
proaches such as fuzzy classification and iso-surface rendering. These extra instructions per
loop are built up using more samples in a single loop and thus provide a neat solution to one
of the problems with this method. That is the maximum number of samples possible with a
single loop instruction. By including 4 samples in a loop the 8 bit loop counter that allows a
maximum of 256 iterations will now compute 1024 samples along a ray. Increasing this to 8
samples per loop instructions allows 2048 samples along the ray, which in most real world
applications is more than sufficient. The following descriptions of each volume rendering
technique are computed with one loop instruction and several samples per iteration.

For comparison to the IOM techniques in section 3.4.5, the same mechanism for computing
the ray direction is presented. This allows many less fragments to be considered as only
the volume bounding box is rendered. This mechanism can be computed at the start of the
fragment shader for both orthographic and perspective rendering by transforming either the
texture co-ordinates of an image aligned quadrilateral or alternatively a point passed as a
uniform parameter for perspective volume rendering. Both of these methods use a image
aligned quadrilateral to provide the fragments to be considered. The overhead of the method
outlined in section 3.4.5 to provide a texture map for ray direction and using bounding
box geometry texture co-ordinates is used here to reduce the overall fragments to process
and compare the actual rendering times by performing the same ray setup. Generally the
image aligned quadrilateral will perform better with an appropriate fragment kill instruction
where fragments outside the bounding box are encountered. This speed-up does rely on
the hardware terminating the fragment and not writing a blank colour into frame buffer
memory. This faster performance is due to having one less texture instruction per fragment
and additionally not performing any buffer swapping during the first two passes.

3.4.10 I0S Fuzzy Segmentation

Post-classification is computed with a 1D transfer function and considered for one sample
per ray step. Figure 3.39 shows the single pass post-classification fragment shader that com-
putes both early-ray termination and detects the ray leaving the volume bounding box. Full
32 bit precision is present for blending operations. Pre-integrated classification is depicted
in Figure 3.40 a 2D pre-integrated classification table is used to compute slab rendering.

3.4 Comparison 105

pixel fragmentShader (fragment, volume, dir ,transfer)
direction = dir (fragment.wpos)
blend = (0.0, 0.0, 0.0, 0.0)
rayPos = fragment.tex0
while (true)
voxel = volume (raypos)
output = transfer(voxel.a)
blend = composite (output, blend)
rayPos += direction

// further samples

if (direction.a < length(raypos - fragment.tex0) || blend.a > 0.98)
break
endif
endwhile
pixel = blend

Figure 3.39: 10S post-classification fragment shader

Two samples for each location along the ray are used to address the 2D texture map. A
speed-up is achieved for this method since the previous sample can be used as a sample in
the next ray location. This reduces the amount of texture fetches necessary to compute this
algorithm. This mechanism also includes early-ray termination and detects the ray leaving
the volume bounding box.

These speed-ups are the most efficient possible in the 10S case since the whole ray is com-
puted in the fragment shader which allows half of the texture fetches to be removed in the
case of slab sampling methods. Additionally the early ray termination can be locally in the
shader which removes the burden of requiring an intermediate pass.

Empty space skipping can be included in 10S rendering by issuing a further texture map
defining an octree level analogous to the description of 10M rendering (see Section 3.4.9).
As with the previous explanation, this method does not allow a significant speed-up since
conditionals are used to control sampling. A texture fetch is required per sample since
empty space cannot be leaped effectively due to no guarantee that skipping the cell size will
not skip over important samples. This is due to sampling positions not being in the centre
of a cell.

3.4.11 Io0sS Binary Segmentation

Opaque Iso-surface rendering is achieved without blending operations being performed in
the fragment shader (see Figure 3.41) by stepping front-to-back and detecting the first iso-
surface intersection. This iso-surface intersection is then shaded in a deferred manner at the
end of the fragment shader. No shading is performed if the iso-surface is not intersected
by using a conditional expression. This offers the best avaiable deferred shading approach
since the whole ray can be sampled before any shading which requires additional passes in
both 0OP and 10M rendering. Additionally extra information is available such as position
and weighting function results. This removes the requirement to perform additional texture
fetches or store the ray position in additional buffers, such as 10M approaches which would

3.4 Comparison 106

pixel fragmentShader (fragment, volume, dir, transfer)

direction = dir (fragment.wpos)

blend = (0.0, 0.0, 0.0, 0.0)

rayPos = fragment.tex0

voxelf = volume (raypos)

rayPos += direction

while (true)
voxelb = volume (raypos)
output = transfer(voxelf.a, voxelb.a)
blend = composite (output, blend)
voxelf = voxelb
rayPos += direction

// further samples

if (direction.a < length(raypos - fragment.tex0) || blend.a > 0.98)
break
endif
endwhile
pixel = blend

Figure 3.40: 10S pre-integrated classification fragment shader

require more multiple rendering target buffers to be stored and rendered to account for
position.

Early ray termination and termination upon leaving the bounding box is also computed.
Opaque slab style iso-surface rendering benefits from less texture lookups due to the previ-
ous sample being available without an additional texture fetch (see Figure 3.42). This also
applies to the multiple opaque iso-surface rendering technique. Additional instructions can
be included to perform blending between each sample with conditional lighting to com-
pute semi-transparent volume rendering. In practice this is more expensive since dynamic
conditionals are required to control whether lighting is applied to samples encountered.

Empty space skipping can be performed with 10S fragment shading with relative ease. The
position along the ray can be adjusted by altering the ray step increment. This does not
intrinsically suit an object order data structure such as an octree, however proves useful
for distance field rendering with empty space leaping (see section 3.2.4). The equivalent
empty space skipping in IOM approaches requires additional multiple rendering buffers to
update the sample locations whilst performing empty space skipping for distance fields.
Empty space leaping in slab based rendering approaches does require additional overhead
since the space between respective samples is unknown. Therefore the reuse of previously
fetched results cannot be employed and it is possible that extra texture fetches are necessary.
However the scalability of performing empty space leaping on larger rendering problems is
improved.

3.4.12 I0S Rendering Results

The visual quality of the techniques presented for 10S techniques offer the best available on
current GPU hardware due to full 32 bit precision being used when using tri-linear interpo-
lation and pre-integrated classification and post-classification. Higher order techniques not
covered here such as tri-cublic interpolation will also exhibit better visual results due to full

3.4 Comparison

107

pixel fragmentShader (fragment, volume, dir, isovValue, light, textureMatrix)
direction = dir (fragment.wpos)
rayPos = fragment.tex0
while (true)
voxel = volume (rayPos)
if (voxel.a > isoValue.a)
break
endif
rayPos += direction

// further samples

if (direction.a < length(rayPos - fragment.tex0)) {

break
endif
endwhile
if (voxel.a > isoValue.a)
normal = (voxel.xyz * 2.0 - 1.0) * textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.texl, light) ’
endif

Figure 3.41: 10s isosurface fragment shader

pixel fragmentShader (fragment, volume, dir, weight, colour, light,
textureMatrix)
direction = dir (fragment.wpos)
rayPos = fragment.tex0
voxelf = volume (raypos)
rayPos += direction
while (true)
voxelb = volume (rayPos)
wght = weight (voxelf.a, voxelb.a).a
if (wght > 0.0)
break
endif
voxelf = voxelb
rayPos += direction

// further samples

if (direction.a < length(rayPos - fragment.tex0))

break
endif
endwhile
if (wght > 0.0)
normal = (lerp(voxelf.xyz, voxelb.xyz, wght) = 2.0 - 1.0) =«

textureMatrix.inverseTranspose
light.diffuse = colour(voxelf.a, voxelb.a)
pixel = lighting(normal, fragment.texl, light)
endif

Figure 3.42: 10S interpolated isosurface fragment shader

3.4 Comparison 108

32 bit blending. Generally the volume datasets used are 8 or 16 bit precision which means
the effects are not visually noticeable on most small viewport renderings. The quantised
versions do introduce small artefacts that this technique avoids. The images presented in

Figures 3.28 - 3.31 can be considered in most circumstances comparable to those of this
technique.

Dataset (size) Viewport | Samp | Pst Pre Iso Int
BuckyBall 512° 128 | 57 51 60 30
(32%) 256 | 24 24 33 17
see Figures 3.28 512 |16 15 18 10
and 3.29 1024 | 7 7 10 5
10242 128 7 8 19 5
256 4 5 10 3
512 2 2 5 2
1024 | 1 1 2 1
CTHead 5122 128 | 54 47 55 27
(2562 x 113) 256 | 22 22 22 16
see Figures 3.30 512 |15 14 17 9
and 3.31 1024 | 7 8 9 5
10244 128 8 7 10 6
256 4 4 5 3
512 2 2 3 1
1024 | 1 1 1 <1

Table 3.8: 10S frame rates in frames per second, Pst is post-classification, Pre is pre-integrated

classification, Iso is iso-surface rendering and Int is interpolated iso-surface rendering. All rates
are rounded down.

The timings for this technique are depicted in Table 3.8. Frame rates are taken with no
volume rotation to allow maximum performance during voxel texture fetches, a 10% to
15% decrease in performance can be observed for rotated views since memory alignment
and caching in GPU hardware are affected. With the inclusion of early ray termination this
value could increase as every different view of the volume can affect this property. Non
power of two texture sizes also incur upto a 10% performance penalty due to the mip-

mapping hardware implementation on GPU hardware being optimised for power of two
sizes for caching.

A 50ms increase in speed per frame could be included by negating to process the first two
passes if the viewing parameters do not change per frame for a 5122 viewport since the first
two passes run at over 100 frames a second when isolated, however to compare this strategy
to others the first two passes are computed for every frame. Additionally no empty space
leaping is performed for these results as an octree based data structure requires constant
sampling and introduces overheads by adding additional cycles on the GPU for each loop
(see 3.4) since dynamic branching must be employed instead of condition code branching
within the ray sampling loop. Distance field space leaping is explored later in this thesis.

The main expense with this approach is the loading of the fragment shading stage of the
hardware pipeline with lengthy fragment shader code and in addition the necessity to in-

3.5 Summary 109

clude dynamic branching in certain cases such as looping and conditional expressions that
exhibit large blocks of instructions. However the scalability is improved over other tech-
niques and future hardware will improve the costs involved with dynamic conditionals.

3.5 Summary

In this chapter a variety of volume rendering techniques for GPU’s are explored for both
fuzzy and binary segmentation tasks. This chapter reviews existing strategies for the vol-
ume rendering pipeline on the GPU, compares these methods with analysis of performance
and quality with implemented hybrids of these algorithms. Accurate measurements of per-
formance have been taken for hybrid implementations of well known rendering approaches
with a description of hardware specific issues and limitations for older and state of the art
hardware. Improvements in several areas have been outlined for inclusion in implementa-
tions of GPU volume rendering pipelines based on these techniques. Further investigation
is given to improvements and performance increases for each volume rendering technique.
The implemented algorithms compute standard volume rendering problems and act as a
basis for further expansion and additional rendering techniques.

The quality of rendering is greatly increased by using slab based rendering strategies, and
as a result less samples need to be considered for a quality image which gives rise to the
increased performance. In general for each separate classification task, slab rendering has
proven to be more effective in terms of both quality and speed. The additional overheads
are pre-processing problems that occur on parameter changes such as iso-value or transfer
function changes. Interactive rates are still observed in these cases.

The importance of balancing the pipeline for maximal throughput was outlined with tech-
niques to achieve this effectively. The difference between condition codes and branch in-
structions is discussed as a balancing mechanism along with multiple samples per pass /
iteration. In general, a formula to arrive at a specific formation of these techniques for a
specific hardware implementation is difficult as every hardware implementation and hard-
ware generation will handle these important instructions differently. It is highly probable
that future generations will include more sophisticated pipelining strategies to counteract
branch instruction overheads. Equivalent processors for CPU’s now take advantage of out
of order execution and sophisticated branch predictions, currently the GPU processors are
far more simplistic in nature, however future implementations will strive to combat such
issues as programmers wish to implement more advanced fragment shaders. The volume
rendering problem on GPU’s continues to be at the front of shader technology, as each new
generation allows more to be performed effectively. However the outlined techniques will
continue to be the basis of hardware accelerated volume rendering tasks.

The OOP algorithm is the most straightforward to implement. This method also works on
all hardware generations capable of 3D texture mapping with trilinear interpolation. Older
hardware generations can also be used by adapting the 3D texturing techniques for 2D slice
texturing techniques. These 2D algorithms are faster than their 3D counterparts due to the
memory alignment of the 2D texture maps as in the shear-warp rendering algorithm. The
OOP technique offers the best multi-platform algorithm and additionally in some cases the

3.5 Summary 110

fastest due to minimal instructions. The respective quality is limited with this approach how-
ever since the blending hardware is used, and without rendering into an off-screen buffer, is
quantised to 8 bits per sample. Multiple passes have been discussed to increase the quality
of blending by not directly blending into the frame buffer, however these techniques alter
the performance of this approach which is used in this thesis as a bench mark for encoding
the minimum instructions to compute a problem. This approach does not scale well over
the volume rendering problem as no speed-up mechanisms can be introduced.

The 10M technique has been shown to be most effective whilst iso-surfacing to take advan-
tage of locally deferred shading and additionally early-ray termination. Most real world
(such as low opacities contained in a transfer function to view general volume construction)
fuzzy classification tasks do not allow early ray termination as full opacity is not reached by
the end of the ray. This technique is the most complicated to implement and relies heavily
on specific hardware features that are only present with recent generations. The overheads
due to multiple buffers, multiple rendering targets and multiple passes often outweighs the
algorithm’s reduced overall complexity in the average cases. The quality of the output is
marginally better than the OOP approach due to improved quantisation during blending.
This algorithm does scale better than its OOPcounterpart over the volume rendering prob-
lem, however requires many additional attributes to achieve this performance increase.

Finally the 10S algorithm offers a straightforward algorithm to compute image-order tech-
niques compared to its multiple pass counterpart. This method does require a new genera-
tion (5** generation, NVIDIA 6800) of GPU hardware, however is greatly simplified for the
same problem. The quality of the output is the best available on current state of the art GPU’s
(5" generation, NVIDIA 6800) and the performance is better than multiple pass techniques
due to the inherent simplification in terms of multiple passes and additional texture maps
in several cases. This method scales well over the volume rendering problem since it can
benefit from speed-up techniques. Additionally the memory footprint of this approach is
improved over the IOM counterpart and is considered more efficient in this regard.

Oop techniques are best for cross vendor and cross generation implementation of volume
rendering applications and is considered a standard rendering platform for the GPU. Thus
any simple volume rendering method available on the GPU should be implementable us-
ing this approach. The speed of this approach is due to its simplicity and simple fragment
shaders. The I0M strategy outperforms OOP methods in iso-surfacing alone (CTHead 256
samples, IOM 40fps, 0OP 22fps), and in general is superseded by the single pass approach.
The single pass approach will improve with each future generation as hardware processors
become smarter and compilers better. This is due to the branching computation on current
hardware and the obvious overhead of multiple passes and multiple output buffers for the
multiple pass counterpart. Therefore the 10S volume rendering technique should be consid-
ered for image-order techniques as over time it will enable a more scalable approach, it’s
only requirement being that better dynamic branching hardware is introduced.

Chapter 4

Volume Texture and Hypertexture

Contents
4.1 GPU Procedural Texture Primitives 112
4.2 Solid Texturing Volumetric Objects 120
43 Volume Hypertexture oo e oo v oo oo oeeessas 131
44 AnimationTechniques. 144
45 SUmMMAry o v vttt ittt e e e s e e 151

This chapter explores real-time volume graphics techniques to add rich detail to complex
volumetric objects. The approaches outlined in this chapter utilise standard volume datasets
and distance field volume datasets which allow many other graphical representations to be
imported through voxelisation. This chapter introduces GPU volume rendering algorithms
to compute solid texturing and hypertexture effects using procedurally generated texture
descriptions on the fly.

Surface based techniques such as texture mapping [Cat74, Cat75, Bli78a] are commonly
used to enhance the appearance of an object’s surface by adding complex image informa-
tion. Methods such as bump mapping [Bli78b], displacement mapping [Coo84] and envi-
ronment mapping [BN76] have been developed to add detail to surfaces without a serious
impact on rendering speed. These techniques however are incapable of truly representing
natural occurring properties due to many real world substrates having no surface definition.

Volume graphics allows the modelling and rendering of semi-transparency, naturally oc-
curring and amorphous phenomenon as well as solid objects. These attributes over surface
graphics are exploited to enable complex object definition and texture to be applied to vol-
umetric primitives.

Procedural texturing describes the generation of realistic natural patterns with algorithms.
No texture artist or photography is used to define a texture map, instead functions are eval-
uated and combined to synthesise patterns that model real world substrates. Generally
some form of stochastic function is used to introduce frequencies that represent random-
ness encountered in nature. Procedural texture synthesis has been shown to be an important
fundamental graphics technique for describing many object properties [Per85]. Interactive

111

4.1 GPU Procedural Texture Primitives 112

procedural texture synthesis is explored for describing surface texture with solid texturing
which alters a surfaces colour definition, and higher-order object definition with hypertex-
ture which extends the definition of an object to include a malleable soft-region outside of
it is defined surface. This maliable soft-region removes previous restrictions in texturing a
solid surface. Often natural surfaces such as hair, fire and smoke cannot be represented with
simple surfaces or texturing of surfaces as they are too complex.

These new interactive techniques can be employed in many fields where internal and ex-
ternal object detail is required. One such application is the games industry !, where effects
such as fire, smoke, clouds and melting are extremely common and difficult to represent
intuitively. Having internal object data with such effects also provides better playability
when deformations occur in game play. There are numerous other applications in com-
puter graphics where modelling and rendering of semi-transparent and naturally occurring
properties are required to describe the desired object.

Providing procedural texturing primitives to the GPU are described in section 4.1. Solid
texturing an object’s surface is described in section 4.2 and hypertexture is explored in
section 4.3. The animation of procedurally textured objects is explored in section 4.4 and
finally section 4.5 provides a summary.

4.1 GPU Procedural Texture Primitives

Noise is a common method of introducing randomness into a procedural texture and is the
chosen fundamental procedural texturing primitive for inclusion in a procedural texturing
framework. Many procedural textures can be constructed without the inclusion of stochastic
properties, however are usually too uniform to correctly approximate real word aesthetics
and structure. A noise function should conform to the following properties:

e Repeatable pseudo-random function of input

e Known range of output (usually [—1, 1])

e Statistical invariance under rotation, translation and scaling
¢ A narrow bandpass limit in frequency

e Non-repeating pattern towards infinity

These properties ensure that when modelling behaviour changes, no visible artifacts are
present in the rendering and the underlying pattern is not affected in any manner. A noise
function that satisfies these properties is acceptable for general procedural modelling use
and can provide extremely aesthetically pleasing results. These properties allow it to be
used in general modelling situations and allow any manipulation to be uniform throughout
the domain. Perlin noise is chosen since its properties obey these conditions and additionally
the output is aesthetically consistent with smoothed natural white noise. Perlin noise is also
a controllable and efficient function to provide stochastic behaviour in comparison to other
techniques outlined.

!GDCOS covered the emergence of simple volumetric effects

4.1 GPU Procedural Texture Primitives 113

Perlin noise can be computed from 1,..,n dimensions and returns a scalar in the [—1, 1]
range.

noise(p) = pseudo-random scalar 4.1)

where p is a coordinate in n space and the returned pseudo-random scalar is representative
of the band-limited white noise being approximated.

Additional higher order procedural texturing primitives can be defined by combining noise
functions. Turbulence is an example of a higher-order noise function which sums several
contributions of noise in a sinusoidal manner to produce a high frequency noise function that
appears to produce turbulent flows. The number of differing noise frequency contributions
is referred to as octaves. The turbulence function does not directly consider flow directions.
Turbulence also obeys the noise function properties as it is compiled from noise function
primitives and therefore can be used as a general procedural modelling function.

turbulence(p) = Z abs <nozse 2 p)) : 4.2)

where p is a coordinate in n space and ¢ is the number of octaves of noise to sum.

There are two approaches to implementing the Perlin noise algorithm on the GPU, computed
with instructions on the GPU such as a non rasterized f-rep or firstly pre-computing a ras-
terized approximation of the noise function for a limited domain. Computing the original
function at run-time is denoted local function evaluation and pre-computation is denoted
pre-computed evaluation. Since noise needs to be evaluated for samples during volume ren-
dering, the noise function must be present during fragment shading. There is currently no
hardware support for a noise algorithm on commercially available GPU’s.

The two methods of texture based and procedural based noise are evaluated for performance
requirements and aspects of a good noise implementation. The goal of this research into
noise implementations on GPU hardware is to provide a good general noise implementation
to the GPU for a procedural texturing framework. This noise implementation should satisfy
any performance and visual quality trade-off to be utilised as a general primitive available
to procedural texture artists. 3D noise is considered here as a platform although 4D noise
should also be available for performing animation effects over time.

4.1.1 Pre-computed Evaluation

In pre-computed implementations, a noise block with a finite domain is constructed on the
CPU and uploaded to the GPU as a texture map. Texture maps can be saved as volume
datasets to minimise the amount of processing required at run-time or alternatively pre-
computed at each invocation of an application to minimise storage requirements. The size
of the texture map is important since maximal space must be left for other texturing or
lookup table requirements in GPU memory and the texture should contain a detailed snap-
shot of noise. An acceptable size is around 643 for a 3D block of noise as this will contain
a good approximation of an original noise implementation for the desired application for

4.1 GPU Procedural Texture Primitives 114

(a) Noise (b) Gradient Normals (c¢) Repeat

(d) Mirrored Repeat (e) Turbulence

Figure 4.1: Examples of Perlin noise

a small to medium viewport. The texture can be accessed with trilinear interpolation to
ensure a smoothed result, however if the viewport becomes too large, the stochastic ap-
pearance becomes less evident in the final image. This is due to the cubic interpolation
described in the noise function being approximated from sample points already computed
at non uniform grid locations. A noise volume is not restricted to the same dimensions as
the volume dataset due to the hardware resident trilinear filtering available. Larger view-
ports and volume datasets benefit from larger texture based noise lookup tables, however
there is an image quality and texture memory trade off to consider.

The fundamental problem with texture based noise lookup tables is when operating outside
the defined texture co-ordinate range or texture domain. This is a common feature of pro-
cedural techniques that build up specific stochastic behaviour with multiple noise function
components. Good noise implementations should appear random through an infinite do-
main without artifacts (see Figure 4.1(a)). Addressing a noise texture block can result in
the noise visibly repeating instead of remaining random. The properties of the underlying
noise implementation are lost during pre-processing into a texture block since addressing
outside the texture block space will involve a clamp or repeat texturing operation. Textur-
ing modes that support repeating textures in the hardware pipeline simply repeat the original
texture map, which leads to a visible artifact at each border (see Figure 4.1(c)). One method
of circumventing this problem is to use a mirrored repeat texture mode. This minimises
the visual artifacts at the borders since a visible repeating pattern is observed, however the
mirrored nature of the resulting noise pattern removes the stochastic randomized properties

4.1 GPU Procedural Texture Primitives 115

(see Figure 4.1(d)).

This also becomes a problem when using noise gradients, visible repetitions and border arti-
facts are introduced (see Figure 4.1(b)). Generally the edges of the noise volumes bounding
box has no gradients defined since gradient computation methods leave at least a one texel
border (see section 2.4). These values can be approximated, however there is still an artifact
issue with repeating or mirrored repeating since the one texel border that is approximated
will look uniform when repitition mechanisms force two border definitions together.

Pre-computing the noise or higher order noise functions over a discrete grid in software
produces a texture encoded with the final noise configuration (see Figures 4.1(a) and 4.1(e)
respectively). Only one texture fetch is needed to utilize this pre-computed noise block
providing the best performance possible. Therefore texture co-ordinates will not fall outside
of range, removing bordering issues. Additionally greater image quality will be generated
by using the precision available in software for similar volume sizes and viewports, despite
this approximation being subject to trilinear interpolation of sub grid positions. The trade-
off with this approach is the loss of detailed noise with increasing resolution and having to
ensure the textures domain is adequate to describe each required noise pattern.

Constructing higher order noise primitives such as turbulence (see Figure 4.1(e)) using tex-
tures is possible via multiple texture fetches into a standard texture noise texture. This
method suffers from bordering problems when addressing outside the texture co-ordinate
range, and additionally suffers from not being truly random over an infinite domain. Since
the precision on the GPU is lower in most cases than software, the image quality is reduced
and noise appears less stochastic. Rendering speed is slower because additional texture
fetches are required and additionally the GPU is responsible for any additional computation
between texture fetches (such as the abs function when computing turbulence). When using
a large enough noise domain to correctly encode higher order noise primitives, bordering is-
sues are removed and a more random visual effect is created by computing the final function
in the fragment shader. Resolution expansion restrictions are removed in this manner.

To solve the overhead of several texture fetches and bordering issues when constructing
higher order noise primitives, differing frequencies of noise can be encoded in each sep-
arate colour channel of the texture map. This eliminates three additional texture fetches
by utilizing the spare channels when constructing turbulence with four octaves. The image
quality is similar to multiple lookups, however bordering artifacts are removed due to sep-
arate blocks being computed outside the texture address domain. This results in a larger
amount of resident noise primitives since each channel of the texture contains noise at dif-
ferent frequencies. This removes the bordering artefacts when constructing higher order
noise primitives and additionally allows differing noise frequencies to be present which
drastically reduces the burden of ensuring a complete texture domain is provided.

The performance and visual results of these pre-computed noise and higher order noise
techniques are discussed in section 4.1.3 where a comparison to a non-approximated locally
evaluated noise function is presented.

4.1 GPU Procedural Texture Primitives 116

4.1.2 Local Evaluation

The noise algorithm contains two lookup tables that are used to describe pseudo-random
behaviour. These tables guarantee that the noise function will return the same result for the
same input conditions which is an important property. The two tables are a permutation
table that defines a list of random integers and the gradient table which is a list of random
normalized gradient vectors. The permutation table in the original implementation contains
256 entries, with the entries being randomized integers in the 0,...,255 range. These
permutated indices are used to lookup a randomized gradient in the gradient table. The
gradient table also contains 256 entries with each entry being a unit length vector ([0, 1)3).
These gradients are chosen such that when assigned to grid points, the gradients at each
corner of a grid cell will be different.

Both these tables cannot be efficiently computed in the fragment shader since a fixed (pseudo-
random) permutation table cannot be computed in one fragment shader for a given fragment
and kept in global variable memory for execution of other fragments. Additionally comput-
ing the gradient table involves a form of sphere mapping to describe unit length vectors
emanating from the origin of a sphere. These mechanisms can be carried out with multiple
passes through the graphics hardware and stored as lookup texture maps, however it is more
efficient to pre-compute these values, store them as constants in source code.

An issue with implementation of Perlin noise on the GPU is therefore how to provide these
permutation and gradient tables. The GLSL specification [KBR] outlines using arrays from
uniform variable locations, however current graphics hardware for fragment shaders does
not have the ability to do dynamic array addressing at run time, each address for lookup must
be known at compile time. Vertex shaders do have this ability on current GPU hardware
aJthough all volume computations require per fragment processing and thus this method
currently cannot be implemented.

Therefore to provide the permutation and gradient tables to the fragment shader, 1D texture
maps are required. This method is not as efficient as providing an array of contants since
it involves texture lookups into texture memory rather than local registers. Future GPU’s
should allow dynamic array access in local registers which will accelerate this algorithm.

Since the original function can be computed entirely in the fragment shader due to uploading
the permutation and gradient tables, there are no restrictions on available noise frequencies
and an infinite domain is provided. This approach however is expensive since standard
noise in 3D requires around 10 texture fetches for noise. Computing 8 octaves of turbulence
would thus require 80 texture fetches per fragment which is too expensive in practice.

Green [Gre05] provided a reference implementation of Perlin noise for GPU hardware. This
implementation takes advantage of vector operations available in fragment processors to
reduce the number of operations required by the algorithm. Additionally the permutation
mechanism is precomputed into a 2D texture map to avoid fetching 2 permutation table
entries. This reference implementation is used here as a comparison to pre-computed noise
blocks in favour of Hart’s [Har01] implementation of noise in pixel shaders using multiple
passes. The reference implementation described is directly comparable to Perlin’s [Per85]
original noise implementation.

4.1 GPU Procedural Texture Primitives 117

(a) Locally Evaluated (b) Pre-computed

Figure 4.2: Examples of noise implementations

The performance and visual results of these locally evaluated noise and higher order noise
techniques are discussed in section 4.1.3 where a comparison to pre-computed noise blocks
is presented.

4.1.3 Results

The timings and quality assessment of each GPU noise implementation is based on a simple
solid texturing of a volumetric object (see section 4.2). The 00P method for iso-surfacing
slice samples is adapted to include the solid texturing stage of the volume pipeline. No rota-
tions, lighting or optimisations are applied to the volume in order to differentiate each noise
methods performance. The performance measurements are taken in this manner since sim-
ply applying a noise implementation to a simple surface geometry will not gain any insight
because few fragments are considered and additionally the problem of volume rendering
defines the base overhead. The dataset used is the SphereDist dataset, which is 2563 dimen-
sions and contains 32 bit floating point data. There are 256 sample proxy slices considered

during volume rendering.

Table 4.1 shows the frame rates for each different noise implementation and higher order
noise primitives. The lookups column represents the number of texture lookups made in the
fragment shader to provide the noise primitive. The shader mode is set to take conditional
branches in favour of condition code execution such that noise algorithms are not com-
puted for non iso-surface samples. The 00OP approach however does not contain any empty
space leaping or early ray termination speed-ups, therefore every sample encountered that
is greater than the iso-value threshold is subject to noise computation. The iso-surfacing
shader without noise is set to use conditional branching also to provide a direct comparison.

Figure 4.2 and 4.3 shows each noise implementations visual result. Locally evaluated noise

produces the best visual results over any resolution or viewport due to the cubic interpolation

4.1 GPU Procedural Texture Primitives 118

(a) Locally Evaluated - 8 Octaves, 72 Lookups (b) Locally Evaluated - 4 Octaves, 36 Lookups

(¢) Pre-computed - 8 Octaves, 1 Lookup (d) Pre-computed - 8 Octaves, 8 Lookups

(e) Pre-computed - 4 Octaves, 4 Lookups (f) Pre-computed - 4 Octaves, 1 Lookup

Figure 4.3: Examples of turbulence implementations

4.1 GPU Procedural Texture Primitives

119

Viewport | Method Primitive Octaves | Lookups | FPS
5122 Iso-surfacing n/a n/a n/a 38
Locally evaluated | Noise 1 9 7
(see section 4.1.2) | Turbulence 4 36 2
Turbulence 8 72 1
Pre-computed Noise 1 1 35
(see section 4.1.1) | Turbulence 4 1 24
Turbulence 4 4 11
Turbulence 8 8 6
Turbulence 8 1 35
10242 Iso-surfacing n/a n/a n/a 18
Locally Evaluated | Noise 1 9 2
(see section 4.1.2) | Turbulence 4 36 <1
Turbulence 8 72 <1
Pre-computed Noise 1 1 14
(see section 4.1.1) | Turbulence 4 1 8
Turbulence 4 4 4
Turbulence 8 8 1
Turbulence 8 1 14

Table 4.1: GPU Noise implementation comparisons. All FPS are rounded down

carried out for each sample location. Locally evaluated noise within the fragment shader is
shown to be expensive to compute and is only a viable option for efficient algorithms where
minimal noise function calls are required such as deferred shading techniques.

The pre-computed noise block implementation will interpolate linearly between known tex-
els in the pre-computed noise block. Therefore a smoothing of the noise function is evident
if the pre-computed noise block is not large enough to have the same resolution as a locally
evaluated counterpart. The turbulence tests for pre-computed noise blocks using multiple
lookups produce artifacts when addressing outside the texture block’s domain. This prob-
lem can be avoided by increasing the texture’s domain to include all values that will be
addressed when building the turbulence function. However this implies a larger texture size
to be pre-computed and sampled. This method does remove the problem of magnification
smoothing the noise signal and produces better visual results over differing resolutions.

Building turbulence from pre-computed noise blocks is possible given the correctly com-
puted domain, although a pre-computed turbulence block produces the best results for a
fixed resolution. The implementation with textures that encodes differing noise frequencies
in each channel does not suffer from bordering issues and provides the best GPU memory
consumption and visual quality mechanism to provide noise primitives for general compu-
tation. This technique gives the ability to have 4 differing frequencies of noise and addition-
ally the ability to build higher order noise primitives such as turbulence with good visual
quality and performance. This technique also improves on texture magnification smoothing
the noise signal. '

Pre-computed noise blocks are therefore the fastest noise implementation available for GPU

4.2 Solid Texturing Volumetric Objects 120

volume graphics pipelines and locally evaluated noise functions in the fragment shader
prove to be available for algorithms exhibiting deferred shading. The complexity of a noise
implementation is an important factor in procedural volume rendering techniques and a
noise implementation that scales well over the volume rendering problem is important to
describe the algorithms general characteristics and runtime performance. It can also be seen
that for the size of viewport and volume dataset being considered for interactive techniques,
a 4 octave implementation of turbulence produces very similar to an 8 octave implemen-
tation. The remainder of this chapter focuses on pre-computed texture blocks in order to
balance the overall volume rendering pipeline and implement the most efficient methods.

4.2 Solid Texturing Volumetric Objects

This section introduces interactive procedurally evaluated solid texturing of volumetric ob-
jects to the GPU. Solid texturing or carving is particularly useful for modelling naturally
occurring materials such as wood and marble among many others. This approach adapts
best with the volume graphics paradigm since a 3D domain is considered to render a vol-
ume dataset. Additionally volume datasets are capable of representing gaseous phenomena
such as fire and smoke. Therefore texturing with volume datasets presents the best approach
to describing a volume graphics pipeline. In addition solid texturing or volume texturing is
the most intuitive method for synthesising objects from solid materials. Texture mapping
a 3D primitive is achieved by looking up the position in 3D space to be textured with the
corresponding location in a volume texture map or texture function (see Eqn 4.3)

m:P3— C
t=m(z,3,2) @)
where P3 € {0, ..., 1}3 is used to represent a 3D point in unit texture space. ¢ represents the

resulting four channel texel, where C € {0, ..., 1}4 to represent an < RG Bo > quadruple.

Solid texturing volume objects is achieved by iso-surfacing a volume dataset and fetching
a solid texture texel for each iso-surface location. This is then generally subject to lighting
calculations if the texture map returns colour information or classification and lighting if
a scalar is returned. The most simple solid texturing method involves simply using the
iso-surfaces object space coordinates to perform a lookup into the solid texture map. To
provide a mechanism to allow for arbitrary procedural solid texturing, this simple method
is expanded to include procedural texturing primitives and a dynamic shading extension to
the fragment shader to allow arbitrary procedural textures to be specified and generated on
the fly. This is achieved by providing a noise implementation and additionally providing a
function call mechanism to allow shading language libraries to define functions for a shader
at runtime. The shader will then be compiled whilst the application is running and uploaded
to the GPU. Functions are inlined during on the fly compilation. The noise implementations
are discussed in section 4.1.

To successfully allow for solid texture space transformations the vertex shader outputs two
sets of texturing coordinates for volume dataset object space coordinate lookups. One of
these sets of co-ordinates defines the sampling locations for volume rendering whilst the

4.2 Solid Texturing Volumetric Objects 121

other defines solid texturing coordinates that are defined from the original object space
coordinates. These additional coordinates can be transformed in the vertex shader with a
transformation matrix in order to ensure the volumes object space coordinates and solid
texture coordinates can be disjoint. This transformation is applied in the vertex shader to
remove the per fragment overhead. The texture coordinates are linearly interpolated across
any proxy geometry during rasterization. Both slice and slab sampling methods are im-
plemented for OOP and IOS techniques. The defined mechanism of providing ray starting
locations and direction vectors for orthographic projections in image-order techniques re-
quires that the solid texture transforms are applied in the fragment shader since an additional
bounding geometry would have to be used in additional passes to correctly define a disjoint
co-ordinate set. This restriction only applies to the mechanism where two initial passes
are employed to encode a volume bounding box. Other schemes of perspective projection
and orthographic projection compute ray starting locations and step vectors in the fragment
shader from rasterized input obtained from a single quadrilateral.

The fragment shaders detailed use two methods snoise and sturbulence which are pro-
vided by pre-computed noise texture blocks or locally evaluated functions as discussed in
section 4.1. These implementation specific details for each noise method are omitted for
clarity. Most GPU shading languages have a reserved function noise for future noise algo-
rithm hardware. Currently GPU implementations return 0 or 1 and in some cases return a
value for noise which is based on the same mechanism outlined for locally evaluated noise.
There is currently no implementation that uses a specialised hardware noise unit?. The de-
scription of each method will contain a function solidTexture(pos) which will take the
solid texture co-ordinates to compute a new surface scalar that will be subject to classifica-
tion with a transfer function. This mechanism is preferred to including a transfer function
to define an environment where texture is always applied in the same manner.

Marble is defined using the turbulence function and the periodic function sin to produce
the wavy line pattern (see Eqn 4.4). A colour spline is used to classify the result of the
adjusted turbulence function and provide the marble colouring. One dimension of the
domain is offset to allow marble density to appear more compact in one particular direction.

marble(s,t,r) = sin(s + turbulence(s,t,r)) 4.4
where s,t, 7 € R define the 3D solid texture co-ordinate.

Wood is defined using the noise function. A quadratic equation is used to yield a concentric
set of cylinders (see Eqn 4.5). Noise is used to add waviness to the grain. The quadratic
characteristic makes the early grain appear wider than later grain which is consistent with
tree development. The wood transfer function can be simply implemented with a linear
interpolation between dark brown and light brown.

wood(s, t,r) = s> + t* + noise(4s, 4t,T) 4.5)

where s, t,r € R define the 3D solid texture co-ordinate.

ZPerlin maintains a patent on a hardware implementation of the Perlin noise algorithm which is expected to
appear on GPU hardware in the future

4.2 Solid Texturing Volumetric Objects 122

fragment vertexShader (vertex, modelViewMatrix, textureMatrix, solidMatrix)
fragment.pos = vertex.pos * modelViewMatrix
fragment.tex0 vertex.tex0 * textureMatrix
fragment.texl vertex.texl * textureMatrix
fragment.tex2 vertex.pos * textureMatrix.inverseTranspose
fragment.tex3 vertex.tex0 » solidMatrix;
fragment.tex4 vertex.texl * solidMatrix;

aonn

Figure 4.4: OOP solid texturing vertex shader

pixel fragmentShader (fragment, volume, transfer, isovValue, light, textureMatrix)
voxel = volume (fragment.tex0)
if (voxel.a > isoValue.a)
light.diffuse = transfer(solidTexture (IN.tex3))

normal = (voxel.xyz * 2.0 - 1.0) x textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)

else
discard

endif

Figure 4.5: O0P solid texturing fragment shader

4.2.1 Object-Order Proxy Slice Solid Texturing

The 00P rendering method for iso-surfaces (see section 3.4.1) is adapted to solid texturing
by including an additional set of texture coordinate outputs from the vertex shader to the
fragment shader (see Figures 3.20 and 4.4). The iso-surfacing fragment shader for slices
(see Figure 3.25) is adapted to include a solid texturing stage after segmentation and before
classification and lighting operations (see Figure 4.5).

To consider slab sampling over slice sampling, the interpolated multiple iso-surfacing tech-
nique (see section 3.3.3) is adapted to solid texturing by replacing the colour classification
stage. Two texture maps are uploaded to the GPU in multiple iso-surface techniques, one for
the colour classification and the other to hold the interpolation weights. Since the solid tex-
turing mechanism preceeds the colour classification stage, the colour texture can be omitted
from upload and the pre-processing step reduced to only calculate interpolation weights.
The fragment shader for interploated multiple iso-surface rendering (see Figure 3.27) is
adapted to alter the classification stage (see Figure 4.6). The interpolation scheme interpo-
lates the position to be exactly on the iso-surface with the weighting table. In this manner
only one solid texturing routine is required to evaluate an interpolated position. Visual arti-
facts are introduced by interpolating the results of two solid texturing calls at each sample
point. This is due to the high-frequencies evaluated during noise calculations where an
interpolated scalar can be derived from differing scalars from the front and back sample
positions and the result will be an erroneous linear mix.

This method includes the ability to define multiple iso-surfaces to solid texture within a vol-
ume dataset. This is possible by altering the solid texture function to allow a further clas-
sification variable to be included. Each iso-surface is assigned a different colour within the
original multiple iso-surface rendering method which is used to segment each iso-surface.
This process involves uploading the colour table along with the original weighting table.

4.2 Solid Texturing Volumetric Objects 123

pixel fragmentShader (fragment, volume, transfer, weight, light, textureMatrix)
voxelf = volume (fragment.tex0)
voxelb = volume (fragment.texl)
wght = weight (voxelf.a, voxelb.a)
if (wght > 0.0)
pos = lerp(IN.tex3, IN.tex4, wght);
normal = (lerp(voxelf.xyz, voxelb.a, wght) » 2.0 - 1.0) =
textureMatrix.inverseTranspose
light.diffuse = transfer(solidTexture (pos))
pixel = lighting(normal, fragment.tex2, light)
else
discard
endif

Figure 4.6: OOP interpolated solid texturing fragment shader

pixel fragmentShader (fragment, volume, dir, isoValue, light, transfer,
textureMatrix)
direction = dir (fragment.wpos)
rayPos = fragment.tex0
while (true)
voxel = volume (rayPos)
if (voxel.a > isoValue.a)
break
endif
rayPos += direction

// further samples

if (direction.a < length(rayPos - fragment.tex0)) {

break
endif
endwhile
if (voxel.a > isoValue.a)
normal = (voxel.xyz * 2.0 - 1.0) » textureMatrix.inverseTranspose

light.diffuse = transfer(solidTexture(rayPos))
pixel = lighting(normal, fragment.texl, light)
endif

Figure 4.7: 10S solid texturing fragment shader

4.2.2 Image-Order Single Pass Solid Texturing

The 10S method is adapted to solid texturing in the same manner as OOP methods. Figure 4.7
is the modified fragment shader of figure 3.41 to include solid texturing for the 10S method
for slice sampling iso-surfaces. Figure 4.8 is the modified fragment shader of figure 3.42 to
include solid texturing for the 10S method with interpolated multiple-iso surface sampling.
Only one iso-surface is considered for solid texturing, however multiple iso-surfaces are
possible analogous to the OOP methods described in section 4.2.1.

Whilst the complexity of the underlying rendering problem remains the same, additional
speed-ups can be computed since the whole ray is considered in one fragment shader. This
gives rise to using dataset dependant information to encode strategies that reduce the num-
ber of samples required. Empty space leaping can be performed as outlined in section
3.2.4 for distance field datasets. The ray increment presented in the fragment shaders in
this section are considered to be replaced with the distance field stepping function. Octree
structures can also be used to allow a small speed-up. This small speed-up is due to skipping

4.2 Solid Texturing Volumetric Objects 124

pixel fragmentShader (fragment, volume, dir, isoValue, light, transfer,
textureMatrix, weight)
direction = dir (fragment.wpos)
rayPos = fragment.tex0
voxelf = volume (rayPos)
rayPos += direction
while (true)
voxelb = volume (rayPos)
wght = weight (voxelf.a, voxelb.a).a
if (wght > 0.0)
break
endif
voxelf = voxelb
rayPos += direction

// further samples

if (direction.a < length(rayPos - fragment.tex0)) {
break
endif
endwhile
if (wght > 0.0)
normal = (lerp(voxelf.xyz, voxelb.xyz, wght) * 2.0 - 1.0)
+ textureMatrix.inverseTranspose
rayPos = lerp(rayPos - direction, rayPos, wght)
light.diffuse = transfer(solidTexture (rayPos))
pixel = lighting(normal, fragment.texl, light)
endif

Figure 4.8: 10s interpolated solid texturing fragment shader

costly instructions in the fragment shader during ray traversal, however every sample must
be visited since a given volume orientation does not allow skipping over the empty space
without sampling because the distance to each octree cell is unknown without expensive
ray intersection equations. In general the octree mechanism is better suited to object-order
approaches. Distance fields can also be used to perform empty space leaping along a ray
and are better suited to the image-order approach since the distance in voxels to the closest
point of the iso-surface being rendered is encoded instead of the scalar field. Additional
speed-ups include early ray termination and additionally deferred shading which allows the
application of solid texture once thought for each ray that intersects the iso-surface. This
deferred shading strategy also benefits from not having to compute dynamic branches inside
the ray sampling loop as the instructions required are significantly reduced. The combined
speed-up mechanisms of empty space leaping, early ray termination and deferred shading
when compared on the same architecture and rendering strategy produce 43 fps instead of
14 fps when no speed-up’s are included on the CTHeadDist dataset for 256 samples along
the ray. In general these speed-ups are dependant on the dataset being rendered and produce
differing levels of acceleration for different iso-surfaces or fuzzy classification tasks.

4.2.3 Results

Two algorithms are explored for solid texturing. OOP rendering and 10S rendering. The
two adaptations of the original volume iso-surface algorithms are outlined in sections 4.2.1
and 4.2.2 respectively. Noise and turbulence are implemented for the results in the fastest

4.2 Solid Texturing Volumetric Objects 125

manner available (see section 4.1). Timings are taken with no volume rotation to provide a
performance comparison that is not affected by cache misses in 3D texturing hardware and
to ensure the amount of fragments being processed are uniform throughout the tests.

Three different procedural textures are tested to allow the performance overhead of the ap-
proach to be disjoint from the particular textures overhead. The wood solid texture is used
for demonstration of quality purposes since the more noisy functions such as noise, tur-
bulence and marble mask under-sampling due to their highly stochastic properties. Wood
is a more regular pattern that requires a higher level of precision to accurately reproduce
the grain. Turbulence is used to demonstrate a complex and detailed procedural texture and
Perlin’s bozo [Per85] texture is used to demonstrate both of these properties. The BuckyBall
dataset is encoded with the bozo texture in order to act as a comparison to previous timings
and image quality analysis with the same iso-value. The CTHeadDist distance field dataset
is also explored to demonstrate the increased rendering speed possible when using an effi-
cient empty space leaping method for image-order approaches. The SphereDist dataset is
used becasue it is a regular shape with uniformly different gradients over its surface and can
highlight under-sampling in lighting calculations.

Noise (or turbulence) is the fastest method considered as this can be achieved with a single
texture lookup. Faster procedural routines are possible without the use of noise, however
noise or turbulence is predominantly used in procedural modelling and is considered here to
be a fundamental building block. Bozo and wood are demonstrated as more complex pro-
cedurally generated solid textures. These two synthesised patterns require a texture lookup
into the noise texture and additionally a texture lookup for colour classification as well as
some instructions which are processed in the fragment shader.

Table 4.2 shows the frame rates achieved for solid texturing with the OOP rendering method.
Timings are taken without any lighting calculations to demonstrate the maximum through-
put of each technique. The images obtained for each test are presented in figures 4.9 - 4.11.
These figures each depict a different procedural solid texture and each image contains lit and
unlit solid textured surfaces for quality comparison. Noisy textures hide under-sampling ar-
tifacts in most cases and lower precision rendering can be employed for a good aesthetic
representation. The slab rendering algorithm gives significantly better visual results for
the same samples taken along a ray in comparison to the slice technique. Images in fig-
ures 4.9(b) and 4.9(h), 4.10(a) and 4.10(g), 4.11(b) and 4.11(h) are comparable in terms
of image quality where there are little to no artefacts included in the output due to under-
sampling and there is additionally no noticeable aliasing of the texture, however the slab
method of sampling yields better performance than the slice method for a similar quality
representation.

Table 4.3 shows the frame rates achieved with the 10s method, computing each ray entirely
in one pass in the fragment shader. The difference in performance for each sampled solid
texture function is negligible. The results are slower than the OOP approach, however this
approach includes early ray termination and deferred shading. This approach is therefore
more scalable than the OOP approach when rendering into larger viewports and increasing
sampling frequency due to less samples being visited. Additionally shading is performed
only once per ray in a deferred manner which allows for more complex lighting and solid
texturing techniques to be realised in real time. The deferred shading of the iso-surface does

4.2 Solid Texturing Volumetric Objects

(i) 64 iso/int

(d) 128 iso (h) 128 int (j) Error Key

Figure 4.9: BuckyBall dataset bonzo solid texture (a) to (d) and interpolated solid texture (e) to
(h) images rendered into a 5122 viewport with differing sample frequencies. Both (b) to (d) and
(f) to (h) are the difference images from (a) and (e) respectively to visualize artefacts introduced
with lower sampling rates. Both techniques (i) are compared with no shading contributions to
highlight sampling differences and the error range for difference images is given in (j).

126

4.2 Solid Texturing Volumetric Objects 127

U

(a) 1024 iso (e) 1024 int (i) 128 iso/int

(d) 128 iso (h) 128 int () Error Key

Figure 4.10: CTHeadDist dataset turbulence solid texture (a) to (d) and interpolated solid tex-
ture (e) to (h) images rendered into a 5122 viewport with differing sample frequencies. Both (b)
to (d) and (f) to (h) are the difference images from (a) and (e) respectively to visualize artefacts
introduced with lower sampling rates. Both techniques (i) are compared with no shading con-
tributions to highlight sampling differences and the error range for difference images is given

in (j).

4.2 Solid Texturing Volumetric Objects

(i) 128 iso/int

(b) 512 iso (f) 512 int
(c) 256 iso (g) 256 int
(d) 128 iso (h) 128 int (j) Error Key

Figure 4.11: SphereDist dataset wood solid texture (a) to (d) and interpolated solid texture (e) to
(h) images rendered into a 5122 viewport with differing sample frequencies. Both (b) to (d) and
(0 to (h) are the difference images from (a) and (e) respectively to visualize artefacts introduced
with lower sampling rates.. Both techniques (i) are compared with no shading contributions to
highlight sampling differences and the error range for difference images is given in (j).

128

4.2 Solid Texturing Volumetric Objects 129

Noise ‘Wood Marble
Dataset (size) Viewport | Slices | Iso Int | Iso Int | Iso Int

BuckyBall 512° 128 92 5271 41|90 50
(32%) 256 | 48 28|38 22{49 27
see Figure 4.9 512 |26 1420 10|26 13
1024 {14 7 |10 S5 |13 7

10242 128 [29 14[20 1128 14

256 |14 7 |10 S5 |14 7
s12 |7 3 (S5 2|17 3
1024 | 3 1] 2 1|3 1

CTHeadDist 5122 128 |66 34|53 29|55 30
(2562 x 128) 256 |33 16|26 13|28 15
see Figure 4.10 512 (17 8 |13 7 |14 6
1024 8 4 6 3 7 3

10247 128 28 15120 11|27 14

256 (14 7 |10 5 |14 7
512 7 315 217 3
1024 | 3 1 2 1 3 |

SphereDist 5122 128 [62 30|50 26|59 35
(2563) 256 (33 17|26 1436 15
see Figure 4.11 512 |17 8 |13 6 |16 8
1024 | 8 4|6 318 4

10242 128 [27 1420 11]28 14

256 |14 7 (10 5 |14 7

512 |7 3|5 2|7 3

1024 | 3 1|2 1(3 1

Table 4.2: OOP solid texturing frame rates in frames per second, Iso is single sample solid
texturing and Int is interpolated solid texturing. All rates are rounded down.

4.2 Solid Texturing Volumetric Objects 130

Dataset (size) Viewport | Slices | Iso Int
BuckyBall 512° 128 | 40 27
(32%) 256 | 21 13
see Figure 4.9 512 |12 7
1024 | 5 3
10242 128 [20 14
256 {10 7
512 5 3
1024 | 2 1
CTHeadDist | 512* 128 | 29 21
(2562 x 128) 256 | 14 10
see Figure 4.10 512 7 5
1024 | 3 2
10247 128 { 10 6
256 5 3
512 2 1
1024 | 1 <1
SphereDist 512° 128 |26 19
(256%) 256 | 13 9
see Figure 4.11 512 6 4
1024 | 3 2
10247 128 9 6
256 4 3
512 2 1
1024 | 1 <1

Table 4.3: 10s solid texturing frame rates in frames per second, Iso is single sample solid
texturing and Int is interpolated solid texturing. All rates are rounded down.

4.3 Volume Hypertexture 131

allow this approach to use locally evaluated noise functions at interactive rates.

Table 4.4 shows the results for rendering distance fields with early ray termination and
empty space leaping with deferred shading. The performance increase over the previous re-
sults for the 10S approach is due to allowing large areas of the volume that do not contribute
to the surface to be successfully skipped (see section 3.2.4). An empty space leaping value
table is pre-computed in these measurements and proved to outweigh a fragment shader
function due to one texture lookup being required instead of multiple instructions to com-
pute the space leaping function (see section 3.2.4). Adaptive step sizes are used since a
given distance leap vector is compared in length to the step size vectors length and the max-
imum is always used. This allows adaptive rendering of important features and concentrates
sampling where most required. In practice the rendered results contain less artefacts due to
concentration on required areas of the volume dataset. This makes the space leaping mech-
anism require consideration of the current step size as the approach of skipping up to a 1
voxel border around the iso-surface is less efficient when step sizes are large. Therefore the
performance characteristics of this approach make it very scalable for differing step sizes
and viewports due to less samples being taken along each ray, which is dependent on dataset
construction and the desired final output region of interest. In general, most datasets such
as the CTHeadDist can benefit greatly from these accelerations due to empty space sur-
rounding the regions of interest in the dataset and thus several samples along a ray can be
ommitted. This property is the result of uniformly skipping empty space for arbitrary step
sizes and benefits from large step sizes. Therefore the image-order approach with empty
space skipping using distance fields, deferred shading and early ray termination gives the
best overall approach to a scalable solid texturing environment and includes the ability to
use locally sampled procedural primitives at interactive rates.

Dataset (size) Viewport | Slices | Iso Int
CTHeadDist 5122 128 | 56 34
(2562 x 128) 256 | 43 25
see Figure 4.10 512 [30 20
1024 | 18 14

10242 128 { 19 16

256 | 15 11

512 |12 9

1024 | 9 5

Table 4.4: 10s solid texturing frame rates with empty space leaping in frames per second, Iso
is single sample solid texturing and Int is interpolated solid texturing. All rates are rounded
down.

4.3 Volume Hypertexture

Hypertexturing complex volumetric primitives is achieved by adapting Perlin and Hoffet’s
[PHS89] original object density implementation for implicit surfaces (see Eqn 2.26) to com-
pute over a volume dataset. Satherley and Jones [SJ02] introduce an object density function

4.3 Volume Hypertexture 132

Figure 4.12: CTHeadDist dataset with object density function defining a soft-region. The soft
region is clipped to show the relationship to its object

for volume datasets using distance fields. This section introduces hypertexture for volumet-
ric primitives on GPU hardware and defines an adaptable procedural hypertexture pipeline
which achieves real-time frame rates.

Hypertexturing is an important texturing technique in the volume graphics pipeline since
amorphous and gaseous phenomena and naturally occurring object properties can be gen-
erated with this approach. These models are not possible intuitively with surface based
graphics since each surface is treated as infinitely thin. Therefore less intuitive and more
complex techniques must be used in surface based graphics to import naturally occurring
object properties.

Distance field datasets are used because a segmentation of the object is required to allow the
definition of a soft-region, or malleable region around the object’s surface. A distance field
is especially suited to this since the distance values contained in the dataset can be directly
utilised for this segmentation. A standard volume dataset containing density scalars would
require pre-processing into a distance field.

4.3.1 Distance Fields

Distance fields are generated from many sources such as triangle meshes, implicit functions
and volume datasets to contain an iso-surface of interest. Section 3.2.4 outlines the meth-
ods for GPU rendering of iso-surfaces contained in distance field volumes. This involves
making a binary segmentation during fragment shading to correctly identify the iso-surface.
For hypertexture effects a soft-region is required and the classification stage is altered to
perform two segmentations. Two iso-values are thus required, one for the original surface
(usually 0) and one for the desired soft-region. This is expressed in terms of voxels since
the distance function contains Euclidean distances. This is achieved by replacing the binary
segmentation for iso-surface rendering with an object density function for distance field
volume datasets. This allows the classification of the distance function into three disjoint

4.3 Volume Hypertexture 133

sets.
e Outside the object
e The soft-region of the object’s surface
e Inside the object

The object density function for distance fields is defined in Eqn 4.6. Figure 4.12 shows
an example of the object density function applied to the CTHeadDist dataset to form a
soft-region. This soft-region has been clipped to show differences in detail. The object
density function is examined at run-time with DMF functions being applied to the segmented
soft-region. Perlin’s [PH89] original work does not describe rendering the surface of an
implicit object at its surface (when D(p) = 1). This hypertexture implementation also
covers rendering the iso-surface contained in the distance field as this feature is required for
many hypertexture effects.

1 iflp <7}
D(p)=4 0 if|p| > 3 (4.6)
—lfil::: otherwise.

where 7; is the inner distance or iso-surface, r, is the outer distance or soft-region boundary
and |z| represents the distance field value [SJ02]. 1 is returned for samples inside the object
and are subject to iso-surfacing, 0 is returned for samples outside the object and soft-region
boundary and [p = T" the distance from the surface is returned when samples are between the
soft-region bounda.ry and surface boundary.

4.3.2 DMF Functions

The object density function is applied during fragment shading of a sample. DMF func-
tions are applied to soft-region samples and involve compositing of samples analogous to
fuzzy segmentation techniques. Therefore a mixed mode rendering strategy is required
to correctly compute a hypertexture effect. A subset of possible DMF functions can be
pre-computed, loaded into GPU memory as a volume texture and addressed with the corre-
sponding sampling coordinates. However the goal is to provide a platform for interactive
procedural hypertexturing and arbitrary DMF functions are defined in the fragment shader
and computed on the fly. This has an effect rendering performance depending on the amount
of extra instructions the fragment shader must process. Generally noise is used as a prim-
itive for procedural techniques and must be present to the fragment shader as outlined in
section 4.1. Noise is considered a fundamental building block for procedural techniques,
although effects can be produced without its use. Attributes available for computing DMF

functions include: V

e 3D object position
e Current volume distance value

e Current samples gradient normal

4.3 Volume Hypertexture 134

(a) Bias (b) Gain

Figure 4.13: Bias and Gain lookup tables

* Noise function

* Noise gradient normals (texture based noise)

» Standard functions on GPU such as floor, ceil, clamp, sin, cos
* *Arbitrary transfer functions encoded as textures

* *Arbitrary uniform variables (floats, vectors and matrices defined for the fragment
shader)

* items are not included in the description of the hypertexturing pipeline presented as most
hypertexture effects do not require additional parameters. One transfer function texture is
provided to allow colouring of densities generated by DMF functions. In addition fast texture
based lookup tables for the bias and gain functions are provided (see Figure 4.13).

A further segmentation of the soft-region allows different DMF functions to be chosen
through the soft-region based upon parameters such as spatial co-ordinates or distance from
the surface. This implementation does not describe segmenting the soft-region, however
it can be achieved by building a DMF function to perform the segmentation. Additional
operations such as lighting can also be included in DMF functions since the parameters are
available to the fragment shader. A generalised shader model is presented since using high
level GPU shader languages, functions can be defined and linked at runtime dynamically
and swapped in or out on the fly. This technique allows implementation of a flexible hyper-

texturing modelling environment for volumetric primitives.

Each fragment shader will call a function hypertexture(pos, normal, density, volume)
which takes each parameter required for application of DMF functions. D m f functions can
be built within this function and a scalar will be returned for classification. A further shade
trees [Coo84J implementation enables changes in lighting and classification parameters as
a post-processing step. Lighting calculations require that each sample computes central
differences (see section 2.4) in respect of the hypertexture function for a correct gradient
to be derived. Pre-computing these gradients is not possible since the hypertexture DMF
functions are computed on the fly. Therefore any fragment shader that is to calculate lighting

4.3 Volume Hypertexture 135

is required to perform three additional hypertexture operations per sample.

4.3.3 Example Hypertextures

The following equations define DMF functions to compute hypertexture. Equation 4.7 in-
troduces electric storm, a position dependent function which enables a pseudo lightening
effect to be created. Turbulence is used as a base DMF function and is further displaced with
the sin function. Figure 4.14(h) is an example image rendered with this function.

electricStorm(D(p),p) = sin(turbulence(f p)) 4.7
where f is the desired noise frequency.

Equation 4.8 demonstrates how melting [PH89] is achieved by displacing a component of
the incoming sample position. This requires a further lookup into the volume to assess the
density discovered at the new sample position and is thus a position dependent function (see
Figure 4.14(g)).

melt(D(p),p) = D(pz (1.0 + noise(p))) 4.8)

where p, represents the z component of the sample position p, p, and p, can also be used.
This function can also alter the direction of melting by changing 1.0 + noise(p) to 1.0 —
noise(p).

Fur and curly fur [PH89] are modelled by an approximation of a hair filament being grown
from the objects surface. This requires that the inverse of the gradient is projected onto the
objects surface and is therefore.a geometry dependent function. Noise is evaluated at the
objects surface and is used throughout the width of the soft-region. This allows straight hair
filaments to be built up into a fur effect (see Eqn 4.9 and Figure 4.14(e)). Bias and gain are
used to control the number of hair filaments and the boundary respectively. The constant
values are suggestions from Perlin’s [PH89] original work.

fur(D(p),p) = gaing g(biasp.3(noise(f project(p)))) D(p) 4.9
where f is the desired noise frequency.

Curly fur follows the same procedure as straight fur and is modelled by offsetting the pro-
jected sample on the surface uniformly throughout the width of the soft-region. This is
achieved by offsetting the sample position before projection, allowing a differing noise
value to be encountered at the surface.(see Eqn 4.10). An offset gradient is introduced for
this purpose and is controlled with the density encountered for the current sample. In this
manner the amount of curl is controllable. The additional gain function call allows shaping
of the hair filament (see Figure 4.14(f)).

noise = (noise(p — o), noise(p), noise(p + o)) 4.10)

4.3 Volume Hypertexture 136

curlyFur(D(p),p) = gaing.g(biasg 3(noise(f project(p’)))) D(p)

where p’ = p + gaing (1.0 — D(p)) curl noise(p) and f is the desired noise frequency.

Fire can be implemented in differing manners. Perlin [PH89] originally defined fire effects
by displacing the current sample position with noise for a further lookup into volume den-
sities (see Eqn 4.11 and Figure 4.14(a)). This method is expensive to compute in real-time
since an additional texture lookup is required into the volume dataset.

perlinFire(D(p),p) = D(p (1.0 + turbulence(p))) 4.11)

The following functions are introduced as alternative or approximate fire effects. Fireball
is defined by using turbulence as a term to alter the soft-region density field. This method
respects the density distribution through the width of the soft-région and avoids the extra
texture lookup. A simpler fire effect can be implemented with no regard to the soft-region
density distribution (see Eqn 4.13 and Figure 4.14(c)). A simple extension to this func-
tion to allow greater realism includes a post DMF computation (see Eqn 4.14 and Figure
4.14(d)). These additional functions reduce the complexity of the original implementation
and provide more efficient alternatives.

fireball(D(p),p) = D(p) (1.0 + turbulence(p)) (4.12)
fire(D(p),p) = turbulence(p) (4.13)
lumpyFire(lut, D(p), p)rgp = lut(fire(D(p),p))rgb 4.14)

lumpyFire(lut, D(p),p)a = (lut(fire(D(p),p))s — k) — fire(D(p),p)
where k is a control constant for lump severity.

Bias and gain hooks are included into DMF functions to allow fine control of the distribution
of density through the soft-region. Additionally the frequency of noise is a useful control
along with the transfer function to map colour and opacity to densities in the soft-region.

4.3.4 Pre-Integrated Transfer Functions

Hypertexture effects require a fuzzy classification of the soft-region in order to correctly
colour the DMF function. Using Pre-integrated 3.3.3 transfer functions and the slab style of
rendering can produce less artifacts in the soft-region and reduce under-sampling. Slabs are
considered instead of slices which involves two lookups along the ray to define one sampling
position. Therefore, since the densities enountered are to be composited, two hypertexture

4.3 Volume Hypertexture 137

(a) Perlin Fire (b) Fireball

(d) LumpyFire

(g) Melt (h) Electric Storm

Figure 4.14: Examples of hypertexture applied to the SphereDist dataset

4.3 Volume Hypertexture 138

pixel fragmentShader (fragment, volume, transfer, density)
voxel = volume (fragment.tex0)
if (voxel.a >= density.z)
pixel = transfer (hypertexture(fragment.tex0, voxel.xyz 2.0 - 1.0,
D (voxel.a), volume))
else
discard
endif

Figure 4.15: OOP hypertexture fragment shader

pixel fragmentShader (fragment, volume, transfer, light, textureMatrix, density)
voxel = volume (fragment.tex0)
if (voxel.a >= density.a)
normal = (voxel.xyz * 2.0 - 1.0) * textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)
else if (voxel.a >= density.z)
pixel = transfer (hypertexture (fragment.tex0, voxel.xyz = 2.0 - 1.0,
D(voxel.a), volume))
else
discard
endif

Figure 4.16: OOP hypertexture and iso-surface fragment shader

functions must be computed to correctly address the pre-integrated transfer function lookup
table.

Since a segmentation of 3 distinct regions is performed before any classification of the soft-
region, employing this technique can cause overlaps between the iso-surface and the soft-
object. This is because the sample point is fetched along with the next sampling position
along the ray. When including a lit iso-surface with the rendering this is avoided by using
the slab iso-surface rendering method since both samples address a 2D texture map which
allows a correct positioning of the iso-surface.

4.3.5 Object-Order Proxy Slice Hypertexture

Oop slice hypertexture effects are accomplished by directly evaluating the density mod-

-ulation function in the fragment shader. Since the rendering strategy is mixed mode in

respect of performing iso-surfacing for the original object definition and compositing for
soft-region, the blending stage of the pipeline must be used to composite each sample into
the frame buffer. The iso-surfacing of the original object definition is optional for hyper-
texture effects and both rendering styles are presented. Additionally slice and slab style
rendering techniques are considered. Figure 4.3.5 is the iso-surface and hypertexture com-
bined fragment shader, figure 4.3.5 is the soft-region only fragment shader. Figures 4.3.5
and 4.3.5 are the slab equivalent fragment shaders for iso-surfacing combined with hyper-
texture and hypertexture only respectively. The function D(p) remaps the distance field
scalar with the global density which contains iso-values for the iso-surface and soft-region
boundaries.

4.3 Volume Hypertexture 139

pixel fragmentShader (fragment, volume, transfer, density)
voxelf = volume (fragment.tex0)
voxelb = volume (fragment.texl)
if (voxelf.a >= density.z)
pixel = transfer (hypertexture (fragment.tex0, voxelf.xyz » 2.0 - 1.0,
D(voxelb.a), volume), hypertexture(fragment.texl,
voxelb.xyz * 2.0 - 1.0, D(voxelb.a), volume))
else
discard
endif

Figure 4.17: OoP interploated hypertexture fragment shader

pixel fragmentShader (fragment, volume, transfer, weight, light, textureMatrix,
density)
voxelf = volume (fragment.tex0)
voxelb = volume (fragment.texl)
wght = weight (voxelf.a, voxelb.a)
if (wght > 0.0)
normal = (lerp(voxelf.xyz, voxelb.xyz, wght) = 2.0 - 1.0) =«
textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)
else if (voxelf.a >= density.z)
pixel = transfer (hypertexture (fragment.tex0, voxelf.xyz ~ 2.0 - 1.0,
D (voxelb.a), volume), hypertexture(fragment.texl,
voxelb.xyz * 2.0 - 1.0, D(voxelb.a), volume))
else
discard
endif

Figure 4.18: OOP interploated hypertexture and iso-surface fragment shader

4.3.6 Image-Order Single Pass Hypertexture

Two methods of hardware volume rendering allow empty space leaping. This can be accom-
plished using a min-max octree for standard volume datasets. Distance fields can also be
used to accelerate ray-casting by skipping encountered distances along the ray. The original
empty space skipping to an iso-surface is adjusted in respect of the soft-region boundary
since a distance field will usually encode the original object with the value 0, inside vox-
els are be given positive values and outside voxels are given negative values. Therefore an
adjustment is required to correctly skip up to the soft-region. This can be achieved with
the previously defined functions 3.3 or 3.4 by adjusting the iso-value to be the soft region
boundary value.

The fragment shaders in figures 4.20 and 4.19 compute hypertexture with iso-surfacing and
without respecively. Early ray termination is included in both shaders based upon the com-
posited opacity value. Sampling is restricted to each sample point and no slab rendering
is considered. Encountering the iso-surface allows an early ray termination due to the iso-
surface being opaque. Figures 4.19 and 4.21 compute the slab alternative rendering strate-
gies with an acceleration over OOP hypertexturing since volume lookups are reduced by
reusing previous sampling positions along the ray. Previous hypertexturing results cannot
be reused since the previous hypertexture result is not guaranteed to feature in the next soft-
region sample point. Since a front and back distance value are required in slab rendering,
no reuse of the previous volume lookups can be employed when computing empty space

4.3

Volume Hypertexture

140

pixel fragmentShader (fragment, volume, transfer, light, textureMatrix,
density, dir)
direction = dir (fragment.wpos)
blend = (0.0, 0.0, 0.0, 0.0)
rayPos = fragment.tex0
while (true)
voxel = volume (raypos)
if (voxel.a > density.z)
output = transfer (hypertexture(raypos, voxel.xyz * 2.0 - 1.0,
D(voxel.a), volume))
blend = composite(output, blend)
endif
rayPos += direction

// further samples

if (direction.a < length(raypos - fragment.tex0) || blend.a > 0.98)
break
endif
endwhile
pixel = blend

Figure 4.19: 10S hypertexture fragment shader

pixel fragmentShader (fragment, volume, transfer, light, textureMatrix,

density, dir)

direction = dir (fragment.wpos)

blend = (0.0, 0.0, 0.0, 0.0)

rayPos = fragment.tex0

while (true)
voxel = volume {raypos)
if (voxel.a > density.a)

normal = (voxel.xyz * 2.0 - 1.0) * textureMatrix.inverseTranspose

output = lighting(normal, fragment.texl, light)
blend = composite (output, blend)
break
else if (voxel.a > density.z)
output = transfer (hypertexture (raypos, voxel.xyz = 2.0 - 1.0,
D (voxel.a), volume))
blend = composite (output, blend)
endif
rayPos += direction

// further samples

if (direction.a < length(raypos — fragment.tex0) || blend.a > 0.98)
break
endif
endwhile
pixel = blend

Figure 4.20: 10S hypertexture and iso-surface fragment shader

4.3 Volume Hypertexture 141

pixel fragmentShader (fragment, volume, transfer, light, textureMatrix,
density, dir)
direction = dir (fragment.wpos)
blend = (0.0, 0.0, 0.0, 0.0)
rayPosf = fragment.tex0;
rayPosb rayPosf + direction;
voxelf = volume (rayPosf)
while (true)
voxelb = volume (rayposb)
if (voxelf.a > density.z)
output = transfer (hypertexture(rayposf, voxelf.xyz » 2.0 - 1.0,
D (voxelf.a), volume), hypertexture(rayposb,
voxelb.xyz « 2.0 - 1.0, D(voxelb.a), volume))
blend = composite (output, blend)
endif
rayPosf += direction;
rayPosb += direction;
voxelf = voxelb;

// further samples

if (direction.a < length(rayposf - fragment.tex0) [] blend.a > 0.98)
break
endif
endwhile
pixel = blend

Figure 4.21: 10s interpolated hypertexture fragment shader

leaping. This extra burden of texture lookups in some cases outweighs the acceleration.

4.3.7 Results

Two rendering strategies are explored for complex hypertexturing volumetric objects, OOP
rendering and 10S rendering. Post-classification and pre-integrated classification are ex-
plored for soft-region classification after segmentation using the object density function.
Iso-surfacing is also considered for extended hypertexture effects. These methods are com-
pared for performance and image quality characteristics. Gradient computation is not con-
sidered for the soft-region to perform lighting calculations, however iso-surfaces are subject
to lighting. Frame rates are taken with no volume rotation to avoid memory access and cache
issues.

Table 4.5 gives the frame rates obtained with the OOP rendering method and figures 4.23
and 4.24 displays the resultant images as applied to the CTHeadDist dataset and the Sphere-
Dist dataset respectively. The complexity of the DMF applied to the soft-region has a drastic
impact on rendering speed compared to standard iso-surface rendering or direct volume
rendering. This is due to additional volume lookups being required and complex instruc-
tion combinations being required to compute arbitrary DMF functions . The conditional
branching mechanism is utilised to bypass expensive hypertexure DMF functions, however
throughput without conditional branching achieves similar frame rates for less complex hy-
pertexture effects. This property allows hypertexture to be computed on older hardware that
is not capable of dynamic branch instructions. In general hypertexture is accelerated by us-
ing dynamic conditional statements when there are multiple volume lookups and complex

E
[
!

142

4.3 Volume Hypertexture

pixel fragmentShader (fragment, volume, weight, transfer, light, textureMatrix,

density, dir)

direction = dir (fragment.wpos)
blend = (0.0, 0.0, 0.0, 0.0)
rayPosf = fragment.tex0;
rayPosb = rayPosf + direction;
voxelf = volume (rayPosf)

while (true)

voxelb = volume (rayposb)
weight = weight (voxelf.a, voxelb.a).a
if (weight > 0.0f)
normal = (lerp(voxelf.xyz, voxelb.xyz, weight) » 2.0 - 1.0) =
textureMatrix.inverseTranspose)
output = lighting(normal, fragment.texl, light)
blend = composite(output, blend)
break
else if (voxelf.a > density.z)
output = transfer (hypertexture (rayposf, voxelf.xyz = 2.0 - 1.0,
D(voxelf.a), volume), hypertexture (rayposb,
voxelb.xyz * 2.0 - 1.0, D(voxelb.a), volume))
blend = composite{output, blend)
endif
rayPosf += direction;
rayPosb += direction;
voxelf = voxelb;

// further samples

if (direction.a < length(rayposf - fragment.tex0) || blend.a > 0.98)

break
endif

endwhile
pixel = blend

Figure 4.22: 10S interpolated hypertexture and iso-surface fragment shader

4.3 Volume Hypertexture

143

Fireball Melting Fur
Dataset (size) Viewport | Lit | Slices | Iso Int | Iso Int | Iso Int
CTHeadDist 5122 No | 128 48 27 | 27 17 | 42 23
(2562 x 128) 256 24 13 | 13 8 20 11
see Figure 4.24 512 12 6 6 4 10 5
1024 | 6 3 3 2 5 2
Yes | 128 19 13 |15 10| 18 11
256 9 6 7 5 8 5
512 4 3 3 2 4 2
1024 2 1 1 1 2 1
10242 No | 128 17 10 | 14 8 16 9
256 9 5 7 4 8 4
512 4 2 3 2 4 2
1024 2 1 1 1 2 1
Yes | 128 7 5 6 4 6 4
256 2 2 3 2 3 2
512 1 1 1 1 1 1
1024 [<1 <1|<1 <1|<l1l <1
SphereDist 5122 No | 128 52 29 |24 14 | 45 23
(256%) 256 | 25 13|12 7 |22 12
see Figure 4.23 512 12 7 6 3 10 6
1024 6 3 3 1 5 3
Yes | 128 22 14|17 12|20 14
256 12 6 6 5 10 6
512 5 3 4 2 5 3
1024 2 1 2 1 2 1
10247 No | 128 18 11 | 13 8 15 9
256 9 5 6 4 7 4
512 4 2 3 2 3 2
1024 2 1 1 1 1 1
Yes | 128 8 5 7 4 7 5
256 4 2 3 2 3 2
512 2 1 | 1 1 1
1024 1 <1<l <1|<1 «1

Table 4.5: O0OP hypertexture frame rates in frames per second, Iso is single sample hypertex-
turing with post-classification in the soft-region and Int is interpolated hypertexture rendering
with pre-integrated classification in the soft-region. Non lit variants do not contribute an iso-
surface whilst lit variants contribute an iso-surface or interpolated iso-surface. All rates are

rounded down.

4.4 Animation Techniques 144

instruction combinations.

Table 4.6 gives the frame rates for 10S hypertexturing. These frame rates do not include
empty space leaping. Table 4.7 outlines the rendering speeds possible with space leaping for
the 10S approach. Frame rates compared to the standard 10S approach for fireball effects are
comparable, however degrade with more samples in a less linear nature. Dynamic branch-
ing costs currently make the performance of the slab rendering strategy with empty space
leaping slower since they are required to skip expensive computations of two hypertexture
functions. This method is still considered to be the best approach since future hardware will
improve on branching performance. Additionally the early ray termination combined with
empty space leaping for iso-surfacing during hypertexture rendering outperforms the non
iso-surface consideration alternative due to early ray termination being performed when
the iso-surface is intersected. This is due to the early ray termination upon reaching the
iso-surface and not considering the soft-region positioned beyond the iso-surface encoun-
tered. The heavy cost of additional texture access and dynamic branches in the slab style of
rendering generates many more instructions which degrade performance drastically.

The difference between slice and slab rendering techniques are apparent for sparse soft-
regions of high frequencies that are generally under-sampled with post-

classification. Fur, curly fur and electric storm hypertextures are generally under-sampled
with post-classification unless a small step size is used. Pre-classification offers a perfor-
mance increase in these cases alone with comparable image quality. Many effects includ-
ing fire effects do not benefit from the pre-integrated classification step and the additional
burden of computing two DMF functions per sample. This is due to the highly stochastic
properties of these effects. Figure 4.24 contains images of the fireball effect with post-
classification and pre-integrated classification. There is only a small variation between out-
put images where under-sampling and aliasing artefacts are consistent at any sampling level,
each sampling level results in aesthetically pleasing results. A clear benefit to pre-integrated
classification can be seen in figure 4.23 for fur hypertexture. The transfer function con-
tained high frequencies which post-classification under-samples with few samples through
the soft-region. However changing the transfer function to contain no high frequencies
allows the post-classification method to obtain the desired results (see Figure 4.23(1)).

OoP hypertexture rendering currently outperforms image-order approaches that include
empty space leaping and early ray termination due to less cycles being used during frag-
ment shading. OOP rendering do not compute true 32 bit blending where 10S techniques
enable blending at full precision. This is especially important for high-frequencies through-
out the soft-region. Therefore rendered images are subject to artifacts due to quantised
blending. It is further evident that 10S hypertexturing will outperform 0OP methods as con-
ditional branching hardware matures because the linear nature of the frame rates is reduced
by utilising the image-order acceleration techniques.

4.4 Animation Techniques

Animation methods for the outlined procedural texturing methods are based on varying
parameters to the functions over time. This enables automatic animation of the model and

4.4 Animation Techniques 145

(a) 1024 single (e) 1024 interpolated (i) 128 single/interpolated
(b) 512 single (f) 512 interpolated

(c) 256 single (g) 256 interpolated

(d) 128 single (h) 128 interpolated (j) Error Key

Figure 4.23: SphereDist dataset fur hypertexture (a) to (d) and interpolated hypertexture with
iso-surface(e) to (h) images rendered into a 5122 viewport with differing sample frequencies.
Both (b) to (d) and (0 to (h) are the difference images from (a) and (e) respectively to visualize
artefacts introduced with lower sampling rates. Both techniques (i) are compared highlight
sampling differences, and the error range for difference images is given in (j)

4.4 Animation Techniques 146

(a) 1024 single (e) 1024 interpolated (i) 128 single/interpolated
(b) 512 single (0 512 interpolated

(¢) 256 single (g) 256 interpolated

(d) 128 single (h) 128 interpolated (j) Error Key

Figure 4.24: CTHeadDist dataset fireball hypertexture (a) to (d) and interpolated hypertexture
(e) to (h) images rendered into a 5122 viewport with differing sample frequencies. Both (b) to
(d) and (f) to (h) are the difference images from (a) and (e) respectively to visualize artefacts
introduced with lower sampling rates. Both techniques (i) are compared to highlight sampling
differences and the error range for difference images is given in (j).

4.4 Animation Techniques 147

Fireball Melting Fur

Dataset (size) Viewport | Lit | Slices | Iso Int | Iso Int | Iso Int
CTHeadDist 5122 No | 128 [20 22|23 20|27 20
(2562 x 128) 256 15 11 11 9 13 10
see Figure 4.24 512 7 6 5 4 6 5
1024 3 3 2 2 3 2

Yes | 128 17 13 12 9 12 10

256 8 6 6 4 6 5

512 4 3 3 2 3 2

1024 2 1 1 1 1 1

10242 No 128 12 6 8 5 10 6

256 6 3 4 2 5 3

512 3 1 2 1 2 1
1024 1 <1 1 <1 1 <1

Yes | 128 9 5 6 4 8 4

256 4 2 3 2 4 2

512 2 1 2 1 2 1
1024 1 <1 1 <1 1 <1

SphereDist 5122 No | 128 [27 21 |21 17 |25 19
(2563) 256 | 14 12 10 7 12 10
see Figure 4.23 512 7 6 5 3 6 5
1024 3 3 2 1 3 2

Yes 128 14 12 11 8 12 10

256 7 6 5 4 6 5

512 3 3 2 2 3 2

1024 1 1 1 1 1 1

1024% No 128 8 5 7 5 8 5

256 3 2 3 2 3 2

512 1 1 1 1 1 1

1024 | <1 <1<l <1|<1 «1

Yes | 128 6 5 5 4 6 5

256 3 2 2 2 3 2

512 1 1 1 1 1 1

1024 | <1 <1<l <1|<1 <1

Table 4.6: 10S hypertexture frame rates in frames per second, Iso is single sample hyper-
texturing with post-classification in the soft-region and Int is interpolatedhypertexturing with
pre-integrated classification in the soft-region. Non lit variants do not contribute an iso-surface

whilst lit variants contribute an iso-surface or interpolated iso-surface. All rates are rounded
down.

4.4 Animation Techniques 148

Non Lit Lit
Dataset (size) | Viewport | Slices | Iso Int | Iso Int
CTHeadDist 5122 128 28 24 | 28 16
(2562 x 128) ‘ 256 18 1524 8
see Figure 4.24 512 12 9 |16 5
1024 | 8 6 11 3
1024° 128 [15 10|14 6
256 8 7110 3
512 5 4|7 2
1024 | 3 2 {5 1

Table 4.7: 10s hypertexture frame rates with empty space leaping for the fireball hypertexture
in frames per second, Iso is single sample hypertexturing with post-classification in the soft-

‘region and Int is interpolatedhypertexturing with pre-integrated classification in the soft-region.
Non lit variants do not contribute an iso-surface whilst lit variants contribute an iso-surface or
interpolated iso-surface. All rates are rounded down.

effect being rendered and removes burden to texture artists and animators. The goal is to
achieve a realistic looking sequence of images without artifacts in real-time.

Animation of procedural texturing techniques can be performed in a variety of ways. The
methods described here are all parameter based and exhibit differing complexity. Altering
the texture domain is detailed in section 4.4.1, providing higher order noise implementations
is presented in section 4.4.2 and additional hypertexture effects are described in section
44.3.

The procedural texturing techniques presented are all view-independent which allows arbi-
trary viewing parameters and texture space manipulations to be defined whilst still main-
taining high-quality rendering without artifacts. This gives massive scope to procedurally
generated animations without texture artists having to manipulate separate key frames.

4.4.1 Texture Domain

The most simple and runtime efficient method of animating procedural textures is to pro-
vide a mechanism for offsetting or transforming the noise domain. The descriptions of
solid texturing and hypertexturing include the ability to transform positions used in noise
contributions. Simply providing a mechanism to allow arbitrary matrix multiplication al-
lows a vast array of differing offset strategies to be employed such as translation, scaling
and rotation (see Eqn 4.15).

T(z)=Ax (4.15)

where A is the concatenated transformation matrix containing translation, rotation and scale
contributions and z is the co-ordinate to transform.

OoP techniques benefit from providing proxy slice geometry which can be rasterized with
two sets of texture coordinates. The first set is used to address the volume being sampled

4.4 Animation Techniques 149

whilst the additional set of texture coordinates is used to address texture space. 10S methods
do not benefit from the ability to provide two sets of texture coordinates without performing
an additional rendering pass or providing a matrix to the fragment shader to multiply with
each position encountered for addressing the texture domain. The concatenation of matrices
can be performed on the CPU and uploaded to the GPU when changes occur. Usage of the
CPU in this case reduces the GPU overhead by reducing the amount of instructions executed
for each sample position. The provision of the texturing co-ordinates effectively maintains
the same instruction count with the addition of a texture lookup into texture space. Comput-
ing this position on the fly incurs a matrix multiply which will require 4 extra instructions.

This technique of offsetting the texturing co-ordinate set with matrix algebra requires that
the transformed sample points are contained within the textures original domain. Procedural
generation of texture space guarantees this property since it will exhibit in infinite domain,
however a texture map based implementation has a finite domain.

A simple alternative to providing a complete matrix to the GPU for arbitrary transformation
instead provides a small offset to the texture co-ordinates. Generally one direction is chosen
and the offset scalar uploaded to the GPU as a global variable. This enables performance to
be maintained at the same level as not requiring animation.

Generally these strategies to providing animation can be computed with minimal overhead
and provide a simplistic animation. The finite texture domain of the fast procedural imple-
mentations introduces the problem of addressing outside the texture space which requires
a periodic function such as sin to control the offset. Mirrored repeat textures can also
be used to allow a continued infinite domain. These techniques impact the overall visual
non-repeating pattern of the noise primitive.

4.4.2 Higher-Order Noise Primitives

Procedural texture synthesis that is based on the noise function can additionally be ani-
mated by adding a further dimension to the noise domain to represent time. Procedural
noise techniques incur an additional performance penalty since a 4D lattice must be consid-
ered in replacement of the 3D counterpart. The noise algorithm’s complexity grows from
interpolating 8 vertices to interpolating 16 vertices which adds an order of magnitude to
the algorithm. Techniques such as solid texturing can be rendered in real-time when using
procedural noise implementations since only one noise lookup is performed per ray when
using deferred shading techniques such as the 10S approach. This approach also benefits
from empty space leaping strategies.

GPU hardware does not allow native 4D texture maps to be uploaded and thus must be a
modified 3D texture. Computing several 3D blocks of noise with a 4D noise implemen-
tation allows a finite 4D texture domain when one sampling direction is the concatenation
of each noise block. This proves to be fast to render since the texture coordinates can be
rescaled in one direction in respect of the total number of noise blocks contained in the tex-
ture. This rescaling is then multiplied cheaply with a global representing time to perform
the correct addressing in texture space (see Eqn 4.16). Since a finite 4D texture block is pro-
vided, using a mirrored repeating texture strategy allows the general visually non-repeating

4.4 Animation Techniques 150

(a) Time 0 (b) Time 1 (¢) Time 2 (d) Time 3 (e) Time 4

Figure 4.25: Animation of PerlinFire at differing time intervals
pattern property to be maintained in the direction providing the 4th dimension.

p—— £ —= (4.16)
n t

where p' is the new texturing coordinate, p is the original texture co-ordinate in the [0, 1]3
range, ¢t £ N is the number of 3D texture blocks building up the 4D noise function and
n E N is the current texture block for consideration or animation frame. The jn can be
computed on the CPU to reduce fragment shader instructions. Additionally when using a

mirrored repeat mode, n > ¢ is valid.

4.4.3 Hypertexture Parameters

Hypcrtexture effects can also benefit from controlled manipulation of the remaining ren-
dering properties such as bias, gain and the object density function over time. Constantly
differing animations can be achieved using the methods described above with the added
ability to define complex animations such as explosions by varying parameters to the hy-
pertexture DMF function at precise intervals. This analogous to key-frame animation is easy
to implement, intuitive and does not require extensive manipulation at key frames.

A simple explosion effect may be generated by altering the soft-region iso-value to expand
over time using the fireball hypertexture. More complex extensions may also be computed
by altering bias and gain over time to alter the way the explosion occurs through the expand-
ing soft-region. In combination with a continuously varying 4D noise function a natural
looking complex animation can be created by varying only 4 parameters. These manipula-
tions can occur at different times to control the exact progress of the animation and provide
an animator fine control.

Real-time rendering can be maintained with these precise animations by utilizing 4D texture
noise primitives and repeating texture access modes. Figure 4.25 provides frames from an
explosion hypertexture with varying soft-region iso value, bias, gain and 4D noise.

4.5 Summary 151

4.5 Summary

This chapter has introduced flexible and scalable real-time procedural texture synthesis for
volume graphics. Solid texture and hypertexture have been explored as powerful techniques
to add rich detail to a volume objgct. The focus of this chapter has been to provide proce-
dural texturing effects capable of surface and object definitions in real-time to the volume
graphics domain using GPU hardware. Previous work in this field has not enabled real-time
rendering and as a result this description of procedural texturing for volumes has a wide
reaching level of applications in the visualisation, modelling, animation and entertainment
industries.

The emergence of real-time volume techniques make it possible to define a real-time vol-
umetric pipeline to provide a richer architecture for computing general graphics imagery.
Additionally the strength of the volume graphics approach is evident in the modelling of
amorphous phenomena and constant complexity for increasingly complex objects. Addi-
tionally speed-up mechanisms have been shown to be possible to implement on GPU hard-
ware to further accelerate these techniques.

Particular attention has been focused to enabling procedural modelling using primitive func-
tions such as noise and turbulence in the fastest and most aesthetically pleasing manner
available, efficient rendering of these effects and a generalized pipeline to include arbi-
trary functions at run-time. These techniques can be used in software that provides volume
graphics modelling environments among other applications of volumetric effects.

Parts of this work have been presented at the 4" International Workshop on Volume Graph-
ics and also published in Volume Graphics 2005.

Chapter 5

Yolume Surface Detail

Contents
51 2DTextureMappingot iiiiieeiennens 153
52 TangentSpaceo v vttt ieeeentesoeesens 163
53 BumpMappingttt e 168
54 DisplacementMappingttt ittt 183
55 Summaryt ittt ittt e e it e e i s e e e 196

This chapter explores fine surface detail rendering techniques for volume datasets in real-
time. The goal is to define additional tools to compute surface detail to enable a rich vol-
ume graphics framework for general 3D surface synthesis. Visual interpretation of surface
texture is important to synthesize natural looking images. The emergence of volume ap-
proaches as a graphics primitive benefits from the ability to model complex surface struc-
tures efficiently and intuitively whilst additionally providing analogous cases to surface
graphics techniques. Surface detail may be added to the volume graphics pipeline with
the addition of 2D texture mapping techniques. This chapter introduces GPU accelerated
volume texture mapping with the addition of more advanced surface detail techniques.

Many real world objects exhibit differing colours and attributes over their surfaces. For
example a human has very subtle skin tone variations and small lines, wrinkles and pores in
the skin, as well as small hairs and inconsistent densities across the surface of the body. A
realistic rendering of such an object must convey these small irregularities from a perfectly
curved surface to the user for intuitive recognition of the subject. The computer graphics
model can treat surfaces as smooth uniform entities that do not contain discontinuity. Pro-
cedural texturing techniques do not provide a means of intuitively representing all surface
texture as often mathematical models cannot account for such detail. This short fall in pro-
cedural synthesis is explored in this chapter. It is therefore important to provide techniques
to allow computer graphics algorithms to define these properties and surface texturing tech-
niques [Cat74, Cat75, Bli78a] are defined and expanded for this purpose.

Providing a mechanism to keep object shape and final surface detail separate allows mod-
els to be reused and resemble different materials and properties by changing the texturing

152

I
3
{

5.1 2D Texture Mapping 153

environment alone. In volume graphics, this can be an important feature of a modelling en-
vironment where constant re-voxelisation of an object into different forms is not practical.
For example it might be desirable to represent a sphere object as solid marble in one mod-
elling instance which can utilise solid texturing to convey a solid marble sphere, it might
then be necessary to represent a sphere as a spiky object in another modelling instance to
convey a weapon in a games environment, a sphere with different densities in its construc-
tion that is weathered in an outdoor scene or simply changing the underlying simple shape
by manipluating the modelling parameters. The underlying sphere does not change in these
instances, but can be textured or manipulated to model differing properties depending on
the application. Current techniques such as CVG require several datasets being used for this
purpose or the alternative is to re-voxelise a dataset which requires the detail to be mapped
to the surface in a specific way. These approaches therefore keep object detail separate from
texture detail which is an important notion in intuitively representing arbitrary objects that
have similar underlying shape detail.

Volume datasets exhibit less key attributes to enable 2D texture mapping and this is firstly
explored in 5.1. Section 5.2 provides an algorithm to compute a tangent space to object
space mapping for vectors, a technique used in the following sections for defining lighting
techniques. Sections 5.3 to 5.3.3 explore Bump mapping, a technique to add small irregular
detail to surfaces that removes the uniform appearance of smooth surfaces with lighting.
Sections 5.4.1 to 5.4.3 explore Displacement mapping, an extension of bump mapping that
removes some restrictions imposed by this technique and finally a summary is presented in
section 5.5.

5.1 2D Texture Mapping

This section explores the mechanism to define a uv parameterization of a volume’s iso-
surface and introduces the first accelerated GPU implementation of these techniques for
volume objects. In general a function ¢ : R® — R? is required that maps each point on an
objects surface to a unique position in 2D texture space. Therefore texture patches cannot
be utilized since there is no flat geometric primitives to project into texture space.

The Bier and Sloan [BS86] two part texture mapping algorithm is employed for this pur-
pose since a volume dataset does not contain a geometric representation. An intermediate
parametrically defined object is used to form this as a geometric representation is present.
Volume datasets can be projectively textured in the same manner as surface based geometry
that exhibits no uv parametrisation.

Winter [Win02] introduced a volume graphics implementation of two part texture mapping
in software. The two part texture mapping algorithm is implemented as a set of functions
for intermediate surfaces that are applied during iso-surface classification. Winter and Chen
[WCO01] describe the viib API which includes a software implementation of 2D texturing
using this technique.

Shen and Willis [SWO0S5] also describe the use of two part texture mapping for volume
objects. Extensions to the two part texture mapping algorithm are explored to perform anti-

5.1 2D Texture Mapping 154

aliasing and increase the level of accuracy during magnification mappings.

The two part texture mapping techniques of a forward mapping from texture space to object
space and additionally an inverse or backward mapping from object space to texture space
are explored and defined. Section 5.1.1 defines forward mapping enabling computation of
2D templates to aid texture artists to morph and paint on known positions of the volume’s
iso-surface. Section 5.1.2 defines backward mapping which allows the application of a tex-
ture map to a volume object. Section 5.1.3 defines the parametrically defined intermediate
surface geometries used in this approach. Section 5.1.4 and 5.1.5 introduce the first GPU
2D texture mapping implementations using these techniques. Finally section 5.1.6 provides
performance measurements for each GPU approach.

5.1.1 Forward Mapping

Forward mapping is the process of mapping from unit square texture space to points on the
object’s surface (object space). For volume rendering, rays must be cast into the volume in
some manner to intersect the iso-surface for consideration. This forward mapping therefore
employs ray-casting from texture space locations through the object space to intersect the
iso-surface.

Forward Mapping is defined by firstly mapping from texture space locations to intermediate
object surface points (see Function 5.1)

S:R? - R3 (5.1)

A Mapping from the parametric intermediate surface is then made to the object being ren-
dered (see Function 5.2).
O:R>—R3 (5.2)

A forward mapping is thus the combination of the S and O functions (see Eqn 5.3).

O(S(u,v)) =p (5.3)

where p € R3 represents a point on the objects surface and u, v represent the position in
texture space for a given texel.

The S mapping can be defined parametrically and therefore a suitable method for computing
O must be used. There are four differing approaches to compute O (see Figure 5.1):

e Reflected Ray - A ray that intersects the intermediate object’s surface is reflected
around the normal vector at the intersection point. The intersection point on the
object’s surface is defined from the reflected ray.

¢ Intermediate Surface Normal - A point on the objects surface that is intersected by a
normal from the intermediate surface.

e Object Normal - The intersection of the object’s surface normal vector with the inter-
mediate surface.

5.1 2D Texture Mapping 155

(a) Reflected Ray (b) Intermediate Surface Normal

(c) Object Normal (d) Object Centroid

Figure 5.1: Mapping strategies for O and O~!

e Object Centroid - project from the centre of the object or objects coordinate space
through the point on the surface being considered onto the intermediate parametric
surface.

The reflected ray method is not valid for template rendering since the object space start-
ing ray is unknown and no one-to-one or many-to-one relationships can be guaranteed for
arbitrary rays cast from the intermediate surface to the object’s surface. The intermediate
surface normal method is well suited to the problem of casting rays into the volume dataset
since disjoint rays can be cast from the intermediate surface into the volume. A many-to-one
or one-to-one relationship can be maintained. Both the object normal and object centroid
methods are also not well defined since there may be several points on the object that project
onto one intermediate surface point which will result in ambiguities. Additionally render-
ing the template is complicated further by firstly having to traverse the volume in a standard
method and then perform an additional ray-casting towards the intermediate surface when
the iso-surface is encountered.

By using the intermediate surface normal a guaranteed many-to-one relationship between
points on the intermediate surface and points on the object’s surface is guaranteed. Addi-
tionally volume rendering can be performed using the intermediate surface normals as ray
directions to intersect the iso-surface. This approach benefits from the ability to cast rays
from template image final pixels by first performing the S mapping and ray-casting along
the normal vector encountered on the intermediate surface. Figure 5.2(a) demonstrates a
sphere mapping approach and the resulting template extracted from the BuckyBall dataset.
The surface normals encountered at the iso-surface are used to provide detailed information

5.1 2D Texture Mapping 156

(a) Template

(b) Template Painting

(c¢) Final Texture Map

Vs

(d) Rendered Result

Figure 5.2: Painting on the surface of the BuckyBall dataset. The template is created with
ray casting into the volume dataset with forward mapping (a), a texture artist then paints on
the template using layers to separate the texture map from the template (b), the texture layer

is stored as a texture map (c) and the texture map is applied to the original volume object and
rendered (d).

5.1 2D Texture Mapping 157

to the texture artist.

S5.1.2 Backward Mapping

Generally in ray-casting the opposite problem to template rendering is to be evaluated since
during ray traversal, points are encountered on the objects iso-surface and require a uv
parameterization in order to address a 2D texture map. The inverse or backward mapping
is the combination of inverse functions S~1 : R® — R? and O~! : R? — R3 (see Eqn 5.4)

STHO Hz,y,2)) =t (5.4)
where ¢ € R? represents the texel location or u and v parameters.

The original algorithm contains four separate definitions for O~1. This mapping from the
original object to the intermediate parametric surface in object space can be defined with:

There are four differing approaches to compute O~! (see Figure 5.1).

e Reflected Ray - A ray that intersects the intermediate object’s surface is reflected
around the normal vector at the intersection point. The intersection point on the
object’s surface is defined from the reflected ray.

o Intermediate Surface Normal - A point on the objects surface that is intersected by a
normal from the intermediate surface.

e Object Normal - The intersection of the objects surface normal vector with the inter-
mediate surface.

e Object Centroid - project from the centre of the object or objects coordinate space
through the point on the surface being considered onto the intermediate parametric
surface.

Generally during ray-casting the object normal, object centroid or intermediate surface nor-
mal methods can be used. This is due to the object gradient normal being known at iso-
surface intersection, the object’s centre point being known or estimated and a parametric
mapping onto a non-unit sphere sharing it’s intermediate surface normal. The object cen-
troid can be approximated, or defined in some cases by analysing the volume dataset. For
example the maximal distance value in a distance field should represent the centre point of
an object. The object normal method exhibits a many-to-one correspondence since normals
from two differing samples can map to the same point on the intermediate surface. The
object centroid method provides an analogous to the intermediate surface normal method
since a centroid located at the intermediate surface normal centre well produce the same
vectors.

With intermediate surface normals there is a potential for multiple intermediate surface nor-
mal vectors to intersect the object’s surface position. The reflected ray method exhibits the
problem of firstly defining the starting ray which is unknown at sample locations. If template
images are created by intermediate surface normals either the object centroid or interme-
diate surface normal mappings can be used. It is also more efficient to use these methods

5.1 2D Texture Mapping 158

(a) Sphere (b) Cylinder (¢) Box

Figure 5.3: Intermediate surface geometries

since the location on the surface in object space and the gradient normal are required to
map to the intermediate surface with the object normal method. In practice ray-casting is
required to intersect the intermediate surface.

An example template, template painting, resultant texture and final image are given in figure
52

5.1.3 Intermediate Parametric Surfaces

Intermediate surfaces should closely approximate the underlying object being texture mapped
and additionally be parametrically defined. Therefore no consideration is made for planes
since volume datasets are 3D in nature. Additionally the box or cube intermediate surfaces
are not considered since an explicit mapping function must be defined for cube vertices. The
conditionals required by the mapping functions make it inefficient to compute at interactive
rates on GPU hardware. The intermediate surface normal representation is used for both
mapping functions since this provides a coherency and additionally a sphere of arbitrary
radius contains the same normal vectors, allowing direct computation of the mapping func-
tion without projecting onto the object’s surface along the intermediate surface’s normal.

The two main intermediate geometries are considered for this purpose are (see Figure 5.3):
* Sphere
* Cylinder

The descriptions below assume that texture co-ordinate space is defined in the unit square

u, v 6 [0,1]2 and the object space is defined in the unit cube x,y, z £ [0, 1]3.

A sphere of centre (zo, Vo, zo) and radius r is defined as a set of points s £ R3 that satisfy
equation 5.5.

(x-x0)2+ (y- yo)2+ (z- z0)2 = r2 (5.5)

Parametrically a point is defined on the sphere at the origin(see Eqn 5.6):

5.1 2L Texture Mapping : 159

(r cos(9) sin(e), r sin(8) sin(p), r cos(¢)) (5.6)

where ; is the radius, § € (0,2 7] is an azimuthal (longitude) co-ordinate and ¢ € [0, 7] is
- a polar(colatitude) co-ordinate.

The mgping function S for a unit sphere with centre at (0.5,0.5,0.5) is thus defined to
bound he unit cube(see Eqn 5.7):

S(u,v) = (0.5 + cos(0) sin(@), 0.5+ sin(d) sin(8), 0.5 +cos(¢)) (5.7)
where t =27 uand ¢ = 7 v.

When endering a template, the unit square is rasterized and application of this function
definesthe starting co-ordinates in object space (or the intermediate surface point) of each
ray. Tle ray direction is defined by observing that any normal vector from the interme-
diate suface will point to the object space origin (0.5,0.5,0.5). Thus the ray direction is
(0.5,05,0.5) — S(u,v).

The rev:rse mapping is performed with respect to the co-ordinate system defining the sphere
centre & (0.5,0.5,0.5) (see Eqn 5.8): '

~0.5 y—05
az:—0.5> arccos (\/(x—0.5)2+(y—0.5)2+(z—0.5)2)

o ’ T

arctan

0
L
®
\CP
It
N

(5.8)

A O~ mapping is not required since it can be observed that a normal vector on a sphere
with anarbitrary radius will be the same. Therefore any point along this vector will produce
the same result.

A cylinder of radius r and height h with height being aligned with the z axis is parametri-
cally defined as a set of points ¢ € R® that satisfy the equation 5.9.

(rcos(8), rsin(8), z) (5.9
where 6 € [0,2r] and z € [0, A)].

The orientation of the cylinder must be described when mapping the object. A vertical
cylinder is used here for illustration where its base is defined at (0.5,0,0.5). The cylinders
radius must bound the unit cube. S is then defined (see Eqn 5.10)

S(u,v) = (0.5 — sin(f), h,0.5 + cos(f)) (5.10)
where § = 2ruand h = 1.0 < z.

When rendering a template, the unit square is rasterized and application of this function
defines the starting co-ordinates in object space (or the intermediate surface point) of each

5.1 2D Texture Mapping 160

ray. The ray direction is defined by observing that any normal vector from the intermediate
surface will point to the object in the same manner. The single point from sphere mapping
is replaced with a point on a line defined at (0.5,y,0.5). Thus each ray direction can be
calculated with (0.5,y,0.5) — S(u, v) where y is the same value returned from S (u, v).

The reverse mapping is performed with respect to the co-ordinate system defining the centre
of the cylinder at (0.5, 0.5,0.5) (see Eqn 5.11).

z—0.5
arctan (2_0.5

2w

S(z,y,2z) =),I.O—y (5.11)

A O~! mapping is again not required since it can be observed that a normal vector on a
cylinder with an arbitrary radius will be the same. Additionally the height of the cylinder
will not affect this property.

5.1.4 Object-Order Proxy Slice 2D Texturing

Two methods are included for applying texture maps to volumetric objects with intermedi-
ate surfaces. The slice and slab methods can both be used since 2D texturing is an extension
of iso-surface rendering. A function computeUV (p) is supplied to the fragment shader to
allow arbitrary uses of a reverse mapping function. This function can be changed depending
on the proxy geometry that is required for rendering. Additionally the 2D texture map is
provided as the function textureMap(p). A speed-up mechanism is possible by providing
a pre-computed lookup table defining the unit cube with each position containing a v and
v parameter in separate channels. Alternating between intermediate surface geometries is
possible by either switching the pre-computed texture map or changing the function’s defi-
nition and re-compiling the fragment shader at runtime. A large volume dataset is required
to be uploaded to the GPU in order to achieve a speed-up with comparable image quality.
Testing has shown that a reasonably sized lookup table introduces errors due to the quantis-
ing of float values from 32 bits to either 8 or 16 bits. It is expected that future hardware will
allow true 32 bit texturing where this speed up method can be used without loss of image
quality. These speed-ups are therefore not included in future discussions.

The vertex shader for use in 2D texturing is the same as the standard iso-surfacing vertex
shader given in 3.20. No blending is computed during this iso-surfacing algorithm although
blending must be introduced if a semi-transparent iso-surface-is required. Figure 5.4 is the
slice based iso-surfacing technique of 3.25 that is adapted to include 2D texturing. The
slab extension is depicted in figure 5.5 which is an adaptation of the slab iso-surfacing
technique of 3.27. There is no requirement for the colour table in this case since only
the interpolation factors are required to compute the normal and position exactly on the
iso-surface. Therefore this method benefits from increased accuracy with no additional uv
parametrization of the second sample position.

5.1 2D Texture Mapping 161

pixel fragmentShader (fragment, volume, isoValue, textureMap, light,
textureMatrix)
voxel = volume (fragment.tex0)
if (voxel.a > isovValue)
light.diffuse = textureMap (computeUV (fragment.tex0))

normal = voxel.xyz * 2.0 - 1.0 x textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)

else
discard

endif

Figure 5.4: O0OP 2D texturing fragment shader

pixel fragmentShader (fragment, volume, weight, textureMap, light,
textureMatrix)
voxelf = volume (fragment.tex0)
voxelb = volume (fragment.texl)
wght = weight (voxelf.a, voxelb.a)
if (wght > 0.0)
"pos = lerp(IN.tex0, IN.texl, wght);
normal = (lerp(voxelf.xyz, voxelb.a, wght) » 2.0 - 1.0) =*
textureMatrix.inverseTranspose
light.diffuse = textureMap (computeUV (pos))
pixel = lighting(normal, fragment.tex2, light)
else
discard
endif

Figure 5.5: OOP interpolated 2D texturing fragment shader

5.1.5 Image-order Single Pass 2D Texturing

The 10S method can provide an additional speed-up when considering slabs rather than
slices. The entire ray sampled in a single fragment shader program and can thus benefit
from the already known previous samples during ray traversal. Additionally it is possible
to include the speed-up mechanisms of early ray termination, deferred shading and empty
space leaping. Figure 5.6 is the fragment shader for 2D texturing with slice sampling which
is adapted from figure 3.37 and figure 5.7 is the slab based counterpart which is adapted
from figure 3.38.

Empty space leaping can be defined with an octree for standard volume datasets or distance
values for distance field datasets. The octree method has the disadvantage of requiring each
sample to firstly lookup an octree value. The octree cell cannot be skipped since the require-
ment for a complex intersection function must be realised which adds more instructions to
the fragment shader. A decision is also required if querying the octree at every sample loca-
tion to decide if a particular sample contributes to the final image. This is usually achieved
by addressing a texture map which requires further texture fetches to a pre-computed lookup
table. The distance field space skipping strategy is better suited to image-order techniques
and can be included with a 1D lookup table and additional instruction when rendering
distance field datasets. The previous definitions of empty space leaping strategies can be
directly imported (see section 3.2.4)

5.1 2D Texture Mapping

162

pixel fragmentShader (fragment, volume, dir, isovValue, light, textureMap,
textureMatrix)
direction = dir (fragment.wpos)
rayPos = fragment.tex0
while (true)
voxel = volume (rayPos)
if (voxel.a > isoValue)
break
endif
rayPos += direction .

// further samples

if (direction.a < length(rayPos - fragment.tex0)) {
break
endif
endwhile
if (voxel.a > isoValue) .
normal = (voxel.xyz * 2.0 - 1.0) * textureMatrix.inverseTranspose
light.diffuse = textureMap (computeUV (raypos))
pixel = lighting(normal, fragment.texl, light)
endif

Figure 5.6: 10s 2D texturing fragment shader

pixel fragmentShader (fragment, volume, dir, weight, light, textureMap,
textureMatrix)
direction = dir (fragment.wpos)
rayPos = fragment.tex0
voxelf = volume (rayPos)
rayPos += direction
while (true)
voxelb = volume (rayPos)
wght = weight (voxelf.a, voxelb.a).a;
if (weight (voxelf.a, voxelb.a).a > 0.0)
break
endif
voxelf = voxelb
rayPos += direction

// further samples

if (direction.a < length(rayPos - fragment.tex0)) {

break
endif
endwhile
if (wght > 0.0)
normal = (lerp(voxelf.xyz, voxelb.xyz, wght) = 2.0 - 1.0) =«

textureMatrix.inverseTranspose
rayPos = lerp (rayPos - direction, rayPos, wght)
light.diffuse = textureMap (computeUV (rayPos))
pixel = lighting(normal, fragment.texl, light)
endif

Figure 5.7: 10s interpolated 2D texturing fragment shader

5.2 Tangent Space 163

5.1.6 Results

Two algorithms are explored for 2D texturing volume objects, the slice sampling and slab
sampling strategies. Additionally the 10S rendering strategy is used to include the acceler-
ation techniques of early ray termination, empty space leaping and deferred shading. Per-
formance measurements are based on sphere mapping computed in the fragment shader
without the additional speed-up technique of pre-computing the uv parametrization, the
texture map is 512 x 256 with 3 channels for < r, g,b >. The additional alpha channel
is not required since no blending is to be computed, however a semi-transparent extension
of this algorithm can use the alpha channel to highlight certain regions of the texture map.
The performance of this algorithm is considered constant across differing texture maps as
complexity is affected by the underlying object only.

Figure 5.8 shows the results of the OOP techniques for 2D texturing applied to the BuckyBall
dataset, figure 5.9 shows the results when applied to the CTHeadDist dataset which is more
complex and has been shown to require additional sampling to accurately reconstruct an
iso-surface. Additionally the CTHeadDist dataset is rendered with empty space leaping for
the 10S approaches.

Table 5.1 shows the performance achieved with each algorithm for 2D texturing of volume
objects. Figures 5.8 and 5.9 provide examples of the image quality achieved with 2D tex-
turing algorithms and the respective sampling frequency. The BuckyBall dataset (see Figure
5.8) images are not shaded and shaded for comparison of sampling. The consideration
of two samples with interpolation for every sampling point clearly generates better image
quality for the same sampling frequency with single sample point consideration. The 10S
method benefits greatly from deferred shading, empty space leaping and early ray termina-
tion.

Since the computeUV () function contains many instructions that cannot be vectorised in
order to aid throughput, this proves to be expensive. Each frame rate was measured using
conditional branching which in this case offered an improvement to the brute force method.
A careful selection of which conditional branches to take dynamically is important since
most of the conditionals in the 10S method are used to break out of the ray stepping pro-
cess and only contain one instruction. It is more beneficial to allow the condition code
mechanism to evaluate these conditionals since it is cheaper than computing a branch. The
image-order technique provides the best scalable approach since it can utilise acceleration
techniques.

5.2 Tangent Space

Since volume datasets do not exhibit a parametrically defined surface, no localised tangent
space can be computed at each sample. By evaluating a proxy geometry at each sample point
which is parametrically defined, an approximate tangent space can be derived. A sphere is
used to represent these tangent vectors since from the origin of a co-ordinate system, unit
length vectors all intersect the unit sphere exactly, thus every point on the unit sphere’s
surface defines a differing unit length vector.

5.2 Tangent Space 164

(a) 1024 iso (e) 1024 int (1) 128 iso/int
(b) 512 iso (f) 512 int
(¢) 256 iso (g) 256 int
(d) 128 iso (h) 128 int (j) Error Key

Figure 5.8: BuckyBall dataset 2D texture mapping (a) to (d) and interpolated 2D texture map-
ping (e) to (h) images rendered into a 5122 viewport with differing sample frequencies. Both
(b) to (d) and (f) to (h) are the difference images from (a) and (e) respectively to visualize
artefacts introduced with lower sampling rates. Both techniques (i) are compared when subject
to shading contributions to highlight sampling differences and the error range for difference
images is given in (j).

5.2 Tangent Space 165

(i) 128 iso/int

(d) 128 iso (h) 128 int (j) Error Key

Figure 5.9: CTHeadDist dataset 2D texture mapping (a) to (d) and interpolated 2D texture
mapping (e) to (h) images rendered into a 5122 viewport with differing sample frequencies.
Both (b) to (d) and (f) to (h) are the difference images from (a) and (e) respectively to visualize
artefacts introduced with lower sampling rates. Both techniques (i) are compared to highlight

sampling differences and the error range for difference images is given in (j).

5.2 Tangent Space

166

oor 10S IOS-ES
Dataset (size) | Viewport | Lit | Slices | Iso Int | Iso Int | Iso Int
BuckyBall 5122 No | 128 36 25 |50 40 |n/a n/a
(32%) 256 | 18 12 |27 22 |n/a n/a
see Figure 5.8 512 9 6 18 12 [n/a n/a
1024 | 4 3 9 7 |n/a n/a
Yes | 128 24 18 | 50 40 | n/a n/a
256 12 9 |27 22 [n/a n/a
512 6 4 18 12 [n/a n/a
1024 3 2 9 7 | n/a n/a
10247 No | 128 9 7 9 7 | n/a n/a
256 4 3 4 3 |nfa n/a
512 2 1 2 1 |n/a n/a
1024 1 X 1 X | n/fa n/a
Yes | 128 7 6 9 7 | n/a n/a
256 3 3 4 3 |nfa n/a
512 1 1 2 1 |n/a n/a
1024 [<1 <1|{ 1 <1|n/a n/a
CTHeadDist | 512° No 128 32 28 |30 20 |42 27
(2562 x 128) 256 16 15 (15 10 |29 20
see Figure 5.9 512 8 7 7 5 17 14
1024 | 4 4 3 2 9 7
Yes | 128 22 18 | 30 20 | 37 22
256 11 8 15 10 |25 18
512 5 4 7 5 13 11
1024 2 2 3 2 7 6
1024° No | 128 8 7 14 12 |16 9
256 4 3 7 6 11 6
512 2 1 3 3 7 4
1024 1 X 1 1 4 2
Yes | 128 6 5 14 12 | 13 8
256 3 2 7 6 8 5
512 1 1 3 3 6 3
1024 | <1 <1} 1 1 3 1

Table 5.1: 2D texture mapping frame rates in frames per second, Iso is single sample 2D
texturing and Int is interpolated 2D texturing. Non lit variants do not compute any shading
contributions whilst lit variants exhibit shading. All rates are rounded down.

5.2 Tangent Space 167

It is known that a normal vector N is attributed with a tangent plane defined by two vectors
T the tangent vector and B the binormal vector, however the normal vector is the cross
product of tangent vectors (see Eqn 5.12)

N=TxB (5.12)

where N € [-1,1]3, T € [~1,1]3 and B € [—1,1]? are unit length vectors defined in 3D
space.

By using a parametrically defined surface to compute the tangent and binormal vectors each
normal vector will exhibit the same tangent and binormal vector. This allows each normal
vectors tangent space to be consistent over an objects surface. Since this property is to
be maintained, a computation of a local tangent space can be computed in respect of the
gradient normal encountered at a sampling position and provide independence of position.

By assuming that the gradient normal is of unit length, a position on the unit sphere at the
origin is obtained with the vector as the sphere’s centre is the origin. This intersection with
the sphere’s surface can be described by the a azimuthal angle § € [0, 2] and colatitude
angle ¢ € [0, 7| (see Eqn 5.13).

0 = arctan (N) (5.13)

_N,
¢ = arccos (Ny)

An analogous to the projective texture mapping approach for reverse mapping is apparent
since the same use of angles is defined to map a 3D point to 2D space. Instead of explicitly
computing the coordinates in 2D space, the partial derivatives of the sphere function in
respect of 6 and ¢ are employed to derive the T' and B vectors (see Eqn 5.14). This mapping
is possible by observing that the § angle changes with respect to the u axis and the ¢ angle
changes with respect to the v axis accordingly.

T = (cos(8) sin(¢), 0, sin(¢) sin(0)) (5.14)

B = (—cos(¢) sin(8), sin(¢), cos(¢) cos(8))

Since the volume dataset already defines a normal vector, only one of these vectors is re-
quired, a cross product can then be used to derive the other vector. Since T can return a zero
length, B is computed and T is obtained with the cross product (see Eqn 5.2).

T=NxDB

. These calculations allow a tangent, binormal, normal matrix 1" to be defined from the re-

spective vectors (see Eqn 5.15).

8

(5.15)

~

ll
S8 8
B
2EzZ

5.3 Bump Mapping 168

A vector is moved from object space into tangent space upon multiplication with 7". To
move from tangent space into object space the inverse matrix T~ is required. By observ-
ing the property that a unit sphere’s surface describes all unit length vectors it is possible to
pre-compute all possible vectors that correspond to a gradient normal. In practice an infinite
representation is not available and the possible vectors must be quantised. Computing a 3D
lookup table is not necessary to represent each vector since unit length vectors are used and
positions within the lookup table that are not explicitly on the surface of the unit sphere
provide no contribution. A 2D lookup table can be computed with a uv parametrization
of the unit length normals components. This lookup table contains the binormal vector to
create the 7" matrix. Tests have shown that the quality of output obtained in this method is
not sufficient due to quantised normals being used and in addition a quantised output repre-
sentation in 8 or 16 bits. Additionally a fast texture based uv parameterization has proven to
introduce artifacts and therefore an expensive uv parameterization would be required. Fu-
ture hardware that allows 32 bit floating point representations will allow an approximated
acceleration by utilising pre-computed lookup tables.

5.3 Bump Mapping

Bump mapping is a well known flexible technique for adding fine detail to an object’s
surface. Generally highly complex surfaces are not possible in computer graphics without
a highly detailed underlying object. Modelling techniques and data acquisition methods
however do not usually provide such highly complex objects to render directly. In the
event that such an object is defined, it will certainly be expensive to render. Many real
world objects include bumps, wrinkles and grooves which are lost in building or scanning a
model. Bump mapping facilitates an increasing need to import these small surface variations
without impacting heavily on rendering expense. This section defines bump mapping and
introduces the first efficient GPU implementations.

During the final stage of the pipeline an object’s normal vectors are perturbed in a manner
that affects the lighting calculation and results in a more wrinkled or bumpy surface. It
has already been stated that providing colour alone in texture mapping algorithms is not
always adequate for reproducing a highly realistic looking image. This method is capable of
rendering increasingly complex surfaces without the requirement to increase the complexity
or resolution of the underlying object.

Two techniques are introduced here and are optimised for the GPU pipeline. Both methods
pre-compute the normal perturbation for fast application during rendering without the re-
quirement of partial derivatives being evaluated during rendering. A normal map is utilised
in both cases with pre-computed normal vectors in object or tangent space. The introduc-
tion of 3D bump mapping that fits the volumetric pipeline intrinsically is presented. This
method takes advantage of 3D textures or volumes which are generally procedurally gen-
erated. This method however does not intrinsically model possible effects that require a
painting on the surface of an object. Therefore the second method utilises the 2D texture
mapping algorithms described in section 5.1 to form the basis of a 2D bump mapping tech-
nique.

5.3 Bump Mapping 169

(a) Original Surface (b) Height Map

AN o0

(c) Displaced Points (d) New Normals

Figure 5.10: Bump mapping stages

Blinn [B1i78b] describes the original algorithm as preforming a perturbation of the surface
normal with respect to a height field. This height field is used to displace the surface along
the surface normal to create the new wrinkled or bumpy surface definition. A further pro-
cessing of the new localised surface is then used to derive new surface gradients for lighting
calculations.

Satherley [Sat01] described bump mapping for volumetric objects in software. The original
bump mapping function which computes perturbed normal vectors using partial derivatives
is described and directly evaluated during ray traversal.

Partial derivatives of a parametric surface are used to firstly compute the surface normal N
from the position p € R3 (see Figure 5.10(a)). Two vectors are derived using the partial
derivatives Pu = (X, Yy, Z,) and Pv = (X,,Y,, Z,). These two vectors form a local
co-ordinate system at p and are the tangent plane. The normal is defined with the cross
product N = P, x P,.

The surface position being processed is then displaced along the surface normal according
to the height field F' (see Figure 5.10(b)). This step of the algorithm does not explicitly
move the surfaces geometry, instead acts as a step in the calculation (see Eqn 5.16).

N
P=P+F — (5.16)
|N|

This results in a virtual perturbed surface (see Figure 5.10(c)). The new surface normal is
then taken from the partial derivatives of the new surface (see Eqn 5.17):

N =% 5.17)

5.3 Bump Mapping 170

Gradient Normal

Gradient Normal

Texture
Texture Normal Normal
Perturbed Normal
(a) Gradient Normal (b) Texture Normal (c) Example Results

Figure 5.11: 3D Bump mapping normal perturbation, (c) represents perturbed normals accord-
ing to discovered gradient normal(a) from the object and the normal discovered in the texture
(b). Using differing magnitudes of the original gradient normal affects the final perturbed nor-
mals orientation.

Thus the perturbed normal is a function of the original parametric surface’s partial deriva-
tives and additionally the partial derivatives contained in the height field (see Figure 5.10(d)).
The simplified derivation neglects F due to its small size and additionally defines D a local
displacement factor. The full derivation is available in the original paper[BH78bj.

N'=N+ D
(5.18)

5.3.1 3D Bump Mapping

This introduction of 3D bump mapping for volume datasets describes perturbing a gradient
normal in a volume dataset before lighting takes place. The discussion here is restricted to
iso-surfacing, however it is possible to apply the same functions to semi-transparent volume
rendering. Previous iso-surfacing techniques have been described by applying the lighting

calculations in eye space.

All volume gradients have been pre-processed and uploaded to the GPU hardware with the
original scalar field in a 3D texture block. These gradient normals are contained in GPU
memory in object space and therefore are not subject to any transformations. To correctly
apply a lighting equation these gradient normals must first be transformed in some manner
to eye space as the lighting position and screen space co-ordinate system is defined in this

space.

The solid texture is then examined during iso-surfacing and the object’s gradient normal is
manipulated directly from the gradient defined in the solid texture. Previous explanations
of procedural texturing (see section 4.2) noted the performance increase possible by pre-
computing procedural texture primitives as texture blocks. These texture volumes can also
be pre-processed to include gradient normals for evaluating additional techniques such as
bump mapping.

5.3 Bump Mapping 171

Each object gradient normal defines a base vector for perturbation. The solid texture normal
is added to the original gradient normal to arrive at a new position. The vector from the
original point on the surface to the point defined by the contribution of vectors is the new
perturbed gradient normal after a normalization step (see Eqn 5.19)

bump(N,V, k) =kN +V (5.19)

where N is the original gradient normal, V' is the gradient normal from the solid texture and
k is a constant to describe bump severity.

The implementation of 3D bump mapping is efficient and can easily be added to a iso-
surfacing fragment shader by simply adding two extra instructions. The bump map is en-
coded with object space gradient vectors and can be fetched with a single texture instruction.
The offset can then be directly computed before the lighting stage of the pipeline is executed.
Figure 5.12 provides the extension to the iso-surfacing shader of figure 3.25 and figure 5.13
is the direct replacement of figure 3.27 for slab sampling for the OOP rendering strategy. The
slab lookup table must be pre-computed and updated upon iso-value changes. In practice
the same performance measurements as standard iso-surfacing can be achieved with no dy-
namic conditional branches. The constant k used to scale the bump severity is implemented
with a global variable and the texture map is presented as the function bumpM ap(pos)
where pos is the texture space co-ordinates.

pixel fragmentShader (fragment, volume, isoValue, bumpMap, light, k,
textureMatrix)
voxel = volume (fragment.tex0)
if (voxel.a > isoValue)
bump = bumpMap (fragment.tex0) *» 2.0 - 1.0
normal = voxel.xyz * 2.0 - 1.0
normal = normal x k + bump;
normal = normal * textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)
else
discard
endif

Figure 5.12: Oop 3D bump mapping fragment shader

pixel fragmentShader (fragment, volume, weight, bumpMap, light, k,
textureMatrix)
voxelf = volume (fragment.tex0)
voxelb = volume (fragment.texl)
wght = weight (voxelf.a, voxelb.a)
if (wght > 0.0)
pos = lerp(fragment.tex0, fragment.texl, wght)
bump = bumpMap (pos) * 2.0 - 1.0;
normal = lerp(voxelf.xyz, voxelb.a, wght)
normal = normal * k + bump
normal = normal * textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)
else
discard
endif

Figure 5.13: OoP 3D interpolated bump mapping fragment shader

5.3 Bump Mapping 172

pixel fragmentShader (fragment, volume, isovalue, dir, light, bumpMap, k,
textureMatrix)
direction = dir (fragment.wpos)
rayPos = fragment.tex0
while (true)
voxel = volume (rayPos)
if (voxel.a > isoValue)
break
endif
rayPos += direction

// further samples

if (direction.a < length(rayPos - fragment.tex0)) {
break
endif
endwhile
if (voxel.a > isoValue)
bump = bumpMap (rayPos) = 2.0 - 1.0
normal = voxel.xyz * 2.0 - 1.0
normal normal * k + bump
normal normal * textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.texl, light)
endif

oo

Figure 5.14: 10s 3D bump mapping fragment shader

The 10S technique allows the inclusion of early ray termination, empty space leaping and
deferred shading. Figure 5.14 shows the slice sampling fragment shader which is adapted
from figure 5.15 and figure 3.41 shows the slab sampling fragment shader which is adapted
from 3.42. Branching can be set to non dynamic for the body of the ray casting loop since
each conditional contains few instructions and it is faster to perform all of the outcomes and
set condition codes rather than to take a branch. Empty space leaping can be incorporated
using the functions presented in section 3.2.4. It has proven more efficient to pre-compute a
1D texture with quantised leaping values and multiply the normalised ray direction vector
with the values contained in this table. The empty space leaping method is only well defined
for distance field datasets since they encode euclidean distance values to the encoded iso-
surface. Octree structures can be utilised in this approach for standard datasets, however
every ray sample must firstly analyse the octree to determine if the sample contributes to
the final image which is not efficient and can introduce additional overheads in many cases.

5.3.2 3D Bump Mapping Results

Both slice and slab sampling are considered for 3D bump mapping. Figure 5.16 shows the
images obtained from the BuckyBall dataset at differing sampling frequencies and figure
5.17 shows the images obtained from the more complex CTHeadDist dataset. Timings are
taken with no volume rotation to provide a performance comparison that is not affected
by cache misses in 3D texturing hardware and to ensure the amount of fragments being
processed are uniform throughout the tests. The bump map used is a texture lookup table
of noise (see section 4.1) with the addition of a pre-computed gradient normal map using
central differences.

5.3 Bump Mapping

173

pixel fragmentShader (fragment, volume, weight, dir, light, bumpMap, k,
textureMatrix)
direction = dir (fragment.wpos)
rayPos = fragment.tex0
voxelf = volume (rayPos)
rayPos += direction
while (true)
voxelb = volume (rayPos)
wght = weight (voxelf.a, voxelb.a).a;
if (wght > 0.0)
break
endif
voxelf = voxelb;
rayPos += direction
// further samples
if (éirection.a < length(rayPos - fragment.tex0)) {
break
endif
endwhile
if (wght > 0.0)
pos = lerp(rayPos - direction, rayPos, wght)
bump = bumpMap(pos) * 2.0 - 1.0
normal = lerp(voxelf.xyz, voxelb.xyz, wght) = 2.0 - 1.0
normal = normal * k + bump
normal = normal * textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.texl, light)
endif
Figure 5.15: 10s 3D interpolated bump mapping fragment shader
Oor 10S IOS-ES
Dataset (size) Viewport | Slices | Iso Int | Iso Int | Iso Int
BuckyBall 5122 128 [28 20 | 56 40 |n/a n/a
(32%) 256 | 14 10 | 35 24 |n/a nla
see Figure 5.16 512 7 5 |20 14 |n/a n/a
1024 | 3 2 10 7 |n/a n/a
10242 128 8 6 10 7 |n/a n/a
256 4 3 5 4 | n/a n/a
512 2 1 3 2 | n/a n/a
1024 | 1 X 1 1 | n/a nfa
CTHeadDist 5122 128 |20 13 |35 16 | 58 36
(2562 x 128) 256 10 6 17 9 |46 27
see Figure 5.17 512 5 3 9 4 |34 21
1024 | 2 1 4 2 19 16
1024° 128 8 5 6 5 18 13
256 4 2 3 3 14 10
512 2 1 2 1 10 8
1024 1 <11 <1]| 7 5

Table 5.2: 3D bump mapping frame rates in frames per second, Iso is single sample 3D bump
mapping and Int is interpolated 3D bump mapping. All rates are rounded down.

5.3 Bump Mapping 174

(1) 128 iso/int

(b) 512 iso (f) 512 int
(c) 256 iso (g) 256 int
(d) 128 iso (h) 128 int () Error Key

Figure 5.16: BuckyBall dataset 3D bump mapping (a) to (d) and interpolated 3D bump map-
ping (e) to (h) images rendered into a 5122 viewport with differing sample frequencies. Both (b)
to (d) and (f) to (h) are the difference images from (a) and (e) respectively to visualize artefacts
introduced with lower sampling rates. Both techniques (i) are compared to highlight sampling

differences and the error range for difference images is given in (j).

5.3 Bump Mapping 175

(a) 1024 iso (e) 1024 int (i) 128 iso/int
(¢) 256 iso (g) 256 int
(d) 128 iso (h) 128 int (j) Error Key

Figure 5.17: CTHeadDist dataset 3D bump mapping (a) to (d) and interpolated 3D bump
mapping (e) to (h) images rendered into a 5122 viewport with differing sample frequencies.
Both (b) to (d) and (f) to (h) are the difference images from (a) and (e) respectively to visualize
artefacts introduced with lower sampling rates. Both techniques (i) are compared to highlight
sampling differences and the error range for difference images is given in (j).

5.3 Bump Mapping 176

Table 5.2 shows the performance measurements for 3D bump mapping. A parallel between
the original iso-surface timings and the frame rates obtained here are evident. This is due
to only two additional steps being required to successfully texture an object as the gradi-
ent normals from each source are in the same co-ordinate space. The 10S method allows
high throughput since the conditionals evaluated during the casting of the ray are cheap
to perform if dynamic branching is switched off. This method clearly benefits from the
front-to-back ray casting strategy as well as the ability to perform early ray termination and
deferred shading. The inclusion of space leaping shows increasing performance as the sam-
pling frequency increases. This method therefore is very scalable over differing viewport
sizes and sampling conditions. The original intention of this algorithm was to provide a fast
alternate bump mapping where procedural synthesis is used. The relative speed compared
to other approaches is due to no uv parametrisation having to be performed.

5.3.3 2D Bump mapping

The original bump mapping algorithm suffers from expensive computation using partial
derivatives and additionally volumetric approaches exhibit a problem since a parametric
representation must be used to derive the tangent space. A 2D function describes the bumpy
surface and requires a uv parameterization of the objects surface to evaluate the function
(see Figure 5.18(a)). Projective texturing techniques are used for this purpose in volumetric
approaches since no direct uv parameterization is available (see section 5.1). The expensive
computation can be reduced by pre-computing gradients for a bump function by observing
local differences (see section 2.4) in two dimensions (see Figure 5.18(b)). The bump func-
tion can be procedurally synthesised or the result of a texture artist painting a monochrome
2D height field. The normal map is generally computed in respect of a template defining
the object being rendered, or additionally in respect of the mapping function being used.
The latter approach allows reuse of bump textures over different objects. The result of the
computation is the normal vectors which can be represented with three colour channels
< 1,9g,b > in a texture map, additionally the height field is stored in the o channel.

These pre-computed normal vectors can then directly replace the original gradient vectors
encountered at surface positions. This pre-computation has no underlying object definition
and therefore the vectors are not correctly oriented in respect of the object being rendered.
The pre-computed normal vectors are held in tangent space and require a mapping into
object space (see section 5.2).

During ray traversal an expensive call to the uv parameterization function must take place.
As previously stated it is possible to compute a lookup table to include a speed-up for
this function, however the current precision of texture formats introduce aliasing. Since this
function is expensive to compute the fragment shaders presented here perform best when dy-
namic branches are computed. The fragment shader is assumed to have a computeUV (pos)
and compute Binormal(norm) functions available as depicted in sections 5.1 and 5.2. Fig-
ure 5.19 adds 2D bump mapping to the iso-surfacing technique from figure 3.25 for OOP
rendering. Figure 5.20 adds 2D bump mapping to the slab sampled iso-surfacing technique
from figure 3.27 for OOP rendering.

In 10S rendering, the fragment shaders for computing 2D bump mapping are given in figures

5.3 Bump Mapping 177

(b) Normal Map

(¢) Bump Mapping (d) Displacement Mapping

Figure 5.18: Normal mapping for 2D bump mapping and 2D displacement mapping

5.3 Bump Mapping 178
pixel fragmentShader (fragment, volume, isoValue, light, bumpMap, k,
textureMatrix)

voxel = volume (fragment.tex0)

if (voxel.a > isoValue)
bump = bumpMap (computeUV (fragment.tex0)) * 2.0 - 1.0
normal = voxel.xyz * 2.0 - 1.0
binormal = computeBinormal (normal)
tbn[0) = cross(binormal, normal)
tbn[l] = binormal
tbn[2] = normal
normal = (bump * tbn)=* textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)

else
discard

endif

Figure 5.19: Oop 2D bump mapping fragment shader
pixel fragmentShader (fragment, volume, weight, bumpMap, light, k, textureMatrix)

voxelf = volume (fragment.tex0)
voxelb = volume (fragment.texl)
wght = weight (voxelf.a, voxelb.a)
if (wght > 0.0)
pos = lerp(fragment.tex0,
bump = bumpMap (computeUV (pos))

fragment.texl, wght)
* 2.0 - 1.0;

normal = lerp(voxelf.xyz, voxelb.a, wght) = 2.0 - 1.0
binormal = computeBinormal (normal)
tbn{0] = cross(binormal, normal)
tbn[l] = binormal
tbn[2] = normal
normal = (bump * tbn) x textureMatrix.inverseTranspose
pixel = lighting{(normal, fragment.tex2, light)
else
discard
endif

Figure 5.20: OoP 2D interpolated bump mapping fragment shader

5.3 Bump Mapping 179

pixel fragmentShader (fragment, volume, dir, isoValue, light, bumpMap, Xk,
textureMatrix)
‘direction = dir (fragment.wpos)
rayPos = fragment.tex0
while (true)
voxel = volume (rayPos)
if (voxel.a > isoValue)
break
endif
rayPos += direction

// further samples

if (direction.a < length(rayPos ~ fragment.tex0)) {
break
endif
endwhile
if (voxel.a > isoValue)
bump = bumpMap (computeUV (rayPos)) * 2.0 - 1.0
normal = voxel.xyz * 2.0 - 1.0

binormal = computeBinormal (normal)

tbn[0] = cross(binormal, normal)

tbn([l] = binormal

tbn[2] = normal

normal = (bump * tbn) * mvMatrix.inverseTranspose

pixel = lighting(normal, fragment.texl, light)
endif

Figure 5.21: [0S 2D bump mapping fragment shader

5.21 and 5.22 for slice and slab sampling respectively. They are additions to the original iso-
surfacing techniques described in figures 3.41 and 3.42. The functions computeUV (pos)
and computeBinormal(norm) are assumed to be available to the fragment shader analo-
gous to the OOP method. The 10S method benefits from the ability to perform empty space
leaping, early ray termination and deferred shading. In practice the conditionals contained
in the ray sampling loop can be performed in condition code mode since there are few in-
structions. Since the algorithm allows deferred shading, the computation of tangent space
and the resulting matrix multiplication are performed only once, offering a substantial gain
in throughput. The benefits of early ray termination on iso-surface intersection and empty
space leaping can also be performed with the 10S approach. Empty space leaping is de-
scribed for distance field datasets (see section 3.2.4), standard datasets require an octree
structure which is inefficient in image order approaches on GPU hardware since each sam-
ple along the ray must query the octree to ascertain if it will contribute to the final image. In
addition the slab sampling method benefits from reuse of previous results to reduce texture
fetch overheads. This reuse of previous samples cannot be used with empty space leaping
since the increment between sample stages is not guaranteed.

5.3.4 2D Bump Mapping Results

Table 5.3 gives the results of the 2D bump mapping algorithm. This algorithm is an accel-
erated version of the original algorithm due to pre-computing the tangent space norrals.
This algorithm is more expensive than its 3D bump mapping counterpart since an addi-
tional matrix multiplication must be performed to allow tangent space normal vectors into

5.3 Bump Mapping

180

pixel fragmentShader (fragment, volume, dir, weight, light, bumpMap, k,
textureMatrix)
direction = dir (fragment.wpos)
rayPos = fragment.tex0
voxelf = volume (rayPos)
rayPos += direction
while (true)
voxelb = volume (rayPos)
wght = weight (voxelf.a, voxelb.a).a;
if (wght > 0.0)
break
endif
voxelf = voxelb;
rayPos += direction
/7 fﬁrther samples
if (éirection.a < length(rayPos - fragment.tex0)) {
break
endif
endwhile
if (wght > 0.0)
normal = lerp(voxelf.xyz, voxelb.xyz, wght) % 2.0 - 1.0
pos = lerp(rayPos - direction, rayPos, wght)
bump = bumpMap (computeUV(pos)) » 2.0 - 1.0
binormal = computeBinormal (normal)
tbn[0] = cross(binormal, normal)
tbn[l] = binormal
tbn[2] = normal
normal = (bump » tbn) * textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.texl, light)
endif
Figure 5.22: 10s 2D interpolated bump mapping fragment shader
Oor I0S IOS-ES
Dataset (size) Viewport | Slices | Iso Int | Iso Int | Iso Int
BuckyBall 5122 128 | 14 12 [55 40 [n/a n/a
(32%) 256 | 7 6 |35 24 |n/a n/a
see Figure 5.23 512 3 3 (20 14 [n/a p/a
1024 1 1 10 7 | n/a n/a
10242 128 4 4 10 8 [n/a n/a
256 2 2 5 4 | n/a n/a
512 1 1 2 |n/a n/a
1024 [<1 <1 1 1 |n/a n/a
CTHeadDist 5122 128 12 9 37 26 | 42 28
(2562 x 128) 256 6 4 19 15 |32 19
see Figure 5.24 512 3 2 10 8 21 12
1024 1 1 5 4 14 8
10242 128 5 4 7 5 16 13
256 2 2 4 3 12 10
512 1 1 2 1 9 7
1024 | <1 <1| 1 <1} 5 4

Table 5.3: 2D bump mapping frame rates in frames per second, Iso is single sample 2D bump
mapping and Int is interpolated 2D bump mapping. All rates are rounded down.

5.3 Bump Mapping 181

(a) 1024 iso (e) 1024 int (i) 128 iso/int
(b) 512 iso (f) 512 int
(c) 256 iso (g) 256 int
(d) 128 iso (h) 128 int (j) Error Key

Figure 5.23: BuckyBall dataset 2D bump mapping (a) to (d) and interpolated 2D bump map-
ping (e) to (h) images rendered into a 5122 viewport with differing sample frequencies. Both (b)
to (d) and (f) to (h) are the difference images from (a) and (e) respectively to visualize artefacts
introduced with lower sampling rates. Both techniques (i) are compared to highlight sampling
differences and the error range for difference images is given in (j).

5.3 Bump Mapping 182

(a) 1024 iso (e) 1024 int (i) 128 iso/int
(¢) 256 iso (g) 256 int
(d) 128 iso (h) 128 int (j) Error Key

Figure 5.24: CTHeadDist dataset 2D bump mapping (a) to (d) and interpolated 2D bump
mapping (e) to (h) images rendered into a 5122 viewport with differing sample frequencies.
Both (b) to (d) and (f) to (h) are the difference images from (a) and (e) respectively to visualize
artefacts introduced with lower sampling rates. Both techniques (i) are compared to highlight

sampling differences and the error range for difference images is given in (j).

5.4 Displacement Mapping 183

the object space. An additional speed-up is possible based upon object space lighting. This
would reduce the amount of matrix multiplication operations throughout the pipeline since
no mapping is required for moving from object space into eye space. This can be performed
by changing all the lighting conditions into object space firstly. An additional performance
gain might be achieved by firstly encoding each of the tangent space normals in the bump
map into object space. A pre-computation pass would be necessary and would require a
template (forward mapping) rendering of the object’s surface to deliver the gradient nor-
mals, and secondly a computation pass to move tangent space replacement vectors into
object space. Since the template rendering is a ray-casting problem, computing a template
each frame would half the performance measurements, but could potentially be achieved
for every iso-surface change at the loss of interactivity.

Figures 5.23 and 5.24 are example outputs from the two sampling methods. Slab sampling
outperforms slice sampling in producing an image with less artifacts for the same sampling
frequency and additionally benefits from an increased throughput due to a lower sampling
frequency being required to obtain an accurate output image. The 10S method of deferred
shading and empty space leaping for distance fields enables fast frame rates to be obtained
since the OOP counterpart is performing a uv parametrisation for any scalar encountered
above the iso-value as no deferred shading or early ray termination can be performed. Since
this adds instructions to each sample where the encountered scalar is above the iso-value,
a 40% overhead is incurred which slows the algorithm down significantly. Additionally
the tangent space to object space matrix multiplication is performed for all scalars encoun-
tered that are larger than the iso-value. The use of dynamic conditional branches in this
case to skip instructions containing the uv parametrisation and matrix multiplication also
introduces more overhead. Pre-computing the uv parametrisation will aid these problems
by removing many instructions with the expense of an extra texture operation. In addition
pre-computed object space normal maps or lighting in object space will accelerate the OOP
method.

5.4 Displacement Mapping

New displacement mapping techniques for volume objects are introduced in this section to
the GPU volume rendering pipeline. The goal of displacement mapping in volume graphics
is two-fold, the first important feature is the ability to define volume objects in a modelling
environment by utilising a simple object definition that is a 3D space function. The second
feature is the ability to create realistic surface properties of arbitrary objects for more simple
volume representations. Many more complex objects can be defined by applying a displace-
ment map to an existing surface. This section introduces volume displacement mapping on
GPU hardware and additionally introduces a new displacement mapping. technique which
removes the restrictions of defining displaced surface properties from an original surface
and includes the ability to define mesostructure around the volume object which can be
disjoint from the original surface.

Cook [Coo84] originally described displacement mapping for surface graphics with the use
of a height map. Displacements were defined by moving vertices along their surface normal

5.4 Displacement Mapping 184

vectors. This can be a complex problem, either the entire mesh has to be reprocessed or
additional geometry has to be added to represent the displacement map where the original
surface does not contain enough vertices to accurately account for the surface deformation.

Hirche et al. [HEGD04] and Porumbescu et al. [PBFJ05] used proxy geometry to represent
a displacement region around an object for surfaces for GPUhardware implementation. The
level of sampling required is dependant on the detail contained in the displacement map and
therefore exhibits a geometric complexity. Both methods describe a height field.

Wang et al. [WWT103, WTL*04] remove this restrictive geometric complexity by comput-
ing the displacement from the original object’s surface on GPU hardware. However heavy
pre-computation is required to form a large lookup table. The first method outlined was
view dependant which required firstly sampling a higher resolution model at differing view-
ing angles for 2D height field approaches. The subsequent model is not view dependent,
but requires a large pre-processed look up table. Additionally the notion of mesostructure
is applied to displacement maps that removes previous restrictions of displacements having
to emanate from the original surface.

Winter [Win02] describes 2D displacement mapping in software from height maps. A
distance field dataset is used to describe a displacement region where the height map is
evaluated during rendering.

Displacement mapping in volume graphics can be introduced with an overhead that does
not rise with object complexity and therefore offers a more efficient alternative. This allows
a complex surface representation to be voxelised into a distance field and displacement
mapped for further detail. This step is also a useful tool at modelling and voxelisation stages
when importing a surface based object that includes a surface description as a height map.
It can also be used as a generalized modelling tool for deforming the surface characteristics
of an underlying object. Since the displacement region can be large, many objects are more
intuitive to create in this manner.

Distance field volume datasets are used to enable a segmentation of the dataset into three
regions. These regions represent the outside of the object, the interior of the object and
additionally the region for applying the displacement map. This allows the size of the region
of displacement to be controlled which allows a great deal of control over the displacement.
The segmentation is performed analogously to the previous description of hypertexturing
by using an object density function (see Eqn 5.20). An alteration to the distribution of
the displacement region is performed to ensure that values increase away from the original
surface to represent height.

1.0 ifjp| < r2
D(p) =4 00 if|p| > r? (5.20)
1.0 — —"T—lip'_;—:" otherwise.

where r; is the inner distance or iso-surface, 7, is the outer distance or soft region boundary
and |z| represents the distance field value. 1 is returned for samples inside the object and are
subject to iso-surfacing, 0 is returned for samples outside the object and soft-region bound-
aryand 1.0 — Ir’:l;r" the distance from the surface is returned when samples are between the

—To

5.4 Displacement Mapping 185

(a) Sampling position (b) Displaced Surface
U,v)
(¢) 2D uv parameterization (d) 3D uvh parameterization

Figure 5.25: 2D and 3D displacement mapping strategies

soft-region boundary and surface boundary.

Displacement mapping is essentially an extension that overcomes limitations with the bump
mapping algorithm. Bump mapping suffers from not being able to describe a displaced
surface around the silhouette of an object. Additionally the magnitude of the bumps is
limited since the curvature of the surface can obscure the lighting under rotations where the
normal is not pointing directly towards the light source. Displacement mapping does combat
both of these shortcomings since the underlying object geometry is altered. Two methods of
implementing displacement mapping are presented, a 2D height map method analogous to
bump mapping with 2D bump maps and additionally a 3D volume displacement mapping
method that exhibits greater flexibility and modelling potential.

5.4.1 2D Displacement Mapping

The 2D displacement mapping method is an extension to bump mapping and can use height
fields employed in bump mapping directly. Additionally the gradients can be pre-computed
as with bump mapping and stored in tangent space in the same manner. Whilst bump map-
ping directly replaces the objects normal vectors, displacement mapping additionally re-
quires the original height field to enable computing the distance to move from the original

surface.

A segmentation is performed to create a displacement region (see Eqn 5.20). During ray
traversal the displacement region is evaluated with respect to the 2D height field. Firstly a
uv parameterization of the objects surface is required and one of the 2D texturing interme-
diate surface geometries is used to closely approximate the underlying object (see section
5.1). The computation of tangent space is also required to transform pre-computed normal
vectors from tangent space into object space.

5.4 Displacement Mapping 186

These functions described previously are assumed to be present as functions for use in
the fragment shader. A function 2dDisplace(vozel, pos, dispM ap) is introduced into the
available fragment shader functions to compute the displacement where vozel contains the
gradient normal and distance value from the sample position, pos is the sampling position
and dispM ap is the 2D displacement texture map.

For each sample encountered along a ray that intersects the displacement region, a displace-
ment is computed by traversing along the reverse direction of the gradient vector to the
original surface (see Figure 5.25(a). Using a distance field, this can be achieved without
the need for tracing a further ray since the distance function describes the distance to the
surface. At the iso-surface location a uv parameterization is computed from the position
of the surface. This uv parametrization is used to address the displacement map lookup
table which returns a < r, g, b, @ > containing a tangent space normal vector and the height
value (see Figure 5.25(c)). The height value is then compared with the original normalized
distance encountered at the original sample location obtained from the object density func-
tion (see Eqn 5.20). A segmentation is then performed with the object density normalized
distance and height field value to denote inclusion or exclusion from the displaced surface
(see Figure 5.25(b) and Eqn 5.21).

1 if T(uwv(p’)) < D(d)

0 otherwise .21

2dDisplace(N,p, D(p),T) = {
where p is the sample point, p’ = p + (—Nd) is the point on the original surface along the
reversed gradient normal N with length d the distance value encountered and T'(p) is the
texel located in the displacement map for mapped uv co-ordinates from p’.

The fragment shader for 2D displacement mapping using the OOP rendering technique is
given in figure 5.26. Slab rendering cannot be employed for 2D texture mapping since there
is no iso-value to consider. Heights are instead used to define the surface of an object and
the evaluation of two distinct samples within the displacement region does not guarantee a
linear progression. A possible extension to this algorithm is to pre-compute the height field
into a scalar volume dataset or distance field which would allow a slab sampling strategy to
be used with the 3D displacement mapping algorithm.

Ios2D displacement mapping is depicted in figure 5.27. This method benefits from the
ability to perform early ray termination, empty space leaping and deferred shading. Since
the displacement region must be evaluated for every sample encountered as a height field
must be queried, additional lookups are required compared to the bump mapping algorithm
counterpart. This highlights the need for efficient ray termination strategies as the frag-
ment program generated will contain many more operations per sample. Additionally each
encountered displacement region iso-surface intersection requires the computation of tan-
gent space and additionally a matrix multiplication for the tangent space to object space
mapping. The iso-surface decision must be made at each sample inside the soft region and
therefore a uv parametrisation must be made for each sample. The empty space skipping
method also must take into account the displacement region boundary. Therefore an adjust-
ment is required to correctly skip up to the displacement region. This can be achieved with
the previously defined functions 3.3 or 3.4 by adjusting the iso-value to be the displacement
boundary value.

5.4 Displacement Mapping 187

pixel fragmentShader (fragment, volume, dispMap, isoValue, light,
textureMatrix)
voxel = volume (fragment.tex0)
if (voxel.a > isoValue.a)
normal = (voxel.xyz x 2.0 - 1.0) » textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)
else if (voxel.a < isoValue.a and voxel.a > isoValue.z)
h =1.0 - ((voxel.a - isoValue.z) / (isoValue.a - isoValue.z))
normal = voxel.xyz 2.0 - 1.0
disp = 2dDisplace(normal, fragment.tex0O, h, dispMap)
if (disp.a > 0.0)
binormal = computeBinormal (normal)

tbn[0] = cross(binormal, normal)

tbn[l] = binormal

tbn[2] = normal

normal = ((disp.xyz x 2.0 - 1.0) = tbn) =

textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)
endif
else
discard
endif

Figure 5.26: O0P 2D displacement mapping fragment shader

5.4.2 2D Displacement Mapping Results

Table 5.4 shows the performance characteristics of 2D displacement mapping. The extra
burden on the fragment shader stage of the pipeline required for sampling each displace-
ment region sample with a texture lookup affects the performance drastically in comparison
to bump mapping. Including the acceleration methods outlined still produces much slower
results. However this is due to the extra samples contributing the surface which have to be
created dynamically. The rendered results are far superior in quality compared to 2D bump
mapping. It is expected that future hardware will include an improved branching mech-
anism which will allow these algorithms to produce a higher throughput. The dynamic
branching is utilised to avoid expensive operations in the displacement region, however in-
troduces a large overhead. Sharp edges prove to be difficult to render for this technique
since the underlying 2D height field might define an edge that is no more than a pixel wide
in the original height field. The previously mentioned strategy to include slab rendering
techniques will eliminate this problem. In this case, this algorithm has the benefit of provid-
ing arbitrary large displacements and can be used as a modelling approach to creating solid
volumetric objects with a 2D definition applied to a 3D object. This can be more intuitive
than existing methods such as combining several volume datasets and includes the benefit
of keeping the original object and resulting objects definition separate.

5.43 Volume Displacement Mapping

Volume displacement mapping is an extension of the 2D displacement mapping algorithm
that allows the inclusion of volumetric datasets that contain mesostructure. This new method
removes a restriction of the 2D displacement mapping algorithm which requires that all
displacements emanate from the original surface. The 3D displacement mapping extension

5.4 Displacement Mapping

188

pixel fragmentShader (fragment, volume, dir, isoValue, light, dispMap,
textureMatrix)
direction = dir (fragment.wpos)
rayPos = fragment.tex0
while (true)
voxel = volume (rayPos)
if (voxel.a > isoValue.a)
break
isoValue.x = 1.0
else if (voxel.a <= isoValue.a and voxel.a >= isoValue.z)
break
isovalue.x = 0.5
endif
rayPos += direction

// further samples

if (direction.a < length(rayPos - fragment.tex0)) {
break
endif
endwhile
if (isovalue.x = 1.0)

pixel = lighting(normal, fragment.tex2, light)
else if (isovValue.x = 0.5)
h=1.0 - ((voxel.a - isoValue.z) / (isoValue.a - isoValue.z))
normal = voxel.xyz « 2.0 - 1.0
disp = 2dDisplace(normal, rayPos, h, dispMap)
if (disp.a > 0.0)
binormal = computeBinormal (normal)
tbn[0] = cross(binormal, normal)
tbn(l] = binormal
tbn[2] = normal
normal = ((disp.xyz * 2.0 - 1.0) * tbn) =
textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)
endif
endif

normal = (voxel.xyz « 2.0 - 1.0) * textureMatrix.inverseTranspose

Figure 5.27: 10s 2D displacement mapping fragment shader

5.4 Displacement Mapping 189

(e) Normal Map

(d) 128 iso (g) Error Key

Figure 5.28: CTHeadDist dataset 2D displacement mapping images (a) to (d) rendered into a
5122 viewport with differing sample frequencies from height map (e) and normal map (f). (b)
to (d) are the difference images from (a) to visualize artefacts introduced with lower sampling
rates and the error range for difference images is given in (h).

5.4 Displacement Mapping 190

Dataset (size) Viewport | Slices | Oop | I0OS | IOS-ES
CTHeadDist | 512° 128
(2562 x 128) 256
see Figure 5.28 512
1024
1024° 128
256
512
1024
SphereDist 5122 128
(256%) 256
512
1024
1024° 128
256
512
1024 | <1 | <1

— W~ N A oo
—_ NN W W

<1 <1
<1 <1

HN#'—'NU\S{_\‘HL»O\)—-UJ\IE

— N RN W
— N P NW W o

Table 5.4: 2D displacement mapping frame rates in frames per second, Iso is single sample 2D
displacement mapping and Int is interpolated 2D displacement mapping. All rates are rounded
down.

removes this restriction and allows placement of any medium in the displacement region.
The normalised height encountered in the displacement region is used to address a volume
dataset with the 2D dimensional uv parameters having been already calculated. An object
density function segments the object to encode three regions in the dataset, outside the ob-
ject, the displacement region and the original iso-surface. The description is not limited to

- iso-surfacing as blending can be enabled and fuzzy classification with a transfer function
can be computed in the displacement region.

The functions computeUV and computeBinormal are assumed to be present in each
fragment shader. The 3dDisplace(vozel, pos, dispM ap) function outputs a scalar instead
of binary value to allow iso-surfacing and direct volume rendering where vozel encodes
the original distance value and gradient normal, pos is the sample position and dispMap is
the volume dataset containing tangent space gradient normals and scalar density or distance
field values. Eqn 5.22 is the modified displacement function.

3dDisplace(N, p, D(p), T) = T(uwv(p'), D(p)) (5.22)

where p is the sample point, p’ = p 4+ (—Nd) is the point on the original surface along the
reversed gradient normal N with length d the distance value encountered and T'(p) is the
texel located in the displacement map for mapped uv co-ordinates from p’.

Figures 5.29 and 5.30 define the OOP rendering strategies for 3D displacement mapping
with slice and slab sampling respectively. Figures 5.31 and 5.32 define the 3D displace-
ment mapping fragment shaders for the 10S approach. These shaders compute a second
segmentation based on iso-value and perform iso-surfacing of the displacement region. This

5.4 Displacement Mapping 191

requires that all samples in the displacement region are subject to a uv parameterisation of
the surface which proves to be slow. Dynamic conditional branches are used to skip costly
operations which introduces an overhead to compute these branches. The benefit of early
ray termination for the 10S approach is evident since when a displacement region iso-surface
intersection occurs, the rest of the ray does not require sampling. The deferred shading in
this case results in only one tangent space to object space mapping per ray. The empty space
leaping strategy is perfomed in respect of the displacement region boundary instead of the
iso-value for the original surface.

pixel fragmentShader (fragment, volume, isoValue, light, dispMap, textureMatrix)
voxel = volume (fragment.tex0)
if (voxel.a > isoValue.a)
normal = (voxel.xyz * 2.0 - 1.0) * textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)
else if (voxel.a < isoValue.a and voxel.a > isoValue.z)
h=1.0 - ((voxel.a - isoValue.z) / (isoValue.a - isoValue.z))
normal = voxel.xyz » 2.0 - 1.0
disp = 3dDisplace(normal, rayPos, h, dispMap)
if (disp.a > isoValue.y)

binormal = computeBinormal {(normal)
tbn[0] = cross{(binormal, normal)
tbn[l] = binormal

tbn[2] = normal

normal = ((disp = 2.0 - 1.0) * tbn) =«

textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)
endif
else
discard
endif

Figure 5.29: OOP volume displacement mapping fragment shader

5.4.4 Volume Displacement Mapping Results

Table 5.5 gives the performance measurements for the volume displacement mapping al-
gorithm. Although there is a noticable decrease in throughput from the 2D displacement
mapping algorithm, this performance drop is small. Both algorithms are complex to com-
pute on GPU hardware and it is expected that as shader conditional branching improves,
these algorithms will increase in throughput to reach other algorithms presented in this the-
sis. Figure 5.33 details images obtained using this method. The spheres mapped around
the original sphere function are formed from the SphereMeso dataset which contains many
small spheres as a distance field. These spheres can be seen to be disjoint from the original
surface which highlights the removal of previous restrictions by using this approach.

Both approaches suffer from the heavy tangent space mappings and uv parametrisations
required by the algorithm. As previously stated, pre-computing lookup tables for these
functions currently produces artefacts in the final image due to quantisation. The accelera-
tion techniques for 10S have proven to remove some burden but ultimately suffer from the
conditional branching costs associated with skipping unnecisary uv parametrisations.

This algorithm removes the restrictions associated with 2D displacement mapping with a

5.4 Displacement Mapping

192

dispMap, textureMatrix)
voxelf = volume (fragment.tex0)
voxelb = volume (fragment.texl)
wght = weight (voxelf.a, voxelb.a).a
if (wght > 0.0)

textureMatrix.inverseTranspose

hf = 1.0 - ((voxelf.a - isoValue.z)

dispf = 3dDisplace(voxelf.xyz * 2.0 1.0,
dispb = 3dDisplace(voxelb.xyz « 2.0 - 1.0,

if (wghtDisp > 0.0)

pixel fragmentShader (fragment, volume, weight, weightDisp,

normal = (lerp(voxelf.xyz, voxelb.xyz, wght)

pixel = lighting(normal, fragment.tex2, light)
else if (voxel.a < isoValue.a and voxel.a > isoValue.z)
/ (isoValue.a -
hb = 1.0 - {(voxelb.a - isoValue.z) / (isoValue.a -

normal = lerp(voxelf.xyz, voxelb.xyz) 2.0 - 1.0
dispNormal = lerp(dispf.xyz, dispb.xyz) * 2.0 - 1.
binormal = computeBinormal (normal)
tbn{0) = cross(binormal, normal)
tbn{l]) = binormal
tbn[2] = normal ‘
normal = (dispNormal * tbn)s* textureMatrix.inverseTranspose
pixel = lighting{(normal, fragment.tex2, light)
endif
else
discard
endif

light, isoValue,

* 2,0 - 1.0) =«

isoValue.z))
isoValue.z))
fragment.tex0, hf, dispMap)
fragment.texl, hb, dispMap)
wghtDisp = weightDisp(dispf.a, dispb.a, wght).a

Figure 5.30: OOP volume interpolated displacement mapping fragment shader

oor I0S IOS-ES
Dataset (size) Viewport | Slices | Iso Int | Iso Int | Iso Int
CTHeadDist 5122 128 7 6 |12 10|12 8
(2562 x 128) 256 4 3 7 5 8 5
512 | 2 1 3 215 3

1024 | 1 <1 1 1 |3 1

10242 128 3 2 3 2 16 3

256 1 1 1 1 | 4 2

512 | <1 <1|<1 <12 1
1024 [<1 <1|<1 <1|1 <1

SphereDist 5122 128 | 10 7 9 8 |na nha
(2563) 256 | 5 3 5 4 |n/a n/a
see Figure 5.33 512 2 1 2 2 |n/a n/a
1024 | 1 <1 1 1 |n/a n/a

10242 128 3 3 2 |n/a na

256 1 1 1 1 n/a n/a

512 [<1 <1|<1 <1l|na nla

1024 | <1 <1|<1 <1|na n/a

Table 5.5: Volume displacement mapping frame rates in frames per second, Iso is single sam-
ple volume displacement mapping and Int is interpolated volume displacement mapping. All

results are rounded down. :

5.4 Displacement Mapping 193

pixel fragmentShader (fragment, volume, dir, isoValue, light, bumpMap,
textureMatrix)
direction = dir(fragment.wpos)
rayPos = fragment.tex0
while (true)
voxel = volume (rayPos)
if (voxel.a > isoValue.a)
isovalue.x = 1.0

break
else if (voxel.a <= isoValue.a and voxel.a >= isoValue.z)
h =1.0 - ((voxel.a - isoValue.z) / (isoValue.a - isoValue.z))

disp = 3dDisplace(voxel.xyz * 2.0 - 1.0, fragment.tex0, h, dispMap)
if (disp.a > isoValue.y)
isoValue.x = 0.5
break
endif
endif
rayPos += direction

// further samples

if (direction.a < length(rayPos - fragment.tex0)) {

break
endif
endwhile
if (isovValue.x = 1.0)
normal = (voxel.xyz * 2.0 - 1.0) * textureMatrix.inverseTranspose

pixel = lighting(normal, fragment.tex2, light)
else if (isoValue.x = 0.5)

normal = (voxel.xyz = 2.0 - 1.0)

binormal = computeBinormal (normal)

tbn[0] = cross(binormal, normal)

tbn[l] = binormal

tbn[2] = normal

normal = ((disp.xyz » 2.0 - 1.0) % tbn) =«

textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)
endif

Figure 5.31: 10s volume displacement mapping fragment shader

5.4 Displacement Mapping 194

pixel fragmentShader (fragment, volume, dir, weight, dispWeight, isovalue, light,
dispMap, textureMatrix)
direction = dir (fragment.wpos)
rayPos = fragment.tex0
voxelf = volume (rayPos)
rayPos += direction
while (true)
. voxelb = volume (rayPos)
wght = weight (voxelf.a, voxelb.a).a
if (wght > 0.0)
isovalue.x = 1.0

break

else if (voxel.a <= isoValue.a and voxel.a >= isoValue.z)
hf = 1.0 - ((voxelf.a - isoValue.z) / (isoValue.a - isoValue.z))
hb = 1.0 - ((voxelb.a - isoValue.z) / (isoValue.a - isoValue.z))

dispf = 3dDisplace{voxelf.xyz = 2.0 - 1.0, fragment.tex0,
hf, dispMap)
dispb = 3dDisplace{(voxelb.xyz * 2.0 - 1.0, fragment.texl,
hb, dispMap)
wghtDisp = weightDisp(dispf.a, dispb.a).a
if (wghtDisp > 0.0)
isovalue.x = 0.5
break
endif
endif
voxelf = voxelb
rayPos += direction

// further samples

if (direction.a < length(rayPos - fragment.tex0)) {

break
endif
endwhile)
if (isovalue.a = 1.0)
normal = (voxel.xyz « 2.0 - 1.0) * textureMatrix.inverseTranspose

pixel = lighting(normal, fragment.tex2, light)

else if (isovValue.a = 0.5)
normal = lerp{voxelf.xyz, voxelb.xyz) = 2.0 - 1.0
dispNormal = lerp(dispf.xyz, dispb.xyz) » 2.0 - 1.0
binormal = computeBinormal (normal)

tbn[0] = cross(binormal, normal)
tbn([l)] = binormal
tbn(2] = normal
normal = (dispNormal * tbn)»* textureMatrix.inverseTranspose
pixel = lighting(normal, fragment.tex2, light)
endif

Figure 5.32: 10S volume interpolated displacement mapping fragment shader

5.4 Displacement Mapping 195

(a) 1024 iso (e) 1024 int (i) 128 iso/int
(b) 512 iso (f) 512 int

(c¢) 256 iso (g) 256 int

(d) 128 iso (h) 128 int (j) Error Key

Figure 5.33: SphereDist dataset volume displacement mapping (a) to (d) and interpolated 3D
displacement mapping (e) to (h) images rendered into a 5122 viewport with differing sample
frequencies. The displacement region is filled with the SphereMesodataset. Both (b) to (d) and
(0 to (h) are the difference images from (a) and (e) respectively to visualize artefacts introduced
with lower sampling rates. Both techniques (i) are compared to highlight sampling differences
and the error range for difference images is given in (j).

5.5 Summary 196

similar overhead. Iso-surfacing has been described, but the rendering strategy for the dis-
placement region can easily be adjusted to classify a density encountered in the displace-
ment region and perform direct volume rendering with blending. In this case the algorithm
is less expensive since no tangent space to object space mapping is required, and is sim-
ilar to hypertexture with the addition of a uv parametrisation of the objects surface. This
does allow many more effects to be rendered however since no procedural primitives are
evaluated and any volume dataset can define the displacement region.

5.5 Summary

The algorithms defined in this chapter form the basis of a powerful descriptive environment
for modelling general form with volume datasets. Both 2D texturing and bump mapping
are important techniques to the surface graphics community to provide inexpensive realism
in rendered scenes and objects. It has been shown that these methods fit well with the
volume graphics pipeline with the addition to their real-time display. This allows surfaces
to be imported into volumetric scenes with ease by voxelising original objects and using
existing texture maps. Very complex surface meshes can benefit from this approach as
general complexity in volume graphics remains constant for arbitrary complex datasets.
The CTHeadDist dataset is shown here as requiring more sampling than other datasets,
however interactive rates are maintained in most situations.

The introduction of displacement mapping into the volumetric pipeline provides a powerful
tool for modelling objects and rendering finite details. The frame rates achieved so far for
a complex algorithm are promising and in the future when dynamic branching hardware
improves on GPU’s these methods will show an increased throughput. Since the complexity
of providing these tools is not much greater than the original problem, future hardware
with better branch performance and increased bandwidth and clock speeds will allow these
algorithms to run at over 10 fps, currently the branch costs are limiting the algorithm by
introducing many additional cycles due to branching. In addition, more accurate texture
maps and increased memory will allow the pre-computation of expensive functions such as
the uv parametrisation and tangent space to object space mapping.

Chapter 6

Conclusion

Contents
61 Achievements. i ot i it ittt vt oo e nneeeens 198
62 Further Work i i i ittt it teeeneeeneens 198

The aim of this thesis was to provide a framework to compute volume graphics applications
on commodity graphics hardware architectures. Particular focus has been extended towards
texturing volume objects to provide realistic imagery with real world attributes. This work is
seen as the initial steps in providing volume graphics to a wider audience and user base and
to promote its use as a flexible graphical modelling and rendering representation, capable
of superseding current surface representations. The explosion of programmable hardware
onto the main consumer market will continually increase the possibilities to define more
methods and strategies at an interactive rate.

The question of having to re-examine several established algorithms for use on the GPU is
shown to be a nessicary step in providing real-time graphics solutions on single worksta-
tions. This is the most cost-effective manner to date to display real-time volume graphics
and although it required revisiting algorithms designed at the inception of the subject, has
enabled better understanding of these algorithms and allowed tighter implementations that
are more efficient than their software cousins.

This work has raised questions regarding the implementations of GPU hardware and the
future trends. The first issue is that of dynamic branching being so costly on current imple-
mentations. If this cost is reduced, many more complex applications can be implemented
to take advantage of the parallel pipeline. Secondly the current debugging model is not suf-
ficient enough to implement complex algorithms without a heavy development period with
unknown problems. Most often a shader that does not work is simple to amend, however
without being able to see registers and step though code, the GPU must be treated as a black
box. Third, an implementation of a noise algorithm will significantly benefit many mem-
bers of the graphics community and give truly real-time rich procedural textures. There
are patents for specialised hardware that implement these algorithms but they are not cur-
rently included on the graphics hardware. This would be an enormous advantage to using

197

6.1 Achievements 198

GPU pipelines in graphics rendering as procedurally generating noise without the specialist
hardware is mostly too expensive to maintain interactive rates.

A summary of achievements is outlined in section 6.1 and suggestions for further work are
given in 6.2.

6.1 Achievements

The main achievements of this thesis are:

¢ An introduction to the developing field of volume visualisation and volume graphics
with a detailed review of existing volumetric techniques.

e A succinct review of volume rendering strategies for commodity graphics hardware
which includes some improvements

o The introduction of a new image-order single pass direct volume rendering technique
computed entirely on graphics hardware

e The development of a flexible object-oriented volume rendering platform

o The introduction of interactive generation and application of procedural textures for
solid texturing and hypertexturing effects with a flexible architecture

e The introduction of interactive fine surface detail methods for volume representations
o The introduction of a new volume displacement mapping technique

e The introduction of mesostructure for volume datasets which removes the restriction
of displaced surfaces requiring connection to the original surface.

6.2 Further Work

The graphics hardware manufacturers have recently released details of the upcoming graph-
ics hardware in design and early production. These new graphics hardware accelerators in-
clude further optimisations and improvements, and will also introduce a new pipeline stage.
This pipeline stage will be capable of defining the build up of geometry instead of simply
working with vertices. This increased control will allow an efficient Marching Cubes or
Marching Tetrahedral algorithm to be implemented entirely in hardware.

Additionally this new hardware should suit a combined object-order and image-order ap-
proach. An octree structure may be uploaded to the graphics hardware and recursively
sampled with the ability to generate geometry for the fragment stage of the pipeline. This
should allow techniques such as Multiple Pass and Single Pass direct volume rendering to
benefit from an additional culling of fragments before any processing takes place. Similar
methods have been proposed but fall short of an entirely efficient method.

6.2 Further Work 199

The rate at which the algorithms in this thesis are executed will increase with each new
generation of hardware, and the fundamentals are expected to remain fixed, however with
an increased accuracy within texturing and blending stages of the pipeline some of the
outlined speed-up methods can be successfully included without a loss of image quality.

Focus is generally given to rendering singular volume datasets, It is important to define
mechanisms to render multiple datasets at the same time such as CVG. The increased horse-
power of graphics accelerators will allow volumetric scene graphs to be rendered in real
time. Additional strategies must be established concerning upload of expensive volume
datasets to the graphics hardware for rendering in a multi-volume environment, additionally
level of detail data storage and rendering will undoubtably play an important role. The work
presented in this thesis can play an important role in modelling and its inclusion with CVG
would be ultimately beneficial. Voxelisation into triangle meshes might also benefit from
the surface detail algorithms explored. A complex polygonal mesh can be voxelised into a
distance field with its bump or displacement maps defining the high frequency detail in the
resulting distance field.

It is further expected that ray-tracing and ultra fine detail rendering of volumetric scene
graphs will be restricted to powerful computers, although it is possible that graphics hard-
ware can accelerate stages of this process and thus global illumination approximation tech-
niques must be employed for interactive rates.

There is still work to be carried out in finding the most efficient volume rendering platform
on GPU hardware. All of the volume rendering algorithms explored suffer two problems.

The first problem is that they are entirely fragment shader bound, and the vertex shader is
often idle during execution. This can be circumvented by employing the vertex shader to
perform empty space leaping on future GPU’s by affecting the proxy geometry used for ray
casting or sample positions. Currently there is no method to generate a vertex list through
the GPU pipeline. A future algorithm can utilise the vertex shader to perform hierarchical
generation of proxy geometries such that there are less fragments to consider by analysing
an object-order structure such as a min-max octree. Ray-casting can then be performed
on the proxy geometries output by this stage of the pipeline which will result in a bal-
anced pipeline with less work being computed entirely in the fragment shading stage of the
pipeline.

The second problem is the current hardware implementations. The need for dynamic con-
ditional expressions and in some cases loops introduce a drastic decrease in performance
by introducing more cycles. Whilst methods such as multiple-pass rendering take the bur-
den of these instructions away, they still require a heavy overhead in terms of memory and
buffer swapping. Additionally only the 10S method can blend at full 32 bit precision. Other
techniques would benefit from a truly 32 bit pipeline throughout the whole GPU architecture
from 32 bit texture filtering to 32 bit blending. Currently increasing precision will decrease
performance, however a full 32 bit pipeline should avoid these issues. A full 32 bit tex-
ture definition to include filtering will be important in future high-quality volume rendering
applications which can rely on accurate lookup tables to increase rendering speeds.

The notion of soft-object’s is clearly a powerful tool in volume graphics to define a natural
looking object. This single volume dataset modelling technique could therefore be imported

6.2 Further Work 200

into the CVG operations over scalar fields to allow an intuitive modelling primitive. The soft-
region’s roll in animation is also clearly important for general graphics scenes and the time
varying nature of such a CVG operation should also be represented.

The notion of a complete shading tree volume graphics language can be highlighted and
previous work such as viib provide many of these features in software. However a real-time
hardware accelerated environment to allow modelling manipulation and animation would
benefit from the techniques presented in this chapter as they are especially suited to a frame-
work implementation.

An investigation into computing a volume dataset from an original height field is required to
remove the undersampling of sharp edges in displacement mapping. Since the volume dis-
placement mapping methods can utilise slab sampling, these under-sampled sharp edges are
expected to be improved. Displacement mapping can be a useful tool in modelling as well
as rendering. A subset of objects are described more intuitively by wrapping a displacement
map around their existing structure. This removes the burden of having multiple datasets
in a tree structure to define an object. Further study should be given to this modelling ap-
plication in terms of existing techniques and strategies. The voxelisation of distance fields
from triangular meshes with displacement maps is also an unexplored notion for rendering
complex surface meshes with mesostructure.

Bibliography

[Ake93]

[ARCO5]

[ASK94]

[BHP46]

[BINN97]

[Bli77]

[Bli78a]

[B1i78b]

[B1i82]

[Bli%4]

[Blo88]

Kurt Akeley. Reality engine graphics. In SIGGRAPH ’93: Proceedings of
the 20th annual conference on Computer graphics and interactive techniques,
pages 109-116, New York, NY, USA, 1993. ACM Press.

A. Abdul-Rahman and M. Chen. Spectral volume rendering based on the
kubelka-munk theory. Computer Graphics Forum, 24(3):413-422, 2005.

Ricardo S. Avila, Lisa M. Sobierajski, and Arie E. Kaufman. Visualizing nerve
cells. IEEE Computer Graphics and Applications, 14(5):11-13, 1994,

F. Bloch, W.W. Hansen, and M. Packard. The nuclear induction experiment.
Physical Review, 70:474—485, 1946.

Martin Brady, Kenneth Jung, H. T. Nguyen, and Thinh Nguyen. Two-phase
perspective ray casting for interactive volume navigation. In VIS *97: Proceed-
ings of the 8th conference on Visualization ‘97, pages 183—ff., Los Alamitos,
CA, USA, 1997. IEEE Computer Society Press.

James F. Blinn. Models of light reflection for computer synthesized pictures.
In SIGGRAPH °’77: Proceedings of the 4th annual conference on Computer
graphics and interactive techniques, pages 192-198, New York, NY, USA,
1977. ACM Press.

James F. Blinn. Computer display of curved surfaces. PhD thesis, University
of Utah, 1978.

James F. Blinn. Simulation of wrinkled surfaces. In Proceedings of the 5th
annual conference on Computer graphics and interactive techniques, pages
286-292. ACM Press, 1978.

James F. Blinn. Light reflection functions for simulation of clouds and dusty
surfaces. In SIGGRAPH ’82: Proceedings of the 9th annual conference on
Computer graphics and interactive techniques, pages 21-29, New York, NY,
USA, 1982. ACM Press.

James F. Blinn. Image compositing—theory. IEEE Computer Graphics and
Applications, 14(5):83-87, Sept 1994.

J. Bloomenthal. Polygonization of implicit surfaces. Compututer Aided Ge-
ometry and Design, 5(4):341-355, 1988.

201

BIBLIOGRAPHY 202

[BM93]

[BMW98]

[BN76]

[BPS97]

[BR9E]

[BS86]

[Cat74]

[Cat75]

[CCPFY%4]

[CHO2]

[Che95]

[Che05]

[CN94]

Barry G. Becker and Nelson L. Max. Smooth transitions between bump ren-
dering algorithms. In SIGGRAPH ’93: Proceedings of the 20th annual confer-
ence on Computer graphics and interactive techniques, pages 183-190, New
York, NY, USA, 1993. ACM Press.

David E. Breen, Sean Mauch, and Ross T. Whitaker. 3d scan conversion of
csg models into distance volumes. In VVS '98: Proceedings of the 1998 IEEE
symposium on Volume visualization, pages 7-14, New York, NY, USA, 1998.
ACM Press.

James E Blinn and Martin E. Newell. Texture and reflection in computer
generated images. Communications of the ACM, 19(10):542-547, 1976.

Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore. The contour
spectrum. In VIS '97: Proceedings of the 8th conference on Visualization '97,
pages 167—ff., Los Alamitos, CA, USA, 1997. IEEE Computer Society Press.

Uwe Behrens and Ralf Ratering. Adding shadows to a texture-based volume
renderer. In VVS ’98: Proceedings of the 1998 IEEE symposium on Volume
visualization, pages 39-46, New York, NY, USA, 1998. ACM Press.

E. Bier and K. Sloan. Two-part texture mapping. IEEE Computer Graphics
and Applications, 6(9):40-53, 1986.

Edwin E. Catmull. A Subdivision Algorithm for Computer Display of Curved
Surfaces. PhD thesis, Dept. of CS, U. of Utah, December 1974.

Edwin E. Catmull. Computer display of curved surfaces. In Proceedings of
the IEEE Conference on Computer Graphics, Pattern Recognition, and Data
Structure, pages 11—17, May 1975.

Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. In Proceedings
of the 1994 symposium on Volume visualization, pages 91-98. ACM Press,
1994,

Nathan A. Carr and John C. Hart. Meshed atlases for real-time procedural
solid texturing. ACM Transactions on Graphics, 21(2):106-131, 2002.

E. Chernyaev. Marching cubes 33: Construction of topologically correct iso-
surfaces. Technical Report CERN CN 95-17, 1995.

Min Chen. Combining point clouds and volume objects in volume scene
graphs. In Proceedings of the International Workshop on Volume Graphics
'05, pages 127-135, 2005.

Timothy J. Cullip and Ulrich Neumann. Accelerating volume reconstruction
with 3d texture hardware. Technical report, University of North Carolina at
Chapel Hill, 1994.

BIBLIOGRAPHY 203

[Coo84]

[Cor06]

[CRZP04]

[CS78]

[CSWT03]

[CTO00]

[DCHS88]

[DKC*98]

[Diir88]

[EKEO1]

[EMP*03]

[FFC82]

Robert L. Cook. Shade trees. In SIGGRAPH ’84: Proceedings of the 11th
annual conference on Computer graphics and interactive techniques, pages
223-231, New York, NY, USA, 1984. ACM Press.

NVIDIA Corporation. Implementing the fixed function pipeline in
cg. http://developer.nvidia.com/object/cg_fixed_
function.html, 09 2006.

Wei Chen, Liu Ren, Matthias Zwicker, and Hanspeter Pfister. Hardware-
accelerated adaptive EWA volume splatting. In Proceedings of IEEE Visu-
alization 2004, October 2004.

H. N. Christiansen and T. W. Sederberg. Conversion of complex contour line
definitions into polygonal element mosaics. In SIGGRAPH ’78: Proceed-
ings of the 5th annual conference on Computer graphics and interactive tech-
niques, pages 187-192, New York, NY, USA, 1978. ACM Press.

M. Chen, D. Silver, A. S. Winter, V. Singh, and N. Cornea. Spatial transfer
functions: a unified approach to specifying deformation in volume model-
ing and animation. In VG ’03: Proceedings of the 2003 Eurographics/IEEE
TVCG Workshop on Volume graphics, pages 3544, New York, NY, USA,
2003. ACM Press.

Min Chen and John V. Tucker. Constructive volume geometry. Computer
Graphics Forum, 19(4):281-293, December 2000.

Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering.
In SIGGRAPH ’88: Proceedings of the 15th annual conference on Computer
graphics and interactive techniques, pages 65—74, New York, NY, USA, 1988.
ACM Press.

Frank Dachille, Kevin Kreeger, Baoquan Chen, Ingmar Bitter, and Arie Kauf-
man. High-quality volume rendering using texture mapping hardware. In
HWWS °98: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS work-
shop on Graphics hardware, pages 69—ff., New York, NY, USA, 1998. ACM
Press.

M. Diirst. Letters: Additional references on marching cubes. Computer
Graphics, 22(2):72-73, 1988.

Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware,
pages 9-16. ACM Press, 2001.

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven
Worley. Texturing and Modelling: A Procedural Approach. Morgan Kauf-
mann, 3rd edition, 2003.

Alain Fournier, Don Fussell, and Loren Carpenter. Computer rendering of
stochastic models. Communications of the ACM, 25(6):371-384, 1982.

BIBLIOGRAPHY 204

[FKU77]

[FL78]

[FSV98]

[FvDFH96]

[Gib97]

[GK96]

[Gou71]

[GPRJ0O]

[Gre05]

[GS99]

[GS01]

[GTGBg4]

[HarO1]

[HB86]

H. Fuchs, Z. M. Kedem, and S. P. Uselton. Optimal surface reconstruction
from planar contours. Communications of the ACM, 20(10):693-702, 1977.

K. S.Fuand S. Y. Lu. Computer generation of texture using a syntactic ap-
proach. In SIGGRAPH ’78: Proceedings of the 5th annual conference on
Computer graphics and interactive techniques, pages 147-152, New York,

NY, USA, 1978. ACM Press. '

S. Fang, R. Srinivasan, and S. Venkataraman. Volumetric csg?a model-based
volume visualization approach. In Sixth International Conference in Central
Europe on Computer Graphics and Visualization, 1998.

J. D. Foley, A. van Dam, S. K. Feiner, and J. E Hughes. Computer Graphics
Principles and Practice. Addison-Wesley, 2nd edition edition, 1996.

Sarah E Gibson. 3d chainmail: a fast algorithm for deforming volumetric
objects. In SI3D ’'97: Proceedings of the 1997 symposium on Interactive 3D
graphics, pages 149—f., New York, NY, USA, 1997. ACM Press.

Allen Van Gelder and Kwansik Kim. Direct volume rendering with shading
via three-dimensional textures. In Proceedings of the 1996 symposium on
Volume visualization, pages 23—ff. IEEE Press, 1996.

H. Gouraud. Continuous shading of curved surfaces. IEEE Transactions on
Computers, 20(6):623-629, June 1971.

Sarah E. Frisken Gibson, Ronald N. Perry, Alyn P. Rockwood, and Thouis R.
Jones. Adaptively sampled distance fields: A general representation of shape
for computer graphics. In Proceedings of SIGGRAPH 2000, pages 249-254,
2000.

Simon Green. Implementing Improved Perlin Noise, chapter 26, pages 409—
416. Addison Wesley, 2005.

Nikhil Gagvani and Deborah Silver. Parameter-controlled volume thinning.
CVGIP: Graphical Models and Image Processing, 61(3):149-164, 1999.

Nikhil Gagvani and Deborah Silver. Animating volumetric models. Graphical
Models, 63(6):443-458, 2001.

Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Bat-
taile. Modeling the interaction of light between diffuse surfaces. In SIG-
GRAPH ’84: Proceedings of the 11th annual conference on Computer graph-
ics and interactive techniques, pages 213--222, New York, NY, USA, 1984.
ACM Press.

John C. Hart. Perlin noise pixel shaders. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 87-94.
ACM Press, 2001.

K. H. Hohne and R. Bernstien. Shading 3d images from ct using grey level
gradients. IEEE Transactions on Medical Imaging, 5(1):45-47, March 1986.

BIBLIOGRAPHY 205

[HCK*99]

[HDD 193]

[HE99]

[Hea]

[HEGDO04]

[HHKP96]

[HHMO3]

[HL90]

[HMS95]

[Hou72]

[HQKOS]

John C. Hart, Nate Carr, Masaki Kameya, Stephen A. Tibbitts, and Terrance J.
Coleman. Antialiased parameterized solid texturing simplified for consumer-
level hardware implementation. In HWWS ’99: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 45-53,
New York, NY, USA, 1999. ACM Press.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. Mesh optimization. In SIGGRAPH ’93: Proceedings of the 20th
annual conference on Computer graphics and interactive techniques, pages
19-26, New York, NY, USA, 1993. ACM Press.

Matthias Hopf and Thomas Ertl. Accelerating 3d convolution using graphics
hardware (case study). In VIS ’99: Proceedings of the conference on Visual-
ization '99, pages 471-474, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press.

GE Healthcare. http://www.gehealthcare.com/usen/ct/
products/ebt .html.

Johannes Hirche, Alexander Ehlert, Stefan Guthe, and Michael Doggett. Hard-
ware accelerated per-pixel displacement mapping. In GI '04: Proceedings
of the 2004 conference on Graphics interface, pages 153-158, School of
Computer Science, University of Waterloo, Waterloo, Ontario, Canada, 2004.
Canadian Human-Computer Communications Society.

Taosong He, Lichan Hong, Arie Kaufman, and Hanspeter Pfister. Generation
of transfer functions with stochastic search techniques. In VIS '96: Proceed-
ings of the 7th conference on Visualization '96, pages 227-ff., Los Alamitos,
CA, USA, 1996. IEEE Computer Society Press.

Markus Hadwiger, Helwig Hauser, and Torsten Moller. Quality issues of
hardware-accelerated high-quality filtering on pc graphics hardware. Journal
of WSCG, 11:213-210, 2003.

Pat Hanrahan and Jim Lawson. A language for shading and lighting calcu-
lations. In SIGGRAPH ’90: Proceedings of the 17th annual conference on
Computer graphics and interactive techniques, pages 289-298, New York,
NY, USA, 1990. ACM Press.

Wolfgang Heidrich, Michael McCool, and John Stevens. Interactive maximum
projection volume rendering. In VIS ’95: Proceedings of the 6th conference
on Visualization °95, page 11, Washington, DC, USA, 1995. IEEE Computer
Society.

G. Hounsfield. A method of an apparatus for examination of a body by radia-
tion such as x-ray or gamma radiation. Patent Specification 1283915, 1972.

Wei Hong, Feng Qiu, and Arie Kaufman. Gpu-based object-order ray-casting
for large datasets. In Proceedings of the International Workshop on Volume
Graphics '05, 2005. '

BIBLIOGRAPHY 206

[HSHO4]

[HTF97]

[HTGO1]

[HVTHO2]

[HWK94]

[IDSCO04]

[ILGSO03]

[JBS06]

[JC94]
[JDRO4]
[Jon96]
[Kau(04]

[KBR]

[KCY93]

Knud Henriksen, Jon Sporring, and Kasper Hornbaek. Virtual trackballs revis-
ited. IEEE Transactions on Visualization and Computer Graphics, 10(2):206—
216, 2004.

Bernd Hamann, Issac J. Trotts, and Gerald E. Farin. On approximating con-
tours of the piecewise trilinear interpolant using triangular rational-quadratic
bezier patches. IEEE Transactions on Visualization and Computer Graphics,
3(3):215-227, 1997.

Markus Hadwiger, Thomas Theugd, and Helwig Hauserand Eduard Groller.
Hardware-accelerated high-quality filtering on pc graphics hardware. In Vi-
sion, Modeling, and Visualization *02, 2001.

Markus Hadwiger, Ivan Viola, Thomas Theuf], and Helwig Hauser. Fast and
flexible high-quality texture filtering with tiled high-resolution filters. In Vi-
sion, Modeling, and Visualization ’02, 2002.

Taosong He, Sidney Wang, and Arie Kaufman. Wavelet-based volume mor-
phing. In VIS '94: Proceedings of the conference on Visualization '94, pages
85-92, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

Shoukat Islam, Swapnil Dipankar, Deborah Silver, and Min Chen. Spatial and
temporal splitting of scalar fields in volume graphics. In IEEE Symposium on
Volume Visualization and Graphics (VV?04), 2004.

Martin Isenburg, Peter Lindstrom, Stefan Gumhold, and Jack Snoeyink. Large
mesh simplification using processing sequences. In VIS ’03: Proceedings of
the 14th IEEE Visualization 2003 (VIS'03), page 61, Washington, DC, USA,
2003. IEEE Computer Society.

Mark W. Jones, Andreas Berentzen, and Milo§ Sréamek. Discrete 3D distance
fields: Techniques and applications. I[EEE Transactions on Visualization and
Computer Graphics, 12(4):581-599, July/August 2006.

M.W. Jones and M. Chen. A new approach to the construction of surfaces
from contour data. Computer Graphics Forum, 13(4):75-84, 1994.

Robert Jagnow, Julie Dorsey, and Holly Rushmeier. Stereological techniques
for solid textures. ACM Transactions on Graphics, 23(3):329-335, 2004.

Mark W. Jones. The production of volume data from triangular meshes using
voxelisation. Computer Graphics Forum, 15(5):311-318, 1996.

Jan Kautz. Hardware lighting and shading: a survey. Computer Graphics
Forum, 23(1):85-112, 2004.

John Kessenich, Dave Baldwin, and Randi Rost. The opengl shad-
ing language. http://oss.sgi.com/projects/ogl-sample/
registry/ARB.

Arie Kaufman, Daniel Cohen, and Roni Yagel. Volume graphics. IEEE Com-
puter, 26(7).51-64, 1993.

BIBLIOGRAPHY 207

[KD98]

[Kep75]
[KF05]

[KHS84]

[Kil96]
[Kil00]
[KKHO1]
[KKHO2]
[KPHE02]
[KR88]
[KW03]
[LBO3]

[LC87]

Gordon Kindlmann and James W. Durkin. Semi-automatic generation of trans-
fer functions for direct volume rendering. In VVS °98: Proceedings of the 1998
IEEE symposium on Volume visualization, pages 79-86, New York, NY, USA,
1998. ACM Press.

E. Keppel. Approximating complex surfaces by triangulation of contour lines.
IBM Journal of Reseach and Development, 19(1):2-11, 1975.

Emmett Kilgariff and Randima Fernando. GPU Gems 2, chapter The GeForce
6 Series GPU Architecture, pages 471-491. Addison Wesley, 2005.

James T. Kajiya and Brian P Von Herzen. Ray tracing volume densities. In
SIGGRAPH ’84: Proceedings of the 11th annual conference on Computer
graphics and interactive techniques, pages 165-174, New York, NY, USA,
1984. ACM Press.

Mark J. Kilgard. Programming OpenGL for the X Windows System, chapter 4.
Addison-Wesley, 1996.

M. J. Kilgard. A practical and robust bump-mapping technique for today’s
gpus. In Game Developers Conference, July 2000.

Joe Kniss, Gordon Kindlmann, and Charles Hansen. Interactive volume ren-
dering using multi-dimensional transfer functions and direct manipulation
widgets. In VIS "01: Proceedings of the conference on Visualization '01, pages
255-262, Washington, DC, USA, 2001. IEEE Computer Society.

Joe Kniss, Gordon Kindlmann, and Charles Hansen. Multidimensional trans-
fer functions for interactive volume rendering. /IEEE Transactions on Visual-
ization and Computer Graphics, 8(3):270-285, 2002.

Joe Kniss, Simon Premoze, Charles Hansen, and David Ebert. Interactive
translucent volume rendering and procedural modeling. In Proceedings of
the conference on Visualization *02, pages 109-116. IEEE Computer Society,
2002.

Brian W. Kernighan and Dennis M. Richie. The C Programming Language.
Prentice Hall, 2nd edition, 1988.

J. Kruger and R. Westermann. Acceleration techniques for gpu-based vol-
ume rendering. In VIS ’03: Proceedings of the 14th IEEE Visualization 2003
(VIS’03), page 38, Washington, DC, USA, 2003. IEEE Computer Society.

Adriano Lopes and Ken Brodlie. Improving the robustness and accuracy of
the marching cubes algorithm for isosurfacing. IEEE Transactions on Visual-
ization and Computer Graphics, 9(1):16-29, 2003.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. In SSIGGRAPH ’'87: Proceedings of the 14th
annual conference on Computer graphics and interactive techniques, pages
163-169, New York, NY, USA, 1987. ACM Press.

BIBLIOGRAPHY 208

[Lev88]

[Lev90]

[Lew89]

[LGL95]

[LHI99]

[LL94]

[LW8S5]

[LWMO04]

[Max95]

[MB94]

[MEO5]

[Mea82]

[MGAKO03]

[MHS99]

Mark Levoy. Display of surfaces from volume data. IEEE Computer Graphics
and Applications, 8(3):29-37, 1988.

Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on
Graphics, 9(3):245-261, 1990.

J. P. Lewis. Algorithms for solid noise synthesis. In SIGGRAPH ’89: Pro-
ceedings of the 16th annual conference on Computer graphics and interactive
techniques, pages 263-270, New York, NY, USA, 1989. ACM Press.

Apostolos Lerios, Chase D. Garfinkle, and Marc Levoy. Feature-based volume
metamorphosis. In SIGGRAPH ’95: Proceedings of the 22nd annual confer-
ence on Computer graphics and interactive techniques, pages 449-456, New
York, NY, USA, 1995. ACM Press.

Eric LaMar, Bernd Hamann, and Kenneth I. J oy. Multiresolution techniques
for interactive texture-based volume visualization. In VIS ’99: Proceedings of
the conference on Visualization *99, pages 355-361, Los Alamitos, CA, USA,
1999. IEEE Computer Society Press.

Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp
factorization of the viewing transformation. In Proceedings of the 21st annual
conference on Computer graphics and interactive techniques, pages 451-458.
ACM Press, 1994.

Marc Levoy and Turner Whitted. The use of points as a display primitive.
Technical report, University of North Carolina at Chapel Hill, 1985.

Eric Lum, Brett Wilson, and Kwan-Liu Ma. High-quality lighting and ef-
ficient pre-integration for volume rendering. In Proceedings of the Joint
Eurographics-IEEE TVCG Symposium on Visualization 2004, 2004.

Nelson Max. Optical models for direct volume rendering. IEEE Transactions
on Visualization and Computer Graphics, 1(2):99-108, 1995.

Nelson L. Max and Barry G. Becker. Bump shading for volume textures. IEEE
Computer Graphics and Applications, 14(4):18-20, 1994.

Ben Mora and David Ebert. Low-complexity maximum intensity projection.
ACM Transactions on Graphics, 24(5):1392-1416, October 2005.

D. Meagher. Geometric modelling using octree encoding. Computer Graphics
and Image Processing, 19:129-147, 1982.

William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg: a
system for programming graphics hardware in a c-like language. ACM Trans-
actions on Graphics, 22(3):896-907, 2003.

Michael Meigner, Ulrich Hoffmann, and Wolfgang Stra?er. Enabling clas-
sification and shading for 3d texture mapping based volume rendering using
opengl and extensions. In VIS ’99: Proceedings of the conference on Visual-

BIBLIOGRAPHY 209

[Mic06]
[MJO05]

[MJCO02]

[MMK 98]

ization '99, pages 207-214, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press. :

Microsoft. Directx, 9 2006.

C. M. Miller and M. W. Jones. Texturing and hypertexturing of volumetric
objects. In Proceedings of the International Workshop on Volume Graphics
'05, pages 117-125, 2005.

Benjamin Mora, Jean-Pierre Jessel, and René Caubet. A new object-order ray-
casting algorithm. In IEEE Visualization '02, pages 203-210, October 2002.

Torsten Moller, Klaus Mueller, Yair Kurzion, Raghu Machiraju, and Roni
Yagel. Design of accurate and smooth filters for function and derivative recon-
struction. In VVS '98: Proceedings of the 1998 IEEE symposium on Volume
visualization, pages 143-151, New York, NY, USA, 1998. ACM Press.

[MMMY96] Torsten Moller, Raghu Machiraju, Klaus Mueller, and Roni Yagel. Classifica-

tion and local error estimation of interpolation and derivative filters for volume
rendering. In VVS '96: Proceedings of the 1996 symposium on Volume visu-
alization, pages 71-ff., Piscataway, NJ, USA, 1996. IEEE Press.

[MMMY97] Torsten Méller, Raghu Machiraju, Klaus Mueller, and Roni Yagel. Evaluation

[MN88]

[Nat94]

[NH91]

[Nie03]

[NMOI1]

[NS97]

[Ope]

[PAC97]

and design of filters using a taylor series expansion. IEEE Transactions on
Visualization and Computer Graphics, 3(2):184-199, 1997.

Don P. Mitchell and Arun N. Netravali. Reconstruction filters in computer-
graphics. In SIGGRAPH ’88: Proceedings of the 15th annual conference on
Computer graphics and interactive techniques, pages 221-228, New York,
NY, USA, 1988. ACM Press.

B. K. Natarajan. On generating topologically consistent isosurfaces from uni-
form samples. The Visual Computer, 11(1):52-62, 1994.

G. M. Neilson and B. Hamann. The asymptotic decider: Resolving the ambi-
guity in marching cubes. In Visualization 91, pages 83-90, 1991.

Gregory M. Nielson. On marching cubes. IEEE Transactions on Visualization
and Computer Graphics, 9(3):283-297, 2003.

Manjushree Nulkar and Klaus Mueller. Splatting with shadows. In Proceed-
ings of the International Workshop on Volume Graphics '01, 2001.

Gregory M. Nielson and Junwon Sung. Interval volume tetrahedrization. In
VIS ’97: Proceedings of the 8th conference on Visualization 97, pages 221—
ff., Los Alamitos, CA, USA, 1997. IEEE Computer Society Press.

OpenGL. The opengl architecture review board. http://oss.sgi.com/
projects/ogl-sample/registry/.

Mark Peercy, John Airey, and Brian Cabral. Efficient bump mapping hard-
ware. In SIGGRAPH ’97: Proceedings of the 24th annual conference on

BIBLIOGRAPHY - 210

[PASS95]

[PBFJO05]

[PBMHO2]

[PDg4]

[Pea85]

[Per85]

[Per02]

[PH89]

[PHK*99]

[Pho75]

[PLB101]

[Pro]

Computer graphics and interactive techniques, pages 303-306, New York,
NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

Alexander A. Pasko, Valery Adzhiev, Alexei Sourin, and Vladimir V.
Savchenko. Function representation in geometric modeling: concepts, im-
plementation and applications. The Visual Computer, 11(8):429-446, 1995.

Serban D. Porumbescu, Brian Budge, Louis Feng, and Kenneth I. Joy. Shell
maps. ACM Transactions on Graphics, 24(3):626-633, 2005.

Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray tracing
on programmable graphics hardware. ACM Trans. Graph., 21(3):703-712,
2002.

Thomas Porter and Tom Duff. Compositing digital images. In SIGGRAPH
’84: Proceedings of the 11th annual conference on Computer graphics and in-
teractive techniques, pages 253-259, New York, NY, USA, 1984. ACM Press.

Darwyn R. Peachey. Solid texturing of complex surfaces. In Proceedings of
the 12th annual conference on Computer graphics and interactive techniques,
pages 279-286. ACM Press, 1985.

Ken Perlin. An image synthesizer. In Proceedings of the 12th annual confer-
ence on Computer graphics and interactive techniques, pages 287-296. ACM
Press, 1985.

Ken Perlin. Improving noise. In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages 681-682. ACM Press,
2002.

K. Perlin and E. M. Hoffert. Hypertexture. In Proceedings of the 16th annual
conference on Computer graphics and interactive techniques, pages 253-262.
ACM Press, 1989.

Hanspeter Pfister, Jan Hardenbergh, Jim Kanittel, Hugh Lauer, and Larry Seiler.
The volumepro real-time ray-casting system. In SIGGRAPH ’99: Proceedings
of the 26th annual conference on Computer graphics and interactive tech-
niques, pages 251-260, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

Bui Tuong Phong. Illumination for computer generated pictures. Communi-
cations of the ACM, 18(6):311-317, 1975.

Hanspeter Pfister, Bill Lorensen, Chandrajit Bajaj, Gordon Kindlmann,

Will Schroeder, Lisa S. Avila, Ken Martin, Raghu Machiraju, and Jinho Lee.
The transfer function bake-off. IEEE Computer Graphics and Applications,
21(3):16-22, 2001.

The Visible Human Project. http://www.nlm.nih.gov/research/
visible/.

BIBLIOGRAPHY 211

[PT90]

[PTP45]

[Req80]

[RGW03]

[RSEB+00]

[RTB*92]

[RV77]

[SA]

[Sab88]

[Sat01]

[SB02]

[SJO1]

[SJO2]

[SK90]

B. A. Payne and A. W. Toga. Surface mapping brain function on 3d models.
IEEE Computer Graphics and Applications, 10(5):33—41, September 1990.

E.M. Purcell, H.C. Torrey, , and R.V. Pound. Resonance absorption by nuclear
magnetic moments in a solid. Physical Review, 69:37, 1945.

Aristides G. Requicha. Representations for rigid solids: Theory, methods, and
systems. ACM Computing Surveys, 12(4):437-464, 1980.

Stefan Rottger, Stefan Guthe, Daniel Weiskopf, Thomas Ertl, and Wolfgang
Strasser. Smart hardware-accelerated volume rendering. In Proceedings of the
symposium on Data visualisation 2003, pages 231-238. Eurographics Associ-
ation, 2003.

C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Inter-
active volume rendering on standard pc graphics hardware using multi-
textures and multi-stage rasterization. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 109-118.
ACM Press, 2000.

John Rhoades, Greg Turk, Andrew Bell, Andrei State, Ulrich Neumann, and
Amitabh Varshney. Real-time procedural textures. In SI3D ’92: Proceedings
of the 1992 symposium on Interactive 3D graphics, pages 95-100, New York,
NY, USA, 1992. ACM Press.

A.A.G. Requicha and G.B. Voelcker. Constructive solid geometry. Technical
report, University of Rochester,, 1977.

Mark Segal and Kurt Akeley. The opengl graphics system: A specification
(version 1.5).

Paolo Sabella. A rendering algorithm for visualizing 3d scalar fields. In SIG-
GRAPH ’88: Proceedings of the 15th annual conference on Computer graph-
ics and interactive techniques, pages 51-58, New York, NY, USA, 1988. ACM
Press.

Richard Satherley. Computation and Application of Distance Fields in Volume
Graphics. PhD thesis, University of Wales, Swansea, 2001.

S. Svensson and G. Borgefors. Digital distance transforms in 3D images using
information from neighbourhoods up to 5 x 5 x 5. Computer Vision and Image
Understanding, 88:24-53, 2002.

R. Satherley and M. W. Jones. Vector-city vector distance transform. Com-
puter Vision and Image Understanding, 82(3):238-254, 2001.

R. Satherley and M. W. Jones. Hypertexturing complex volume objects. The
Visual Computer, 18(4):226-235, June 2002.

D. Speray and S. Kennon. Volume probes: Interactive data exploration on
arbitrary grids. Computer Graphics, 24(5):5-12, November 1990.

BIBLIOGRAPHY " 212

[SK94]

[SK00]

[Srd96]

[SSKEO5]

[Str00]
[SWO5]

[SZL92]

[THB190]

[THR97]

[TLMO3]

[Tur92]

[Tze05]

[UKS88]

Lisa M. Sobierajski and Arie E. Kaufman. Volumetric ray tracing. In VVS
'94: Proceedings of the 1994 symposium on Volume visualization, pages 11—
18, New York, NY, USA, 1994. ACM Press.

Milo§ Srdmek and Arie Kaufman. Fast ray-tracing of rectilinear volume data
using distance transforms. IEEE Transactions on Visualization and Computer
Graphics, 6(3):236-252, 2000.

Milo$ Sramek. Fast ray-tracing of rectilinear volume data. In Proceedings of
the Eurographics workshop on Virtual environments and scientific visualiza-
tion '96, pages 201-210, London, UK, 1996. Springer-Verlag.

S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible volume
rendering framework for graphics-hardware—based raycasting. In Proceedings
of the International Workshop on Volume Graphics '05, pages 187-195, 2005.

Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, 2000.

P. Shen and P. Willis. Texture mapping volume objects. In Vision, Video, and
Graphics, pages 45-52, 2005.

William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decima-
tion of triangle meshes. In SIGGRAPH ’92: Proceedings of the 19th annual
conference on Computer graphics and interactive techniques, pages 65-70,
New York, NY, USA, 1992. ACM Press.

UIf Tiede, Karl Heinz Hoehne, Michael Bomans, Andreas Pommert, Martin
Riemer, and Gunnar Wiebecke. Surface rendering: Investigation of med-
ical 3d-rendering algorithms. IEEE Computer Graphics and Applications,
10(2):41-53, 1990.

U. Tiede, K.H Hohne, and M. Riemer. Comparison of surface rendering tech-
niques for 3d tomographic objects. In Computer Assisted Radiology, pages
599-610, 1997.

Fan-Yin Tzeng, Eric B. Lum, and Kwan-Liu Ma. A novel interface for higher-
dimensional classification of volume data. In VIS '03: Proceedings of the
14th IEEE Visualization 2003 (VIS’03), page 66, Washington, DC, USA, 2003.
IEEE Computer Society.

Greg Turk. Re-tiling polygonal surfaces. In SSIGGRAPH ’92: Proceedings of
the 19th annual conference on Computer graphics and interactive techniques,
pages 55-64, New York, NY, USA, 1992, ACM Press.

Fan-Yin Tzeng. An intelligent system approach to higher-dimensional clas-
sification of volume data. /[EEE Transactions on Visualization and Computer
Graphics, 11(3):273-284, 2005. Member-Eric B. Lum and Senior Member-
Kwan-Liu Ma.

Craig Upson and Michael Keeler. V-buffer: visible volume rendering. In
SIGGRAPH ’88: Proceedings of the 15th annual conference on Computer

BIBLIOGRAPHY 213

[War91]

[WCO1]

[WE98a]

[WE98b]

[WEEO02]

[WEEO03]

[Wes90]

[WG90]

[WG92]

[Whi80]

[Wil83]

[Win02] .

[WJ06]

graphics and interactive techniques, pages 59—-64, New York, NY, USA, 1988.
ACM Press.

G. Ward. Graphic Gems II, chapter A recursive Implementation of the Perlin
Noise Function, pages 396-401. Academic Press Professional, 1991.

A.S. Winter and M. Chen. Vlib: A volume graphics api. In International
workshop on Volume Graphics ’01. Springer-Wien New York, 2001.

R. Westermann and T. Ertl. Solid texturing on a per-pixel basis. In IEEE Mul-
tidimensional Digital Signal Processing ’98, Conference Proceedings, pages
48-55. IEEE, 1998.

Riidiger Westermann and Thomas Ertl. Efficiently using graphics hardware in
volume rendering applications. In SIGGRAPH ’98: Proceedings of the 25th
annual conference on Computer graphics and interactive techniques, pages
169-177, New York, NY, USA, 1998. ACM Press.

Daniel Weiskopf, Klaus Engel, and Thomas Ertl. Volume clipping via per-
fragment operations in texture-based volume visualization. In VIS ’02: Pro-
ceedings of the conference on Visualization '02, pages 93-100, Washington,
DC, USA, 2002. IEEE Computer Society.

Daniel Weiskopf, Klaus Engel, and Thomas Ertl. Interactive clipping tech-,
niques for texture-based volume visualization and volume shading. IEEE
Transactions on Visualization and Computer Graphics, 9(3):298-312, 2003.

Lee Westover. Footprint evaluation for volume rendering. In SIGGRAPH ’90:
Proceedings of the 17th annual conference on Computer graphics and inter-
active techniques, pages 367-376, New York, NY, USA, 1990. ACM Press.

Jane Wilhelms and Allen Van Gelder. Topological considerations in isosur-
face generation extended abstract. In VVS '90: Proceedings of the 1990 work-
shop on Volume visualization, pages 79-86, New York, NY, USA, 1990. ACM

Press.

Jane Wilhelms and Allen Van Gelder. Octrees for faster isosurface generation.
ACM Transactions on Graphics, 11(3):201-227, 1992.

Turner Whitted. An improved illumination model for shaded display. Com-
mun. ACM, 23(6):343-349, 1980.

Lance Williams. Pyramidal parametrics. In Computer Graphics (SIGGRAPH
'83 Proceedings), volume 17, pages 1-11, 1983.

Andrew Winter. Volume Graphics: Field Based Modelling and Rendering.
PhD thesis, University of Wales, Swansea, 2002.

Simon J. Walton and Mark W. Jones. Volume wires : A framework for empir-
ical non-linear deformation of volumetric datasets. Journal of WSCG, 14:81—
88, 2006.

BIBLIOGRAPHY 214

[WK93]

[WMG98]

[WMW86]

[WSO01]

[WTL*04]

[WVW94]

[WWT*03]

[YCK92]

[YK92]

[YKIO3]

[YKZ91]

[Z2C02]

[ZJ91]

Sidney W. Wang and Arie E. Kaufman. Volume sampled voxelization of geo-
metric primitives. In VIS '93: Proceedings of the 4th conference on Visualiza-
tion '93, pages 78-84, 1993.

Craig M. Wittenbrink, Thomas Malzbender, and Michael E. Goss. Opacity-
weighted color interpolation, for volume sampling. In VVS °98: Proceedings
of the 1998 IEEE symposium on Volume visualization, pages 135-142, New
York, NY, USA, 1998. ACM Press.

Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data structure for soft
objects. The Visual Computer, 2(4):227-234, February 1986.

Riidiger Westermann and Bernd Sevenich. Accelerated volume ray-casting
using texture mapping. In VIS ’01: Proceedings of the conference on Visu-
alization ’01, pages 271-278, Washington, DC, USA, 2001. IEEE Computer
Society.

Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-Yeung
Shum. Generalized displacement maps. In Eurographics Symposium on Ren-
dering, 2004.

Orion Wilson, Allen VanGelder, and Jane Wilhelms. Direct volume rendering
via 3d textures. Technical report, University of California, Santa Cruz, Santa
Cruz, CA, USA, 1994.

Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and
Heung-Yeung Shum. View-dependent displacement mapping. ACM Transac-
tions on Graphics, 22(3):334-339, 2003.

R Yagel, D Cohen, and A Kaufman. Discrete ray tracing. IEEE Computer
Graphics and Applications, 12(9):19-28, September 1992.

Roni Yagel and Arie Kaufman. Template-based volume viewing. Computer
Graphics Forum, 11(3):153-167, 1992.

Shuntaro Yamazaki, Kiwamu Kase, and Katsushi Ikeuchi. @ Hardware-
accelerated visualization of volume-sampled distance fields. In Proceedings
of the Shape Modeling International 2003, page 264. IEEE Computer Society,
2003.

Roni Yagel, Arie Kaufman, and Qiang Zhang. Realistic volume imaging. In
VIS '91: Proceedings of the 2nd conference on Visualization '91, pages 226—
231, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.

Caixia Zhang and Roger Crawfis. Volumetric shadows using splatting. In
VIS ’02: Proceedings of the conference on Visualization ’02, pages 85-92,
Washington, DC, USA, 2002. IEEE Computer Society.

C. Zahlten and H. Jurgens. Continuation methods for approximating isovalued
complex surfaces. In Computer Graphics Forum, Proc. Eurographics ’91,
pages 5-19, September 1991.

BIBLIOGRAPHY 215

[ZPvBGO1] M. Zwicker, H. Pfister, J. van Baar, and M. H. Gross. Ewa volume splatting.
In IEEE Visualization '01, 2001.

[ZPvG02] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross.

Ewa splatting. IEEE Transactions on Visualization and Computer Graphics,
8(3):223-238, 2002.

List of Figures

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

3.1
32
33
34
35
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13

Differing grid geometries and topologies for volume data
Modern CT Scanner, GE eSpeed EBT [Hea]
Axial images of CT, MRI and colour cryosections of thehead
Relationship between a voxel and a cell (regulargrid)
1D Reconstruction filters L.
Trilinear interpolationin a volumecell
Differing classifications of the CTHead dataset -
Normal vectors defined for Gouraud and Phong shading models
Marching cubes vertex enumeration scheme
Marching cubes basiccasetable
Marching tetrahedra basiccasetable
AvVSHydrogen dataset images from the marching tetrahedra algorithm

Octree data structure overviewo
Mirp rendering of the CTHead
Ray-castingoverview L e
Equidistant ray sampling during ray-casting
2D ray-casting OVEIVIEW o vttt e
Solid texture block and solid textured object
Sphere with object density function defining a soft-region.
Biascurve functions e
Gaincurve functions oo

GPU pipelineoverview
Generic hardware pipeline
Vertex shader execution algorithm
Fragment shader execution algorithm
2D Mip-maptexture e e e e
Differing proxy slice strategies
Image and object aligned proxy geometries
Spherical shell proxy geometry L
Distance field rendering: Empty space leaping alongaray
Distance field rendering: Adaptively rendering alongaray
Distance field ray samples throughvolume
Slab encoded between two proxy slices
Pre-integrated transfer functiontable

216

LIST OF FIGURES 217

3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
332
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
342

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

1D Transfer function 77
Iso-surface lookup tables for slabrendering 77
Multiple iso-surfaces of the SphereDist dataset 78
Lighting discontinuity in slab rendering for interpolated gradients 79
Screenshot of software testing environment 81
Image aligned proxy geometry generation 83
OoPvertexshader 84
OoP post-classification fragmentshader 85
OoOP pre-integrated classification fragment shader 85
Oor lit post-classification fragmentshader 85
OoP lit pre-integrated fragment shader 86
Oor iso-surface fragment shader using conditionals 86
OoP iso-surface fragment shader for alpha testmethod 86
Oop multiple interpolated iso-surface fragment shader 87
BuckyBall dataset post-classification and pre-integrated classification images 89
BuckyBall dataset iso-surface and interpolated iso-surface images 90
CTHead dataset post-classification and pre-integrated classification images 92
CTHead dataset iso-surface and interpolated iso-surface images 93
IOMproxy geometry 95
Ping-pong rendering scheme 96
IoMvertexshader 96
IoM post-classification fragment shader 98
IoM pre-integrated classification fragment shader 99
IoM iso-surface fragmentshader 100
IoM interpolated iso-surface fragment shader 101
Ios post-classification fragmentshader. 105
I0s pre-integrated classification fragment shader 106
Ios isosurface fragmentshader 107
Ios interpolated isosurface fragmentshader 107
Examples of Perlinnoise 114
Examples of noise implementations 117
Examples of turbulence implementations 118
OoOP solid texturing vertex shader 122
Oo0P solid texturing fragment shader 122
OoP interpolated solid texturing fragment shader 123
I0s solid texturing fragment shader 123
I0s interpolated solid texturing fragment shader 124
BuckyBall dataset bonzo solid texture images 126
CTHeadDist dataset turbulence solid texture images 127
SphereDist dataset wood solid texture images 128
CTHeadDist dataset with object density function defining a soft-region. . . 132
Bias and Gain lookup tables 134
Examples of hypertexture applied to the SphereDist dataset 137
OoP hypertexture fragmentshader 138
OopP hypertexture and iso-surface fragmentshader 138

LIST OF FIGURES 218

4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

5.1

5.2

53

5.4

55

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
521
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33

Oor interploated hypertexture fragment shader 139
Oor interploated hypertexture and iso-surface fragment shader 139
Ios hypertexture fragmentshader 140
I0S hypertexture and iso-surface fragment shader 140
I0s interpolated hypertexture fragment shader 141
Ios interpolated hypertexture and iso-surface fragment shader 142

SphereDist dataset fur hypertexture and interpolated hypertexture images . 145

CTHeadDist dataset fireball hypertexture and interpolated hypertexture . . 146
Animation of PerlinFire at differing time intervals 150
Mapping strategiesfor Oand O~ 155
Painting on the surface of the BuckyBall dataset 156
Intermediate surface geometries, 158
OoP 2D texturing fragmentshader e e e e 161
Oop interpolated 2D texturing fragmentshader 161
I0s 2D texturing fragment shader e 162
Ios interpolated 2D texturing fragmentshader. 162
BuckyBall dataset 2D texture mapping and interpolated 2D texture mapping 164
CTHeadDist 2D texture mapping and interpolated 2D texture mapping . . 165
Bump mappingstages 169
3D Bump mapping normal perturbation 170
Oop 3D bump mapping fragment shader. [P 171
OopP 3D interpolated bump mapping fragment shader 171
I0s 3D bump mapping fragmentshader 172
Ios 3D interpolated bump mapping fragment shader 173
BuckyBall dataset 3D bump mapping and interpolated 3D bump mapping . 174
CTHeadDist 3D bump mapping and interpolated 3D bump mapping 175
Normal mapping for 2D bump mapping and 2D displacement mapping . . 177
OoP 2D bump mapping fragmentshader 178
OoP 2D interpolated bump mapping fragment shader 178
I0s 2D bump mapping fragment shader 179
I0s 2D interpolated bump mapping fragment shader 180
BuckyBall dataset 2D bump mapping and interpolated 2D bump mapping . 181
CTHeadDist 2D bump mapping and interpolated 2D bump mapping 182
2D and 3D displacement mapping strategies 185
OopP 2D displacement mapping fragment shader 187
Ios 2D displacement mapping fragment shader 188
CTHeadDist dataset 2D displacement mapping images 189
OoP volume displacement mapping fragmentshader 191
OopP volume interpolated displacement mapping fragment shader 192
Ios volume displacement mapping fragment shader 193
I0S volume interpolated displacement mapping fragment shader 194
SphereDist volume displacement mapping 195

List of Tables

11

3.1
3.2
33
34
35
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5

Featured Datasets it 4
GPU generations and additional hardware capabilities 52
Example GPUSEIIES« v v v v v ot e e e e e e e e e e 53
GPU generation texture unit capabilities 59
GPU Branching Costs 60
Rendering approach and segmentation method comparison matrix 82
Ooprendering framerates 88
JoMframerates L. e 102
Josframerates 108
GPU Noise implementation comparisons 119
OoP solid texturing framerates 129
Ios solid texturing framerates 130
10s solid texturing frame rates with empty space leaping 131
OoP hypertexture framerates 143
I0s hypertexture framerates e e e e 147
Ios hypertexture frame rates with empty space leaping 148
2D texture mapping framerates 166
3D bump mapping framerates 173
2D bump mapping framerateso oo e 180
2D displacement mapping framerates 190
Volume displacement mapping framerates 192

219

