16,142 research outputs found

    Intersection Graphs of L-Shapes and Segments in the Plane

    Get PDF
    An L-shape is the union of a horizontal and a vertical segment with a common endpoint. These come in four rotations: ⌊,⌈,⌋ and ⌉. A k-bend path is a simple path in the plane, whose direction changes k times from horizontal to vertical. If a graph admits an intersection representation in which every vertex is represented by an ⌊, an ⌊ or ⌈, a k-bend path, or a segment, then this graph is called an ⌊-graph, ⌊,⌈-graph, B k -VPG-graph or SEG-graph, respectively. Motivated by a theorem of Middendorf and Pfeiffer [Discrete Mathematics, 108(1):365–372, 1992], stating that every ⌊,⌈-graph is a SEG-graph, we investigate several known subclasses of SEG-graphs and show that they are ⌊-graphs, or B k -VPG-graphs for some small constant k. We show that all planar 3-trees, all line graphs of planar graphs, and all full subdivisions of planar graphs are ⌊-graphs. Furthermore we show that all complements of planar graphs are B 19-VPG-graphs and all complements of full subdivisions are B 2-VPG-graphs. Here a full subdivision is a graph in which each edge is subdivided at least once

    Planar graphs as L-intersection or L-contact graphs

    Full text link
    The L-intersection graphs are the graphs that have a representation as intersection graphs of axis parallel shapes in the plane. A subfamily of these graphs are {L, |, --}-contact graphs which are the contact graphs of axis parallel L, |, and -- shapes in the plane. We prove here two results that were conjectured by Chaplick and Ueckerdt in 2013. We show that planar graphs are L-intersection graphs, and that triangle-free planar graphs are {L, |, --}-contact graphs. These results are obtained by a new and simple decomposition technique for 4-connected triangulations. Our results also provide a much simpler proof of the known fact that planar graphs are segment intersection graphs

    Triangle-free geometric intersection graphs with no large independent sets

    Get PDF
    It is proved that there are triangle-free intersection graphs of line segments in the plane with arbitrarily small ratio between the maximum size of an independent set and the total number of vertices.Comment: Change of the title, minor revisio

    Triangle-free geometric intersection graphs with large chromatic number

    Get PDF
    Several classical constructions illustrate the fact that the chromatic number of a graph can be arbitrarily large compared to its clique number. However, until very recently, no such construction was known for intersection graphs of geometric objects in the plane. We provide a general construction that for any arc-connected compact set XX in R2\mathbb{R}^2 that is not an axis-aligned rectangle and for any positive integer kk produces a family F\mathcal{F} of sets, each obtained by an independent horizontal and vertical scaling and translation of XX, such that no three sets in F\mathcal{F} pairwise intersect and χ(F)>k\chi(\mathcal{F})>k. This provides a negative answer to a question of Gyarfas and Lehel for L-shapes. With extra conditions, we also show how to construct a triangle-free family of homothetic (uniformly scaled) copies of a set with arbitrarily large chromatic number. This applies to many common shapes, like circles, square boundaries, and equilateral L-shapes. Additionally, we reveal a surprising connection between coloring geometric objects in the plane and on-line coloring of intervals on the line.Comment: Small corrections, bibliography updat

    On grounded L-graphs and their relatives

    Get PDF
    We consider the graph class Grounded-L corresponding to graphs that admit an intersection representation by L-shaped curves, where additionally the topmost points of each curve are assumed to belong to a common horizontal line. We prove that Grounded-L graphs admit an equivalent characterisation in terms of vertex ordering with forbidden patterns. We also compare this class to related intersection classes, such as the grounded segment graphs, the monotone L-graphs (a.k.a. max point-tolerance graphs), or the outer-1-string graphs. We give constructions showing that these classes are all distinct and satisfy only trivial or previously known inclusions.Comment: 16 pages, 6 figure

    Combinatorial and Geometric Properties of Planar Laman Graphs

    Full text link
    Laman graphs naturally arise in structural mechanics and rigidity theory. Specifically, they characterize minimally rigid planar bar-and-joint systems which are frequently needed in robotics, as well as in molecular chemistry and polymer physics. We introduce three new combinatorial structures for planar Laman graphs: angular structures, angle labelings, and edge labelings. The latter two structures are related to Schnyder realizers for maximally planar graphs. We prove that planar Laman graphs are exactly the class of graphs that have an angular structure that is a tree, called angular tree, and that every angular tree has a corresponding angle labeling and edge labeling. Using a combination of these powerful combinatorial structures, we show that every planar Laman graph has an L-contact representation, that is, planar Laman graphs are contact graphs of axis-aligned L-shapes. Moreover, we show that planar Laman graphs and their subgraphs are the only graphs that can be represented this way. We present efficient algorithms that compute, for every planar Laman graph G, an angular tree, angle labeling, edge labeling, and finally an L-contact representation of G. The overall running time is O(n^2), where n is the number of vertices of G, and the L-contact representation is realized on the n x n grid.Comment: 17 pages, 11 figures, SODA 201
    • …
    corecore