92,449 research outputs found

    Interpreting communities based on the evolution of a dynamic attributed network

    Get PDF
    International audienceMany methods have been proposed to detect communities , not only in plain, but also in attributed, directed or even dynamic complex networks. From the modeling point of view, to be of some utility, the community structure must be characterized relatively to the properties of the studied system. However, most of the existing works focus on the detection of communities, and only very few try to tackle this interpretation problem. Moreover, the existing approaches are limited either by the type of data they handle, or by the nature of the results they output. In this work, we see the interpretation of communities as a problem independent from the detection process, consisting in identifying the most characteristic features of communities. We give a formal definition of this problem and propose a method to solve it. To this aim, we first define a sequence-based representation of networks, combining temporal information, community structure, topological measures, and nodal attributes. We then describe how to identify the most emerging sequential patterns of this dataset, and use them to characterize the communities. We study the performance of our method on artificially generated dynamic attributed networks. We also empirically validate our framework on real-world systems: a DBLP network of scientific collaborations, and a LastFM network of social and musical interactions

    Community Structure Characterization

    Get PDF
    This entry discusses the problem of describing some communities identified in a complex network of interest, in a way allowing to interpret them. We suppose the community structure has already been detected through one of the many methods proposed in the literature. The question is then to know how to extract valuable information from this first result, in order to allow human interpretation. This requires subsequent processing, which we describe in the rest of this entry

    Exploring the Evolution of Node Neighborhoods in Dynamic Networks

    Full text link
    Dynamic Networks are a popular way of modeling and studying the behavior of evolving systems. However, their analysis constitutes a relatively recent subfield of Network Science, and the number of available tools is consequently much smaller than for static networks. In this work, we propose a method specifically designed to take advantage of the longitudinal nature of dynamic networks. It characterizes each individual node by studying the evolution of its direct neighborhood, based on the assumption that the way this neighborhood changes reflects the role and position of the node in the whole network. For this purpose, we define the concept of \textit{neighborhood event}, which corresponds to the various transformations such groups of nodes can undergo, and describe an algorithm for detecting such events. We demonstrate the interest of our method on three real-world networks: DBLP, LastFM and Enron. We apply frequent pattern mining to extract meaningful information from temporal sequences of neighborhood events. This results in the identification of behavioral trends emerging in the whole network, as well as the individual characterization of specific nodes. We also perform a cluster analysis, which reveals that, in all three networks, one can distinguish two types of nodes exhibiting different behaviors: a very small group of active nodes, whose neighborhood undergo diverse and frequent events, and a very large group of stable nodes

    Uncovering the Wider Structure of Extreme Right Communities Spanning Popular Online Networks

    Get PDF
    Recent years have seen increased interest in the online presence of extreme right groups. Although originally composed of dedicated websites, the online extreme right milieu now spans multiple networks, including popular social media platforms such as Twitter, Facebook and YouTube. Ideally therefore, any contemporary analysis of online extreme right activity requires the consideration of multiple data sources, rather than being restricted to a single platform. We investigate the potential for Twitter to act as a gateway to communities within the wider online network of the extreme right, given its facility for the dissemination of content. A strategy for representing heterogeneous network data with a single homogeneous network for the purpose of community detection is presented, where these inherently dynamic communities are tracked over time. We use this strategy to discover and analyze persistent English and German language extreme right communities.Comment: 10 pages, 11 figures. Due to use of "sigchi" template, minor changes were made to ensure 10 page limit was not exceeded. Minor clarifications in Introduction, Data and Methodology section

    Uncovering the wider structure of extreme right communities spanning popular online networks

    Get PDF
    AbstractRecent years have seen increased interest in the online presence of extreme right groups. Although originally composed of dedicated websites, the online extreme right milieu now spans multiple networks, including popular social media platforms such as Twitter, Facebook and YouTube. Ideally therefore, any contemporary analysis of online extreme right activity requires the consideration of multiple data sources, rather than being restricted to a single platform.We investigate the potential for Twitter to act as one possible gateway to communities within the wider online network of the extreme right, given its facility for the dissemination of content. A strategy for representing heterogeneous network data with a single homogeneous network for the purpose of community detection is presented, where these inherently dynamic communities are tracked over time. We use this strategy to discover and analyze persistent English and German language extreme right communities.Authored by Derek O’Callaghan, Derek Greene, Maura Conway, Joe Carthy and Padraig Cunningham

    Theoretical ecology as etiological from the start

    Get PDF
    The world’s leading environmental advisory institutions look to ecological theory and research as an objective guide for policy and resource management decision-making. In addition to various theoretical merits of doing so, it is therefore crucially important to clear up confusions about ecology’s conceptual foundations and to make plain the basic workings of inferential methods used in the science. Through discussion of key moments in the genesis of the theoretical branch of ecology, this essay elucidates a general heuristic role of teleological metaphor in ecological research and defuses certain enduring confusions and misguided criticisms of current work in ecology

    Effects of time window size and placement on the structure of aggregated networks

    Full text link
    Complex networks are often constructed by aggregating empirical data over time, such that a link represents the existence of interactions between the endpoint nodes and the link weight represents the intensity of such interactions within the aggregation time window. The resulting networks are then often considered static. More often than not, the aggregation time window is dictated by the availability of data, and the effects of its length on the resulting networks are rarely considered. Here, we address this question by studying the structural features of networks emerging from aggregating empirical data over different time intervals, focussing on networks derived from time-stamped, anonymized mobile telephone call records. Our results show that short aggregation intervals yield networks where strong links associated with dense clusters dominate; the seeds of such clusters or communities become already visible for intervals of around one week. The degree and weight distributions are seen to become stationary around a few days and a few weeks, respectively. An aggregation interval of around 30 days results in the stablest similar networks when consecutive windows are compared. For longer intervals, the effects of weak or random links become increasingly stronger, and the average degree of the network keeps growing even for intervals up to 180 days. The placement of the time window is also seen to affect the outcome: for short windows, different behavioural patterns play a role during weekends and weekdays, and for longer windows it is seen that networks aggregated during holiday periods are significantly different.Comment: 19 pages, 11 figure

    Complex regional innovation networks and HEI engagement the case of Chicago

    Get PDF
    This article considers how HEIs engage within local complex development networks in order to develop the urban metropolis, using the case of Chicago as a specific example. It focuses on three main issues: how collaboration occurs amongst regional stakeholders; how goals are set and how shared goals have been created; and the extent to which there exist conflicting views amongst stakeholders, and their capability to create solutions where there are disagreements and clashing purposes. Chicago is in the middle of making a paradigm shift, with at its core an open system approach that includes a variety of ways to engage citizen-users as co-creators, including through user-driven innovation and digitalised services. In the metropolitan area there is a widely shared goal amongst stakeholders to develop and improve novel approaches for regional engagement to enhance innovativeness and competitiveness. The paradigm shift in regional engagement from building co-operation clusters to one of organisational betweenness and open systemic thinking requires new skills in management and leadership centred on interaction, co-creation and sharing of knowledge

    In Praise of Dialogue: Storytelling as a Means of Negotiated Diversity Management

    Get PDF
    • 

    corecore