52,710 research outputs found

    Interval-Parameter Robust Minimax-regret Programming and Its Application to Energy and Environmental Systems Planning

    Get PDF
    In this study, an interval-parameter robust minimax-regret programming method is developed and applied to the planning of energy and environmental systems. Methods of robust programming, interval-parameter programming, and minimax-regret analysis are incorporated within a general optimization framework to enhance the robustness of the optimization effort. The interval-parameter robust minimax-regret programming can deal with uncertainties expressed as discrete intervals, fuzzy sets, and random variables. It can also be used for analyzing multiple scenarios associated with different system costs and risk levels. In its solution process, the fuzzy decision space is delimited into a more robust one through dimensional enlargement of the original fuzzy constraints; moreover, an interval-element cost matrix can be transformed into an interval-element regret matrix, such that the decision makers can identify desired alternatives based on the inexact minimax regret criterion. The developed method has been applied to a case study of energy and environmental systems planning under uncertainty. The results indicate that reasonable solutions have been generated

    Extended Kalman filter-based learning of interval type-2 intuitionistic fuzzy logic system

    Get PDF
    Fuzzy logic systems have been extensively applied for solving many real world application problems because they are found to be universal approximators and many methods, particularly, gradient descent (GD) methods have been widely adopted for the optimization of fuzzy membership functions. Despite its popularity, GD still suffers some drawbacks in terms of its slow learning and convergence. In this study, the use of decoupled extended Kalman filter (DEKF) to optimize the parameters of an interval type-2 intuitionistic fuzzy logic system of Tagagi-Sugeno-Kang (IT2IFLS-TSK) fuzzy inference is proposed and results compared with IT2IFLS gradient descent learning. The resulting systems are evaluated on a real world dataset from Australia’s electricity market. The IT2IFLS-DEKF is also compared with its type-1 variant and interval type-2 fuzzy logic system (IT2FLS). Analysis of results reveal performance superiority of IT2IFLS trained with DEKF (IT2IFLS-DEKF) over IT2IFLS trained with gradient descent (IT2IFLS-GD). The proposed IT2IFLS-DEKF also outperforms its type-1 variant and IT2FLS on the same learning platform

    Improve Interval Optimization of FLR using Auto-speed Acceleration Algorithm

    Get PDF
    Inflation is a benchmark of a country's economic development. Inflation is very influential on various things, so forecasting inflation to know on upcoming inflation will impact positively. There are various methods used to perform forecasting, one of which is the fuzzy time series forecasting with maximum results. Fuzzy logical relationships (FLR) model is a very good in doing forecasting. However, there are some parameters that the value needs to be optimised. Interval is a parameter which is highly influence toward forecasting result. The utilizing optimization with hybrid automatic clustering and particle swarm optimization (ACPSO). Automatic clustering can do interval formation with just the right amount. While the PSO can optimise the value of each interval and it is providing maximum results. This study proposes the improvement in find the solution using auto-speed acceleration algorithm. Auto-speed acceleration algorithm can find a global solution which is hard to reach by the PSO and time of computation is faster. The results of the acquired solutions can provide the right interval so that the value of the FLR can perform forecasting with maximum results

    Automatic Diagnosis of Schizophrenia and Attention Deficit Hyperactivity Disorder in rs-fMRI Modality using Convolutional Autoencoder Model and Interval Type-2 Fuzzy Regression

    Get PDF
    Nowadays, many people worldwide suffer from brain disorders, and their health is in danger. So far, numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and attention deficit hyperactivity disorder (ADHD), among which functional magnetic resonance imaging (fMRI) modalities are known as a popular method among physicians. This paper presents an SZ and ADHD intelligent detection method of resting-state fMRI (rs-fMRI) modality using a new deep learning method. The University of California Los Angeles dataset, which contains the rs-fMRI modalities of SZ and ADHD patients, has been used for experiments. The FMRIB software library toolbox first performed preprocessing on rs-fMRI data. Then, a convolutional Autoencoder model with the proposed number of layers is used to extract features from rs-fMRI data. In the classification step, a new fuzzy method called interval type-2 fuzzy regression (IT2FR) is introduced and then optimized by genetic algorithm, particle swarm optimization, and gray wolf optimization (GWO) techniques. Also, the results of IT2FR methods are compared with multilayer perceptron, k-nearest neighbors, support vector machine, random forest, and decision tree, and adaptive neuro-fuzzy inference system methods. The experiment results show that the IT2FR method with the GWO optimization algorithm has achieved satisfactory results compared to other classifier methods. Finally, the proposed classification technique was able to provide 72.71% accuracy

    Interval type-2 intuitionistic fuzzy logic system for time series and identification problems - a comparative study

    Get PDF
    This paper proposes a sliding mode control-based learning of interval type-2 intuitionistic fuzzy logic system for time series and identification problems. Until now, derivative-based algorithms such as gradient descent back propagation, extended Kalman filter, decoupled extended Kalman filter and hybrid method of decoupled extended Kalman filter and gradient descent methods have been utilized for the optimization of the parameters of interval type-2 intuitionistic fuzzy logic systems. The proposed model is based on a Takagi-Sugeno-Kang inference system. The evaluations of the model are conducted using both real world and artificially generated datasets. Analysis of results reveals that the proposed interval type-2 intuitionistic fuzzy logic system trained with sliding mode control learning algorithm (derivative-free) do outperforms some existing models in terms of the test root mean squared error while competing favourable with other models in the literature. Moreover, the proposed model may stand as a good choice for real time applications where running time is paramount compared to the derivative-based models

    Identication of fuzzy function via interval analysis

    No full text
    22 pages, accepté Reliable ComputingA number of techniques have been introduced to construct fuzzy models from measured data. One of the most common is the use of mathematical parametric models. In this paper, a new approach based on interval analysis is proposed to compute guaranteed estimates of suitable characteristics of the set of all values of the fuzzy parameter vector such that the error between experimental data and the model outputs belongs to some predefined feasible set. Subpavings consisting of boxes with nonzero width are used to encompass all the acceptable values of the parameter vector. The problem of estimating the parameters of the model is viewed as one of set inversion, which is solved in an approximate but guaranteed way with the tools of interval analysis. The estimation task is formulated here as a constrained optimization problem. Our approach emphasizes the use of interval mathematics for fuzzy representation, which is especially suited to nonlinear models, a situation where most available methods fail to provide any guarantee on the results. An algorithm is proposed, which makes it possible to obtain all fuzzy parameter vectors that are consistent with the data. Properties of this algorithm are established and illustrated on a simple example
    • …
    corecore